1
|
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K, Wang J. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:106. [PMID: 39468696 DOI: 10.1186/s40164-024-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD. METHODS We employed broad-panel next-generation sequencing (NGS) on a cohort of 257 surgically treated LUAD patients to delineate the molecular landscape of primary tumors and identify actionable driver-gene alterations. Additionally, we used multiplex immunohistochemistry (mIHC) on a propensity score-matched cohort, which enabled us to profile the immune microenvironment of primary tumors in detail while preserving cellular metaclusters, interactions, and neighborhood functional units. By integrating data from NGS and mIHC, we successfully identified spatial immunogenomic patterns and developed a predictive model for LN metastasis, which was subsequently validated independently. RESULTS Our analysis revealed distinct immunogenomic alteration patterns associated with LN metastasis stages. Specifically, we observed increased mutation frequencies in genes such as PIK3CG and ATM in LN metastatic primary tumors. Moreover, LN positive primary tumors exhibited a higher presence of macrophage and regulatory T cell metaclusters, along with their enriched neighborhood units (p < 0.05), compared to LN negative tumors. Furthermore, we developed a novel predictive model for LN metastasis likelihood, designed to inform non-surgical treatment strategies, optimize personalized therapy plans, and potentially improve outcomes for patients who are ineligible for surgery. CONCLUSIONS This study offers a comprehensive analysis of the genetic and immune profiles in LUAD primary tumors with LN metastasis, identifying key immunogenomic patterns linked to metastatic progression. The predictive model derived from these insights marks a substantial advancement in personalized treatment, underscoring its potential to improve patient management.
Collapse
Affiliation(s)
- Fanjie Meng
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Ruoyi Jin
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Airong Yang
- Kanghui Biotechnology Co., Ltd, Shenyang, China
| | - Hao Luo
- Cancer Center, Daping Hospital Army Medical University, Chongqing, China
| | - Xiao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yaxing Zhao
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Kaicheng Tang
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Sida Cheng
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Kezhong Chen
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
| |
Collapse
|
2
|
Guzman A, Kawase T, Devanny AJ, Efe G, Navaridas R, Yu K, Regunath K, Mercer IG, Avard RC, Muniz de Queiroz R, Rustgi AK, Kaufman LJ, Prives C. Mutant p53 regulates cancer cell invasion in complex three-dimensional environments through mevalonate pathway-dependent Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618100. [PMID: 39464132 PMCID: PMC11507699 DOI: 10.1101/2024.10.13.618100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Certain mutations can confer neomorphic gain of function (GOF) activities to the p53 protein that affect cancer progression. Yet the concept of mutant p53 GOF has been challenged. Here, using various strategies to alter the status of mutant versions of p53 in different cell lines, we demonstrate that mutant p53 stimulates cancer cell invasion in three-dimensional environments. Mechanistically, mutant p53 enhances RhoA/ROCK-dependent cell contractility and cell-mediated extracellular matrix (ECM) re-organization via increasing mevalonate pathway-dependent RhoA localization to the membrane. In line with this, RhoA-dependent pro-invasive activity is also mediated by IDI-1, a mevalonate pathway product. Further, the invasion-enhancing effect of mutant p53 is dictated by the biomechanical properties of the surrounding ECM, thereby adding a cell-independent layer of regulation to mutant p53 GOF activity that is mediated by dynamic reciprocal cell-ECM interactions. Together our findings link mutant p53 metabolic GOF activity with an invasive cellular phenotype in physiologically relevant and context-dependent settings. Significance This study addresses the contribution of mutant p53 to the process of cancer cell dissemination in physiologically relevant three-dimensional environments - a key characteristic of metastatic disease. Several mutant p53 proteins display pro-oncogenic activity with respect to cancer cell invasion in 3D environments via mevalonate pathway-dependent Rho/ROCK signaling axis.
Collapse
|
3
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546598. [PMID: 37425746 PMCID: PMC10327019 DOI: 10.1101/2023.06.26.546598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Jia MH, Zhang SL, Liu TB, Jue YF, Liu XL, Liu JB. Systematic review and meta-analysis of relationship between p53 protein expression and lymph node metastasis, vascular invasion, and perineural invasion in pancreatic cancer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:376-386. [DOI: 10.11569/wcjd.v32.i5.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
6
|
Nurminen R, Afyounian E, Paunu N, Katainen R, Isomäki M, Nurminen A, Scaravilli M, Tolppanen J, Fey V, Kivinen A, Helén P, Välimäki N, Kesseli J, Aaltonen LA, Haapasalo H, Nykter M, Rautajoki KJ. Previously reported CCDC26 risk variant and novel germline variants in GALNT13, AR, and MYO10 associated with familial glioma in Finland. Sci Rep 2024; 14:11562. [PMID: 38773237 PMCID: PMC11109329 DOI: 10.1038/s41598-024-62296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.
Collapse
Affiliation(s)
- Riikka Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niina Paunu
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Isomäki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anssi Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Mauro Scaravilli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Jenni Tolppanen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Vidal Fey
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anni Kivinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Pauli Helén
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories ltd., Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland.
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
7
|
Eddington C, Schwartz JK, Titus MA. filoVision - using deep learning and tip markers to automate filopodia analysis. J Cell Sci 2024; 137:jcs261274. [PMID: 38264939 PMCID: PMC10941656 DOI: 10.1242/jcs.261274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.
