1
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Eldem I, Antunes-Heck L, Subramanian R, Lasky NM, Ashworth K, Di Paola J, Girard TJ. Deletion of tissue factor pathway inhibitor isoform beta or gamma, but not alpha, improves clotting in hemophilic mice. J Thromb Haemost 2024; 22:2681-2691. [PMID: 38925489 DOI: 10.1016/j.jtha.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) regulates tissue factor-triggered coagulation. Humans and mice express transcripts encoding for multidistributed (endothelial, platelet, and plasma) 3-Kunitz domain TFPIα and endothelial membrane-anchored 2-Kunitz TFPIβ. Mice express a third transcript, γ, that encodes plasma lipoprotein-associated 2-Kunitz TFPI. In humans, proteolysis of α and/or β produces plasma lipoprotein-associated 2-Kunitz TFPI at lower levels. In clinical trials, monoclonal antibodies that target all TFPI isoforms extend coagulation and correct bleeding in hemophilic patients but with some thrombosis risks. OBJECTIVES To determine the impact of TFPI isoform-specific deletions on promoting clotting in hemophilic mice. METHODS Engineered TFPI isoform-specific, hemophilic (factor VIII-null) mice were evaluated for clotting. RESULTS Mice expressing any single TFPI isoform were healthy. Thrombin generation assays identified TFPIγ as the dominant anticoagulation isoform in mouse plasma. Hemostasis was assessed by serial bleeding times from a tail vein laceration. Repeatedly, after a clot forms, it was manually disrupted; the number of clots/disruptions occurring over a 15-minute period were reported. C57BL/6 and hemophilic mice clot on average 25.6 vs 5.4 times, respectively. On a hemophilia background, TFPIβ or TFPIγ-specific deletion improved clotting to 14.6 and 15.2 times, respectively (P < .0001). TFPIα-specific deletion was without impact, clotting 5.1 times. Heterozygous deletion of TFPIβ was effective, clotting 11.8 times (P < .0001). Heterozygous deletion of TFPIα or TFPIγ alone was ineffective, clotting 3.0 and 6.1 times, respectively, but heterozygous TFPIαγ deletion improved clotting to 11.2 times (P < .001). CONCLUSION In hemophilic mice, endothelial TFPIβ and plasma γ-derived 2-Kunitz TFPI individually contribute more to bleeding than total TFPIα.
Collapse
Affiliation(s)
- Irem Eldem
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lilian Antunes-Heck
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Renumathi Subramanian
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nina M Lasky
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katrina Ashworth
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Thomas J Girard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Shimonishi N, Morishita E, Ogiwara K, Maruyama K, Yoshida J, Horie K, Nogami K. A novel factor V compound heterozygous mutation associated with thrombosis (Y1961C; FV-Kanazawa, together with 1982_1983del). J Thromb Haemost 2024; 22:2810-2822. [PMID: 38950780 DOI: 10.1016/j.jtha.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Factor (F)V is pivotal in both procoagulant and anticoagulant mechanisms. The present report describes a novel F5 mutation in a FV-deficient patient (FV activity, 6 IU/dL; FV antigen, 32 IU/dL) complicated by recurrent deep vein thrombosis. The patient demonstrated activated protein C resistance (APCR) with compound heterozygous mutations consisting of FV-Y1961C (FVKanazawa) and FV-1982_1983del. OBJECTIVES To clarify thrombotic mechanisms associated with this FV abnormality. METHODS AND RESULTS Levels of FV-1982_1983del were below the detection sensitivity in our expression experiments using human embryonic kidney 293T cells, and analyses were targeted, therefore, on the FV-Y1961C mutation. Activated partial thromboplastin time-based clotting assays demonstrated that FV-Y1961C exhibited APCR and that the reduced activated protein C (APC) susceptibility in FVa-Y1961C resulted in a marked depression of APC-catalyzed inactivation with delayed cleavage at Arg506 and little cleavage at Arg306 with or without protein S. The APC cofactor activity of FV-Y1961C in APC-catalyzed FVIIIa inactivation promoted by Arg336 cleavage in FVIII was impaired. The binding affinity of FVa-Y1961C to phospholipid membranes was reduced in reactions involving APC/protein S-catalyzed inactivation and in prothrombinase activity. Furthermore, the addition of FVa-Y1961C to plasma failed to inhibit tissue factor-induced procoagulant function. These characteristics were similar to those of FV-W1920R (FVNara) and FV-A2086D (FVBesançon). CONCLUSION We identified a compound heterozygous FV-Y1961C mutation in the C1 domain representing a novel FV mutation (FVKanazawa) resulting in not only APCR due to impaired FVa susceptibility and FV cofactor activity for APC function but also impaired inhibition of tissue factor-induced procoagulant function. These defects in anticoagulant function associated with FV in FV-Y1961C contributed to a prothrombotic state.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan; The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan.