Collapse
Affiliation(s)
- Casey Eddington
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica K. Schwartz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret A. Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
9
|
Nazari SS, Doyle AD, Bleck CKE, Yamada KM. Long Prehensile Protrusions Can Facilitate Cancer Cell Invasion through the Basement Membrane. Cells 2023; 12:2474. [PMID: 37887318 PMCID: PMC10605924 DOI: 10.3390/cells12202474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
A basic process in cancer is the breaching of basement-membrane barriers to permit tissue invasion. Cancer cells can use proteases and physical mechanisms to produce initial holes in basement membranes, but how cells squeeze through this barrier into matrix environments is not well understood. We used a 3D invasion model consisting of cancer-cell spheroids encapsulated by a basement membrane and embedded in collagen to characterize the dynamic early steps in cancer-cell invasion across this barrier. We demonstrate that certain cancer cells extend exceptionally long (~30-100 μm) protrusions through basement membranes via actin and microtubule cytoskeletal function. These long protrusions use integrin adhesion and myosin II-based contractility to pull cells through the basement membrane for initial invasion. Concurrently, these long, organelle-rich protrusions pull surrounding collagen inward while propelling cancer cells outward through perforations in the basement-membrane barrier. These exceptionally long, contractile cellular protrusions can facilitate the breaching of the basement-membrane barrier as a first step in cancer metastasis.
Collapse
Affiliation(s)
- Shayan S. Nazari
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D. Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K. E. Bleck
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2023; 84:104562. [DOI: 10.1016/j.jddst.2023.104562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
11
|
Liu J, Chen L, Zheng X, Guo C. Identification of immune-related genes in acute myocardial infarction based on integrated bioinformatical methods and experimental verification. PeerJ 2023; 11:e15058. [PMID: 37214088 PMCID: PMC10198157 DOI: 10.7717/peerj.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. The etiology of AMI is complex and has not been fully defined. In recent years, the role of immune response in the development, progression and prognosis of AMI has received increasing attention. The aim of this study was to identify key genes associated with the immune response in AMI and to analyze their immune infiltration. Methods The study included a total of two GEO databases, containing 83 patients with AMI and 54 healthy individuals. We used the linear model of microarray data (limma) package to find the differentially expressed genes associated with AMI, performing weighted gene co-expression analysis (WGCNA) to further identify the genes associated with inflammatory response to AMI. We found the final hub genes through the protein-protein interaction (PPI) network and least absolute shrinkage and selection operator (LASSO) regression model. To verify the above conclusions, we constructed mice AMI model, extracting myocardial tissue to perform qRT-PCR. Furthermore, the CIBERSORT tool for immune cells infiltration analysis was also carried out. Results A total of 5,425 significant up-regulated and 2,126 down-regulated genes were found in GSE66360 and GSE24519. A total of 116 immune-related genes in close association with AMI were screened by WGCNA analysis. These genes were mostly clustered in the immune response on the basis of GO and KEGG enrichment. With construction of PPI network and LASSO regression analysis, this research found three hub genes (SOCS2, FFAR2, MYO10) among these differentially expressed genes. The immune cell infiltration results revealed that significant differences could be found on T cells CD4 memory activated, Tregs (regulatory T cells), macrophages M2, neutrophils, T cells CD8, T cells CD4 naive, eosinophils between controls and AMI patients.
Collapse
Affiliation(s)
- Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiang Zheng
- Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Popović A, Miihkinen M, Ghimire S, Saup R, Grönloh MLB, Ball NJ, Goult BT, Ivaska J, Jacquemet G. Myosin-X recruits lamellipodin to filopodia tips. J Cell Sci 2023; 136:293507. [PMID: 36861887 PMCID: PMC10022686 DOI: 10.1242/jcs.260574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.
Collapse
Affiliation(s)
- Ana Popović
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sujan Ghimire
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Rafael Saup
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Max L B Grönloh
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Neil J Ball
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Department of Life Technologies, University of Turku, 20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Turku Bioimaging, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
13
|
Zhan XJ, Wang R, Kuang XR, Zhou JY, Hu XL. Elevated expression of myosin VI contributes to breast cancer progression via MAPK/ERK signaling pathway. Cell Signal 2023; 106:110633. [PMID: 36803774 DOI: 10.1016/j.cellsig.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer (BC) is one of the most common malignancies occurring in women worldwide, and its incidence is increasing each year. Accumulating evidence indicated that Myosin VI (MYO6) functions as a gene associated with tumor progression in several cancers. However, the potential role of MYO6 and its underlying mechanisms in the development and progression of BC remains unknown. Herein, we examined the expression levels of MYO6 in BC cells and tissues by western blot and immunohistochemistry. Loss- and gain-of-function investigations in vitro were performed to determine the biological functions of MYO6. And in vivo effects of MYO6 on tumorigenesis were investigated in nude mice. Our findings showed that the expression of MYO6 was up-regulated in breast cancer, and its high expression was correlated with poor prognosis. Further investigation exhibited that silencing the expression of MYO6 significantly inhibited cell proliferation, migration and invasion, whereas overexpression of MYO6 enhanced these abilities in vitro. Also, reduced expression of MYO6 significantly retarded the tumor growth in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) revealed that MYO6 was involved in mitogen-activated protein kinase (MAPK) pathway. Moreover, we proved that MYO6 enhanced BC proliferation, migration and invasion via increasing the expression of phosphorylated ERK1/2. Taken together, our findings highlight the role of MYO6 in promoting BC cell progression through MAPK/ERK pathway, suggesting it may be a new potential therapeutic and prognostic target for BC patients.
Collapse
Affiliation(s)
- Xiao-Juan Zhan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiong-Ri Kuang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jue-Yu Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xiao-Lei Hu
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
14
|
Abstract
Filopodia are fingerlike membrane protrusions extended by cells to sense their environment. Filopodia are widely used by migrating cells in vivo and directly contribute to several physiological processes and diseases. Due to the essential roles of filopodia in sensing the extracellular environment, there is a need to characterize their composition and ultrastructure further. This chapter highlights FiloMap, an image analysis pipeline that utilizes Fiji and R to map the localization of proteins within filopodia from microscopy images. I provide step-by-step protocols on (a) setting up FiloMap in Fiji and R, (b) extracting line intensity profiles from filopodia stainings in Fiji, (c) further analyzing line intensity profiles in R, and (d) creating filopodia maps to compare the localization of multiple proteins within filopodia. Notably, while FiloMap was written to analyze filopodia, the analysis pipeline described here can also analyze and compile any line intensity profiles.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland. .,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Chen YH, Xu NZ, Hong C, Li WQ, Zhang YQ, Yu XY, Huang YL, Zhou JY. Myo1b promotes tumor progression and angiogenesis by inhibiting autophagic degradation of HIF-1α in colorectal cancer. Cell Death Dis 2022; 13:939. [PMID: 36347835 PMCID: PMC9643372 DOI: 10.1038/s41419-022-05397-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Myosin 1b (Myo1b) is an important single-headed membrane-associated motor of class I myosins that participate in many critical physiological and pathological processes. Mounting evidence suggests that the dysregulation of Myo1b expression has been extensively investigated in the development and progression of several tumors. However, the functional mechanism of Myo1b in CRC angiogenesis and autophagy progression remains unclear. Herein, we found that the expression of Myo1b was upregulated in CRC tissues and its high expression was correlated with worse survival. The overexpression of Myo1b promoted the proliferation, migration and invasion of CRC cells. Conversely, silencing of Myo1b suppressed tumor progression both in vitro and in vivo. Further studies indicated that Myo1b inhibited the autophagosome-lysosome fusion and potentiated the VEGF secretion of CRC cells to promote angiogenesis. Mechanistically, Myo1b blocked the autophagic degradation of HIF-1α and then led to the accumulation of HIF-1α, thus enhancing VEGF secretion and then promoting tumor angiogenesis in CRC. Together, our study provided novel insights into the role of Myo1b in CRC progression and revealed that it might be a feasible predictive biomarker and promising therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yi-Hong Chen
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Nan-Zhu Xu
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Chang Hong
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Wen-Qi Li
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Yi-Qiong Zhang
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Xin-Yi Yu
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Yue-Le Huang
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 P.R. China
| | - Jue-Yu Zhou
- grid.284723.80000 0000 8877 7471Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 P.R. China
| |
Collapse
|
16
|
Peuhu E, Jacquemet G, Scheele CL, Isomursu A, Laisne MC, Koskinen LM, Paatero I, Thol K, Georgiadou M, Guzmán C, Koskinen S, Laiho A, Elo LL, Boström P, Hartiala P, van Rheenen J, Ivaska J. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev Cell 2022; 57:2350-2364.e7. [DOI: 10.1016/j.devcel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
17
|
Ou H, Wang L, Xi Z, Shen H, Jiang Y, Zhou F, Liu Y, Zhou Y. MYO10 contributes to the malignant phenotypes of colorectal cancer via RACK1 by activating integrin/Src/FAK signaling. Cancer Sci 2022; 113:3838-3851. [PMID: 35912545 DOI: 10.1111/cas.15519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Liver metastases still remain a major cause of colorectal cancer (CRC) patient death. MYO10 is upregulated in several tumor types, however, its significance and the underlying mechanism in CRC is not entirely clear. Here we found that MYO10 was highly expressed in CRC tumor tissues, especially in liver metastasis tissues. MYO10 knockout reduced CRC cell proliferation, invasion, and migration in vitro, and CRC metastasis in vivo. We identified RACK1 by LC-MS/MS and demonstrated that MYO10 interacts with and stabilizes RACK1. Mechanistically, MYO10 promotes CRC cell progression and metastasis via ubiquitination-mediated RACK1 degradation and integrin/Src/FAK signaling activation. Therefore, the MYO10/RACK1/integrin/Src/FAK axis may play an important role in CRC progression and metastasis.
Collapse
Affiliation(s)
- Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lili Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ziyao Xi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Shen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yaofei Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
19
|
Kim SJ, Sun EG, Bae JA, Park S, Hong C, Park Z, Kim H, Kim KK. A peptide interfering with the dimerization of oncogenic KITENIN protein and its stability suppresses colorectal tumour progression. Clin Transl Med 2022; 12:e871. [PMID: 35853101 PMCID: PMC9296036 DOI: 10.1002/ctm2.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Eun Gene Sun
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeong A Bae
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chang‐Soo Hong
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hangun Kim
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Kyung Keun Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| |
Collapse
|
20
|
Närvä E, Taskinen ME, Lilla S, Isomursu A, Pietilä M, Weltner J, Isola J, Sihto H, Joensuu H, Zanivan S, Norman J, Ivaska J. MASTL is enriched in cancerous and pluripotent stem cells and influences OCT1/OCT4 levels. iScience 2022; 25:104459. [PMID: 35677646 PMCID: PMC9167974 DOI: 10.1016/j.isci.2022.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022] Open
Abstract
MASTL is a mitotic accelerator with an emerging role in breast cancer progression. However, the mechanisms behind its oncogenicity remain largely unknown. Here, we identify a previously unknown role and eminent expression of MASTL in stem cells. MASTL staining from a large breast cancer patient cohort indicated a significant association with β3 integrin, an established mediator of breast cancer stemness. MASTL silencing reduced OCT4 levels in human pluripotent stem cells and OCT1 in breast cancer cells. Analysis of the cell-surface proteome indicated a strong link between MASTL and the regulation of TGF-β receptor II (TGFBR2), a key modulator of TGF-β signaling. Overexpression of wild-type and kinase-dead MASTL in normal mammary epithelial cells elevated TGFBR2 levels. Conversely, MASTL depletion in breast cancer cells attenuated TGFBR2 levels and downstream signaling through SMAD3 and AKT pathways. Taken together, these results indicate that MASTL supports stemness regulators in pluripotent and cancerous stem cells.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Maria E. Taskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jorma Isola
- Laboratory of Cancer Biology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | - Heikki Joensuu
- University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jim Norman
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| |
Collapse
|
21
|
Pathania S, Khan MI, Bandyopadhyay S, Singh SS, Rani K, Parashar TR, Jayaram J, Mishra PR, Srivastava A, Mathur S, Hari S, Vanamail P, Hariprasad G. iTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins to flag metastasis in early breast cancer. Sci Rep 2022; 12:8625. [PMID: 35599267 PMCID: PMC9124668 DOI: 10.1038/s41598-022-12352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with early breast cancer are affected by metastasis to axillary lymph nodes. Metastasis to these nodes is crucial for staging and quality of surgery. Sentinel Lymph Node Biopsy that is currently used to assess lymph node metastasis is not effective. This necessitates identification of biomarkers that can flag metastasis. Early stage breast cancer patients were recruited. Surgical resection of breast was followed by identification of sentinel lymph nodes. Fresh frozen section biopsy was used to assign metastatic and non-metastatic sentinel lymph nodes. Discovery phase included iTRAQ proteomics coupled with mass spectrometric analysis to identify differentially expressed proteins. Data is available via ProteomeXchange with identifier PXD027668. Validation was done by bioinformatic analysis and ELISA. There were 2398 unique protein groups and 109 differentially expressed proteins comparing metastatic and non-metastatic lymph nodes. Forty nine proteins were up-regulated, and sixty proteins that were down regulated in metastatic group. Bioinformatic analysis showed ECM-receptor interaction pathways to be implicated in lymph node metastasis. ELISA confirmed up-regulation of ECM proteins in metastatic lymph nodes. ECM proteins have requisite parameters to be developed as a diagnostic tool to assess status of sentinel lymph nodes to guide surgical intervention in early breast cancer.
Collapse
|
22
|
Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proc Natl Acad Sci U S A 2022; 119:e2119644119. [PMID: 35439056 PMCID: PMC9173583 DOI: 10.1073/pnas.2119644119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene, encoding the p53 tumor suppressor, are very frequent in human cancer. Some of those mutations, particularly the more common (“hotspot”) ones, not only abrogate p53’s tumor suppressor activities but also endow the mutant protein with oncogenic gain of function (GOF). We report that p53R273H, the most common p53 mutant in pancreatic cancer, interacts with the SQSTM1/p62 protein to accelerate the degradation of cell adhesion proteins. This enables pancreatic cancer cells to detach from the epithelial sheet and engage in individualized cell migration, probably augmenting metastatic spread. By providing insights into mechanisms that underpin mutant p53 GOF, this study may suggest ways to interfere with the progression of cancers bearing particular p53 mutants. Missense mutations in the p53 tumor suppressor abound in human cancer. Common (“hotspot”) mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction–associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.
Collapse
|
23
|
Comprehensive Landscape of Prognostic Significance and Immune Characteristics of Myosins in Squamous Cell Carcinoma of the Head and Neck. J Immunol Res 2022; 2022:5501476. [PMID: 35478939 PMCID: PMC9038433 DOI: 10.1155/2022/5501476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myosin superfamily, a large and diverse family of molecular motors important for cell motility and migration, has been illustrated to play contradictory roles during the development of several kinds of tumors. However, the function and prognostic values of MYOs in head and neck squamous cell carcinoma (HNSCC) still remain largely unknown. In the current manuscript, the expression levels and clinical data of MYOs in HNSCC were investigated by online databases, including Oncomine, GEPIA, GEO, TCGA, HPA, UALCAN, Kaplan-Meier plotter, and CancerSEA; we found that the expression levels of MYO1B, MYO5A, and MYO10 were significantly elevated in HNSCC tissues, which were also correlated with the unfavorable overall survival (OS) of the patients. Furthermore, MYO1B/MYO5A/MYO10 interacting genes were identified, and the protein-protein interaction (PPI) networks were constructed by STRING and GeneMANIA. The enrichment analysis revealed that MYO1B/MYO5A/MYO10 associated genes mainly participated in cell metastasis and EMT processes, which were also confirmed by cell functional experiments. At last, the ssGSEA method was conducted to investigate the extent of immune cell infiltration, and we found that both the expression of MYO1B/MYO5A/MYO10 were closely correlated with the infiltration of immune cells in HNSCC. These findings implied that MYO1B, MYO5A, and MYO10 as novel prognostic factors for HNSCC and provided new strategy for HNSCC treatment.
Collapse
|
24
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022; 63:339-359. [PMID: 35290621 PMCID: PMC8979909 DOI: 10.1007/s13353-022-00690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
WWOX is a tumor-suppressive steroid dehydrogenase, which relationship with hormone receptors was shown both in animal models and breast cancer patients. Herein, through nAnT-iCAGE high-throughput gene expression profiling, we studied the interplay of estrogen receptors and the WWOX in breast cancer cell lines (MCF7, T47D, MDA-MB-231, BT20) under estrogen stimulation and either introduction of the WWOX gene by retroviral transfection (MDA-MB-231, T47D) or silenced with shRNA (MCF7, BT20). Additionally, we evaluated the consequent biological characteristics by proliferation, apoptosis, invasion, and adhesion assays. TGFα-EGFR signaling was found to be significantly affected in all examined breast cancer cell lines in response to estrogen and strongly associated with the level of WWOX expression, especially in ER-positive MCF7 cells. Under the influence of 17β-estradiol presence, biological characteristics of the cell lines were also delineated. The study revealed modulation of adhesion, invasion, and apoptosis. The obtained results point at a complex role of the WWOX gene in the carcinogenesis of the breast tissue, which seems to be closely related to the presence of estrogen α and/or β receptors.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Mayca Pozo F, Geng X, Tamagno I, Jackson MW, Heimsath EG, Hammer JA, Cheney RE, Zhang Y. MYO10 drives genomic instability and inflammation in cancer. SCIENCE ADVANCES 2021; 7:eabg6908. [PMID: 34524844 PMCID: PMC8443186 DOI: 10.1126/sciadv.abg6908] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/26/2021] [Indexed: 05/29/2023]
Abstract
Genomic instability is a hallmark of human cancer; yet the underlying mechanisms remain poorly understood. Here, we report that the cytoplasmic unconventional Myosin X (MYO10) regulates genome stability, through which it mediates inflammation in cancer. MYO10 is an unstable protein that undergoes ubiquitin-conjugating enzyme H7 (UbcH7)/β-transducin repeat containing protein 1 (β-TrCP1)–dependent degradation. MYO10 is upregulated in both human and mouse tumors and its expression level predisposes tumor progression and response to immune therapy. Overexpressing MYO10 increased genomic instability, elevated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–dependent inflammatory response, and accelerated tumor growth in mice. Conversely, depletion of MYO10 ameliorated genomic instability and reduced the inflammation signaling. Further, inhibiting inflammation or disrupting Myo10 significantly suppressed the growth of both human and mouse breast tumors in mice. Our data suggest that MYO10 promotes tumor progression through inducing genomic instability, which, in turn, creates an immunogenic environment for immune checkpoint blockades.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest G. Heimsath
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 2021; 36:109716. [PMID: 34525374 PMCID: PMC8456781 DOI: 10.1016/j.celrep.2021.109716] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Collapse
|
27
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Ramirez I, Gholkar AA, Velasquez EF, Guo X, Tofig B, Damoiseaux R, Torres JZ. The myosin regulatory light chain Myl5 localizes to mitotic spindle poles and is required for proper cell division. Cytoskeleton (Hoboken) 2021; 78:23-35. [PMID: 33641240 DOI: 10.1002/cm.21654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility, and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. We show that Myl5 localizes to the leading edge and filopodia during interphase and to mitotic spindle poles and spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to defects in mitotic spindle assembly, chromosome congression, and chromosome segregation and to a slower transition through mitosis. Furthermore, Myl5 bound to MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results suggest that Myl5 is important for cell division and that it may be performing its function through MYO10.
Collapse
Affiliation(s)
- Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
29
|
Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13040741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a deadly disease that may go undiagnosed until it presents at an advanced metastatic stage for which few interventions are available. The development and metastatic spread of CRC is driven by remodeling of the actin cytoskeleton in cancer cells. Myosins represent a large family of actin motor proteins that play key roles in regulating actin cytoskeleton architecture and dynamics. Different myosins can move and cross-link actin filaments, attach them to the membrane organelles and translocate vesicles along the actin filaments. These diverse activities determine the key roles of myosins in regulating cell proliferation, differentiation and motility. Either mutations or the altered expression of different myosins have been well-documented in CRC; however, the roles of these actin motors in colon cancer development remain poorly understood. The present review aims at summarizing the evidence that implicate myosin motors in regulating CRC growth and metastasis and discusses the mechanisms underlying the oncogenic and tumor-suppressing activities of myosins. Abstract Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
|
30
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
31
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
32
|
Guo AK, Itahana Y, Seshachalam VP, Chow HY, Ghosh S, Itahana K. Mutant TP53 interacts with BCAR1 to contribute to cancer cell invasion. Br J Cancer 2021; 124:299-312. [PMID: 33144694 PMCID: PMC7782524 DOI: 10.1038/s41416-020-01124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutant TP53 interacts with other proteins to produce gain-of-function properties that contribute to cancer metastasis. However, the underlying mechanisms are still not fully understood. METHODS Using immunoprecipitation and proximity ligation assays, we evaluated breast cancer anti-estrogen resistance 1 (BCAR1) as a novel binding partner of TP53R273H, a TP53 mutant frequently found in human cancers. The biological functions of their binding were examined by the transwell invasion assay. Clinical outcome of patients was analysed based on TP53 status and BCAR1 expression using public database. RESULTS We discovered a novel interaction between TP53R273H and BCAR1. We found that BCAR1 translocates from the cytoplasm into the nucleus and binds to TP53R273H in a manner dependent on SRC family kinases (SFKs), which are known to enhance metastasis. The expression of full-length TP53R273H, but not the BCAR1 binding-deficient mutant TP53R273HΔ102-207, promoted cancer cell invasion. Furthermore, among the patients with mutant TP53, high BCAR1 expression was associated with a poorer prognosis. CONCLUSIONS The interaction between TP53R273H and BCAR1 plays an important role in enhancing cancer cell invasion. Thus, our study suggests a disruption of the TP53R273H-BCAR1 binding as a potential therapeutic approach for TP53R273H-harbouring cancer patients.
Collapse
Affiliation(s)
- Alvin Kunyao Guo
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yoko Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | | | - Hui Ying Chow
- School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, Singapore, 529757, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Koji Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
33
|
Lakoduk AM, Lee CF, Chen PH. Gain-of-"endocytic' function in mutant p53 cancer cells. Int J Biochem Cell Biol 2020; 131:105905. [PMID: 33359084 DOI: 10.1016/j.biocel.2020.105905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Beyond its well-known canonical function as a tumor suppressor, p53 is also involved in numerous cellular processes through altered transcription under both normal and pathological conditions. The functional diversity of p53 outputs is complex and dependent on cell context. However, the underlying mechanisms responsible for this diversity remain largely unclear. The emerging evidence of p53 mutations involved in regulating endocytic trafficking and signaling, in tandem to promote malignancy (invasion, exosome biogenesis and immune evasion), sheds light on possible mechanisms behind the p53-driven complexity. The interrelated nature of endocytic trafficking and receptor signaling that form dynamic and adaptable feedback loops - either positive or negative - functions to modulate multiple cellular outputs. Biasing the tunable endocytic trafficking and receptor signaling network by mutant p53 expands the purview of p53, allowing its contribution to diverse and aggressive phenotypes. In this review, we explore recent studies in which the novel role of mutant p53 in altering endocytic trafficking to bias receptor signaling and drive transforming phenotypes is revealed. Understanding the complex crosstalk of mutant p53, endocytic trafficking and receptor signaling will allow the development of therapies to selectively target p53-altered endocytic processes.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, 75080, United States
| | - Cheng-Fan Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ping-Hung Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
34
|
Kenchappa RS, Mistriotis P, Wisniewski E, Bhattacharya S, Kulkarni T, West R, Luu A, Conlon M, Heimsath E, Crish JF, Picariello HS, Dovas A, Zarco N, Lara-Velazquez M, Quiñones-Hinojosa A, Hammer JA, Mukhopadhyay D, Cheney RE, Konstantopoulos K, Canoll P, Rosenfeld SS. Myosin 10 Regulates Invasion, Mitosis, and Metabolic Signaling in Glioblastoma. iScience 2020; 23:101802. [PMID: 33299973 PMCID: PMC7702012 DOI: 10.1016/j.isci.2020.101802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.
Collapse
Affiliation(s)
- Rajappa S. Kenchappa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily Wisniewski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Santanu Bhattacharya
- Departments of Biochemistry and Molecular Biology and Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tanmay Kulkarni
- Departments of Biochemistry and Molecular Biology and Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Meghan Conlon
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ernest Heimsath
- Department of Cell Biology and Physiology, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James F. Crish
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH 44106, USA
| | - Hannah S. Picariello
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH 44106, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Debrabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology and Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Steven S. Rosenfeld
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
35
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
36
|
Senra D, Páez A, Gueron G, Bruno L, Guisoni N. Following the footprints of variability during filopodial growth. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:643-659. [PMID: 33141270 DOI: 10.1007/s00249-020-01473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell-cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell-substrate interactions or prior cell-cell contacts.
Collapse
Affiliation(s)
- Daniela Senra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Alejandra Páez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
| | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Pabellón 2, Ciudad Universitaria (1428), Buenos Aires, Argentina
| | - Nara Guisoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
37
|
Sneeggen M, Guadagno NA, Progida C. Intracellular Transport in Cancer Metabolic Reprogramming. Front Cell Dev Biol 2020; 8:597608. [PMID: 33195279 PMCID: PMC7661548 DOI: 10.3389/fcell.2020.597608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor progression is a complex process consisting of several steps characterized by alterations in cellular behavior and morphology. These steps include uncontrolled cell division and proliferation, invasiveness and metastatic ability. Throughout these phases, cancer cells encounter a changing environment and a variety of metabolic stress. To meet their needs for energy while they proliferate and survive in their new environment, tumor cells need to continuously fine-tune their metabolism. The connection between intracellular transport and metabolic reprogramming during cancer progression is emerging as a central process of cellular adaptation to these changes. The trafficking of proteolytic enzymes, surface receptors, but also the regulation of downstream pathways, are all central to cancer progression. In this review, we summarize different hallmarks of cancer with a special focus on the role of intracellular trafficking in cell proliferation, epithelial to mesenchymal transition as well as invasion. We will further emphasize how intracellular trafficking contributes to the regulation of energy consumption and metabolism during these steps of cancer progression.
Collapse
Affiliation(s)
- Marte Sneeggen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
40
|
Lew ZX, Zhou HM, Fang YY, Ye Z, Zhong W, Yang XY, Yu Z, Chen DY, Luo SM, Chen LF, Lin Y. Transgelin interacts with PARP1 in human colon cancer cells. Cancer Cell Int 2020; 20:366. [PMID: 32774160 PMCID: PMC7398379 DOI: 10.1186/s12935-020-01461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
Background Transgelin, an actin-binding protein, is associated with cytoskeleton remodeling. Findings from our previous studies demonstrated that transgelin was up-regulated in node-positive colorectal cancer (CRC) versus node-negative disease. Over-expression of TAGLN affected the expression of 256 downstream transcripts and increased the metastatic potential of colon cancer cells in vitro and in vivo. This study aims to explore the mechanisms through which transgelin participates in the metastasis of colon cancer cells. Methods Immunofluorescence and immunoblotting analysis were used to determine the cellular localization of endogenous and exogenous transgelin in colon cancer cells. Co-immunoprecipitation and subsequently high-performance liquid chromatography/tandem mass spectrometry were performed to identify the proteins that were potentially interacting with transgelin. The 256 downstream transcripts regulated by transgelin were analyzed with bioinformatics methods to discriminate the specific key genes and signaling pathways. The Gene-Cloud of Biotechnology Information (GCBI) tools were used to predict the potential transcription factors (TFs) for the key genes. The predicted TFs corresponded to the proteins identified to interact with transgelin. The interaction between transgelin and the TFs was verified by co-immunoprecipitation and immunofluorescence. Results Transgelin was found to localize in both the cytoplasm and nucleus of the colon cancer cells. Approximately 297 proteins were identified to interact with transgelin. The overexpression of TAGLN led to the differential expression of 184 downstream genes. Network topology analysis discriminated seven key genes, including CALM1, MYO1F, NCKIPSD, PLK4, RAC1, WAS and WIPF1, which are mostly involved in the Rho signaling pathway. Poly (ADP-ribose) polymerase-1 (PARP1) was predicted as the unique TF for the key genes and concurrently corresponded to the DNA-binding proteins potentially interacting with transgelin. The interaction between PARP1 and transgelin in human RKO colon cancer cells was further validated by immunoprecipitation and immunofluorescence assays. Conclusions Our results suggest that transgelin binds to PARP1 and regulates the expression of downstream key genes, which are mainly involved in the Rho signaling pathway, and thus participates in the metastasis of colon cancer.
Collapse
Affiliation(s)
- Zhen-Xian Lew
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Surgery, Guangzhou Concord Cancer Center, Guangzhou, 510045 China
| | - Hui-Min Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Yuan-Yuan Fang
- Intensive Care Unit, Tongling People's Hospital, Tongling City, 244000 Anhui province China
| | - Zhen Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Wa Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Xin-Yi Yang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 China
| | - Zhong Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Dan-Yu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Si-Min Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Li-Fei Chen
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| |
Collapse
|
41
|
Li JL, Wang ZQ, Sun XL. MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process. Open Life Sci 2020; 15:522-531. [PMID: 33817240 PMCID: PMC7874597 DOI: 10.1515/biol-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma. Methods Profiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins. Results The data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B. Conclusion In summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.
Collapse
Affiliation(s)
- Jin-Liang Li
- Department of Anus & Intestine Surgery, The First People's Hospital of Jining, Jining, Shandong, 272100, P.R. China
| | - Zai-Qiu Wang
- Department of Anorectal Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, P.R. China
| | - Xiao-Li Sun
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, P.R. China
| |
Collapse
|
42
|
The Expressions and Mechanisms of Sarcomeric Proteins in Cancers. DISEASE MARKERS 2020; 2020:8885286. [PMID: 32670437 PMCID: PMC7346232 DOI: 10.1155/2020/8885286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.
Collapse
|
43
|
He JH, Chen JG, Zhang B, Chen J, You KL, Hu JM, Xu JW, Chen L. Elevated MYO10 Predicts Poor Prognosis and its Deletion Hampers Proliferation and Migration Potentials of Cells Through Rewiring PI3K/Akt Signaling in Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820936773. [PMID: 32618228 PMCID: PMC7336823 DOI: 10.1177/1533033820936773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYO10, recognized as an important regulator of cytoskeleton remodeling, has been
reported to be associated with tumorigenesis. However, its functional
implication in cervical cancer and potential mechanism still remain to be
undetermined currently. MYO10 level in cervical cancer tissues was analyzed by
using data retrieved from The Cancer Genome Atlas and ONCOMINE databases.
Messenger RNA and protein expression levels were determined by quantitative
real-time polymerase chain reaction and Western blotting. Small-interfering RNA
and overexpressing plasmid were used for MYO10 silencing and overexpression, and
cell proliferation was analyzed by CCK-8. Transwell assays were performed to
investigate the ability of cell migration and invasion. MYO10 was upregulated in
cervical cancer tissues and cells when compared to normal controls, and survival
analysis showed patients with high MYO10 expression had worse overall survival.
Moreover, knockdown/overexpression of MYO10 significantly inhibited/enhanced the
proliferation, invasion, and migration capabilities of cervical cells
transfected with siRNAs/overexpressing plasmid. Additionally, MYO10 silencing
inhibited PI3K/Akt signaling pathway by decreasing the phosphorylation status of
PI3K and AKT. Data from the present study indicated that MYO10 were
overexpressed in patients with cervical cancer and positively linked with poor
prognosis. Experimental results suggested that MYO10 induced a significant
encouraging effect in cervical cancer cell proliferation, invasion, and
migration, linked with involvement of PI3K/Akt signaling. Collectively, these
results emphasize a novel role for MYO10 overexpression in cervical cancer and
provide a potent therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Jian-Hui He
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian-Guo Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ke-Li You
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie-Mei Hu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jia-Wen Xu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Le Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Summerbell ER, Mouw JK, Bell JSK, Knippler CM, Pedro B, Arnst JL, Khatib TO, Commander R, Barwick BG, Konen J, Dwivedi B, Seby S, Kowalski J, Vertino PM, Marcus AI. Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. SCIENCE ADVANCES 2020; 6:eaaz6197. [PMID: 32832657 PMCID: PMC7439406 DOI: 10.1126/sciadv.aaz6197] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Tumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor MYO10 as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion. We further identified JAG1 signaling as a previously unknown upstream activator of MYO10 expression in leader cells. Using live-cell imaging, we found that MYO10 drives filopodial persistence necessary for micropatterning extracellular fibronectin into linear tracks at the edge of 3D collective invasion exclusively in leaders. Our data fit a model where epigenetic heterogeneity and JAG1 signaling jointly drive collective cancer invasion through MYO10 up-regulation in epigenetically permissive leader cells, which induces filopodia dynamics necessary for linearized fibronectin micropatterning.
Collapse
Affiliation(s)
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Joshua S. K. Bell
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, USA
| | - Christina M. Knippler
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian Pedro
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Jamie L. Arnst
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tala O. Khatib
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA
| | - Rachel Commander
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jessica Konen
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sandra Seby
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Paula M. Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
|
46
|
Yoshihara M, Yamakita Y, Kajiyama H, Senga T, Koya Y, Yamashita M, Nawa A, Kikkawa F. Filopodia play an important role in the trans-mesothelial migration of ovarian cancer cells. Exp Cell Res 2020; 392:112011. [PMID: 32339607 DOI: 10.1016/j.yexcr.2020.112011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Ovarian cancer cells shed from primary tumors can spread easily to the peritoneum via the peritoneal fluid. To allow further metastasis, the cancer cells must interact with the mesothelial cell layer, which covers the entire surface of the peritoneal organs. Although the clinical importance of this interaction between cancer and mesothelial cells has been increasingly recognized, the molecular mechanisms utilized by cancer cells to adhere to and migrate through the mesothelial cell layer are poorly understood. To investigate the molecular mechanisms of cancer cell trans-mesothelial migration, we set up an in vitro trans-mesothelial migration assay using primary peritoneal mesothelial cells. Using this method, we found that downregulation of filopodial protein fascin-1 or myosin X expression in ES-2 cells significantly inhibited the rate of trans-mesothelial migration of cancer cells, whereas upregulation of fascin-1 in SK-OV-3 cells enhanced this rate. Furthermore, downregulation of N-cadherin or integrin β1 inhibited the rate of cancer cell trans-mesothelial migration. Conversely, downregulation of cortactin or TKS5 or treatment with the MMP inhibitor GM6001 or the N-WASP inhibitor wiskostatin did not have any effect on cancer cell trans-mesothelial migration. These results suggest that filopodia, but not lamellipodia or invadopodia, play an important role in the trans-mesothelial migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Australia
| | - Yoshihiko Yamakita
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| | | | - Yoshihiro Koya
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center-Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Bell Research Center for Reproductive Health and Cancer, Tsushima, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
47
|
Zhou Y, Zhou XE, Gong Y, Zhu Y, Cao X, Brunzelle JS, Xu HE, Zhou M, Melcher K, Zhang F. Structural basis of Fusarium myosin I inhibition by phenamacril. PLoS Pathog 2020; 16:e1008323. [PMID: 32163521 PMCID: PMC7100991 DOI: 10.1371/journal.ppat.1008323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/27/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022] Open
Abstract
Fusarium is a genus of filamentous fungi that includes species that cause devastating diseases in major staple crops, such as wheat, maize, rice, and barley, resulting in severe yield losses and mycotoxin contamination of infected grains. Phenamacril is a novel fungicide that is considered environmentally benign due to its exceptional specificity; it inhibits the ATPase activity of the sole class I myosin of only a subset of Fusarium species including the major plant pathogens F. graminearum, F. asiaticum and F. fujikuroi. To understand the underlying mechanisms of inhibition, species specificity, and resistance mutations, we have determined the crystal structure of phenamacril-bound F. graminearum myosin I. Phenamacril binds in the actin-binding cleft in a new allosteric pocket that contains the central residue of the regulatory Switch 2 loop and that is collapsed in the structure of a myosin with closed actin-binding cleft, suggesting that pocket occupancy blocks cleft closure. We have further identified a single, transferable phenamacril-binding residue found exclusively in phenamacril-sensitive myosins to confer phenamacril selectivity. Phenamacril is a recently identified myosin I inhibitor that is a potent and highly species-specific and myosin subtype-selective fungicide. We report the high-resolution structure of the phenamacril-bound myosin I motor domain of the major crop pathogen Fusarium graminearum, providing insight into the molecular mechanism of phenamacril action and resistance. These results are of broad significance for understanding the mode of actions of myosin-based fungicides and for designing novel myosin I inhibitors for crop protection and for treatment of human myosin dysfunction diseases.
Collapse
Affiliation(s)
- Yuxin Zhou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Center of Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - X. Edward Zhou
- Center of Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Yuanping Gong
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanye Zhu
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoman Cao
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Joseph S. Brunzelle
- Northwestern University Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois, United States of America
| | - H. Eric Xu
- Center of Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America
- Center for Structure and Function of Drug Targets, The CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingguo Zhou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (MZ); (KM); (FZ)
| | - Karsten Melcher
- Center of Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail: (MZ); (KM); (FZ)
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (MZ); (KM); (FZ)
| |
Collapse
|
48
|
Nguyen AV, Trompetto B, Tan XHM, Scott MB, Hu KHH, Deeds E, Butte MJ, Chiou PY, Rowat AC. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cell Mol Bioeng 2020; 13:27-44. [PMID: 32030106 PMCID: PMC6981337 DOI: 10.1007/s12195-019-00603-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins. METHOD We measure cell invasion using a 3D scratch wound invasion assay and cell stiffness using atomic force microscopy (AFM). To determine the effects of actin- and myosin-mediated force generation on cell stiffness and invasion, we treat cells with pharmacologic inhibitors of myosin II (blebbistatin), Arp2/3 (CK-666), and formins (SMIFH2). RESULTS We find that the activity of myosin II, Arp2/3, and formins all contribute to the stiffness of PDAC cells. Interestingly, we find that the invasion of PDAC cell lines is differentially affected when the activity of myosin II, Arp2/3, or formins is inhibited, suggesting that despite having similar tissue origins, different PDAC cell lines may rely on different mechanisms for invasion. CONCLUSIONS These findings deepen our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incite further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit.
Collapse
Affiliation(s)
- Angelyn V. Nguyen
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | - Brittany Trompetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | | | - Michael B. Scott
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
- Present Address: Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Biomedical Engineering, Northwestern McCormick School of Engineering, Evanston, USA
| | | | - Eric Deeds
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, USA
| | - Manish J. Butte
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Pei Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
49
|
Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the Path to Metastasis. Trends Cancer 2019; 6:62-73. [PMID: 31952783 DOI: 10.1016/j.trecan.2019.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
Metastasis contributes to the vast majority of cancer-related mortality. Regulatory mechanisms of the multistep invasion-metastasis cascade are being unraveled. TP53 is the most frequently mutated gene across human cancers. Accumulating evidence has shown that mutations of TP53 not only lead to loss of function or dominant negative effects, but also promotes a gain of function. Specifically, gain of function mutant p53 promotes cancer cell motility, invasion, and metastasis. Here, we summarize the mechanisms and functions of mutant p53 that foster metastasis in different types of cancers. We also discuss the prognostic value of mutant p53 and current status of therapeutic strategies targeting mutant p53. Future studies will shed light on discovering novel mechanisms of mutant p53-driven cancer metastasis and developing innovative therapeutics to improve clinical outcomes in patients harboring p53 mutations.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
50
|
Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int J Mol Sci 2019; 20:ijms20246197. [PMID: 31817996 PMCID: PMC6940767 DOI: 10.3390/ijms20246197] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The p53 protein is mutated in about 50% of human cancers. Aside from losing the tumor-suppressive functions of the wild-type form, mutant p53 proteins often acquire inherent, novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function (GOF). A growing body of evidence suggests that these pro-oncogenic functions of mutant p53 proteins are mediated by affecting the transcription of various genes, as well as by protein-protein interactions with transcription factors and other effectors. In the current review, we discuss the various GOF effects of mutant p53, and how it may serve as a central node in a network of genes and proteins, which, altogether, promote the tumorigenic process. Finally, we discuss mechanisms by which "Mother Nature" tries to abrogate the pro-oncogenic functions of mutant p53. Thus, we suggest that targeting mutant p53, via its reactivation to the wild-type form, may serve as a promising therapeutic strategy for many cancers that harbor mutant p53. Not only will this strategy abrogate mutant p53 GOF, but it will also restore WT p53 tumor-suppressive functions.
Collapse
|