| | - Keiko Maruyama
- Department of Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan; Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Mehic D, Assinger A, Gebhart J. Utility of Global Hemostatic Assays in Patients with Bleeding Disorders of Unknown Cause. Hamostaseologie 2024; 44:358-367. [PMID: 38950624 DOI: 10.1055/a-2330-9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Bleeding disorder of unknown cause (BDUC) is a diagnosis of exclusion after exhaustive evaluation of plasmatic coagulation and platelet function. This review explores the utility of global hemostatic assays as confirmatory tests and in elucidating the pathophysiology of BDUC. Unlike traditional hemostatic tests that focus on coagulation factors, global assays are conducted both in plasma and also whole blood. These assays provide a more comprehensive understanding of the cell-based model of coagulation, aid in the identification of plasmatic factor abnormalities that may reduce hemostatic capacity, and allow for the assessment of impaired platelet-endothelial interactions under shear stress, as well as hyperfibrinolytic states. While clinical tests such as skin bleeding time and global assays such as PFA-100 exhibit limited diagnostic capacity, the role of viscoelastic testing in identifying hemostatic dysfunction in patients with BDUC remains unclear. Thrombin generation assays have shown variable results in BDUC patients; some studies demonstrate differences compared with healthy controls or reference values, whereas others question its clinical utility. Fibrinolysis assessment in vitro remains challenging, with studies employing euglobulin clot lysis time, plasma clot lysis time, and fluorogenic plasmin generation yielding inconclusive or conflicting results. Notably, recent studies suggest that microfluidic analysis unveils shear-dependent platelet function defects in BDUC patients, undetected by conventional platelet function assays. Overall, global assays might be helpful for exploring underlying hemostatic impairments, when conventional hemostatic laboratory tests yield no results. However, due to limited data and/or discrepant results, further research is needed to evaluate the utility of global assays as screening tools.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Mehic D, Gebhart J, Pabinger I. Bleeding Disorder of Unknown Cause: A Diagnosis of Exclusion. Hamostaseologie 2024; 44:287-297. [PMID: 38412996 DOI: 10.1055/a-2263-5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Patients with an unexplained mild to moderate bleeding tendency are diagnosed with bleeding disorder of unknown cause (BDUC), a classification reached after ruling out other mild to moderate bleeding disorders (MBD) including von Willebrand disease (VWD), platelet function defects (PFDs), coagulation factor deficiencies (CFDs), and non-hemostatic causes for bleeding. This review outlines our diagnostic approach to BDUC, a diagnosis of exclusion, drawing on current guidelines and insights from the Vienna Bleeding Biobank (VIBB). According to guidelines, we diagnose VWD based on VWF antigen and/or activity levels ≤50 IU/dL, with repeated VWF testing if VWF levels are <80 IU/dL. This has been introduced in our clinical routine after our findings of diagnostically relevant fluctuations of VWF levels in a high proportion of MBD patients. PFDs are identified through repeated abnormalities in light transmission aggregometry (LTA), flow cytometric mepacrine fluorescence, and glycoprotein expression analysis. Nevertheless, we experience diagnostic challenges with regard to reproducibility and unspecific alterations of LTA. For factor (F) VIII and FIX deficiency, a cutoff of 50% is utilized to ensure detection of mild hemophilia A or B. We apply established cutoffs for other rare CFD being aware that these do not clearly reflect the causal role of the bleeding tendency. Investigations into very rare bleeding disorders due to hyperfibrinolysis or increase in natural anticoagulants are limited to cases with a notable family history or distinct bleeding phenotypes considering cost-effectiveness. While the pathogenesis of BDUC remains unknown, further explorations of this intriguing area may reveal new mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Casini A, Gebhart J. How to investigate mild to moderate bleeding disorders and bleeding disorder of unknown cause. Int J Lab Hematol 2024; 46 Suppl 1:27-33. [PMID: 38454298 DOI: 10.1111/ijlh.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
A bleeding tendency is one of the most common complaints observed by hematologists. It is challenging to differentiate a clinically insignificant bleeding from a bleeding phenotype that requires hemostatic evaluation and medical intervention. A thorough review of personal and familial history, objective assessment of bleeding severity using a bleeding assessment tool, and a focused physical examination are critical to correctly identifying suspected patients with mild to moderate bleeding disorders (MBDs). A basic laboratory work-up should be performed in all patients referred for a bleeding tendency. If a hemostatic abnormality is found such as evidence of von Willebrand disease, a platelet function disorder, or a coagulation factor deficiency, more extensive testing should be performed to further characterize the bleeding disorder. Conversely, if all results are normal the patient is considered to have bleeding disorder of unknown cause (BDUC). For patients with BDUC, further evaluation may include non-routine testing to look for rare bleeding disorders not detected by routine hemostasis tests, such as thrombomodulin-associated coagulopathy, tissue factor pathway inhibitor-related bleeding disorder, hyperfibrinolytic-bleeding disorders or impaired tissue factor production. In this review, we summarize the stepwise diagnostic procedure in MBDs and provide some insights into the biological features of BDUC.
Collapse
Affiliation(s)
- Alessandro Casini
- Division of Angiology and Hemostasis, University Hospitals of Geneva, Geneva, Switzerland
| | - Johanna Gebhart
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University Vienna, Austria
| |
Collapse
|
7
|
Mehic D, Schramm T, Forstner-Bergauer B, Haslacher H, Ay C, Pabinger I, Gebhart J. Activated protein C and free protein S in patients with mild to moderate bleeding disorders. Thromb Res 2024; 235:98-106. [PMID: 38324941 DOI: 10.1016/j.thromres.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Underlying mechanisms for bleeding and impaired thrombin generation (TG) and plasma clot formation (PCF) in patients with mild to moderate bleeding disorders (MBDs) are still to be elucidated, especially in bleeding disorder of unknown cause (BDUC). The role of the natural anticoagulants activated protein C (APC) and free protein S (PS) has not yet been investigated in this patient population. AIMS To analyze antigen levels of APC and PS in patients with MBDs and BDUC and investigate associations to clinical bleeding phenotype and severity as well as and hemostatic capacity. METHODS Antigen levels of APC and free PS were measured in 262 patients from the Vienna Bleeding Biobank (VIBB), a single-center cohort study, by ELISA and compared to 61 healthy controls (HC). RESULTS Antigen levels of APC were higher in MBD patients than in HC when adjusted for age, sex and BMI (median (IQR) 33.1 (20.6-52.6) and 28.6 (16.4-47.2) ng/mL). This was most pronounced in patients with BDUC (35.3 (21.7-54.3) ng/mL). No differences in PS antigen levels between patients and HC were seen overall, or according to specific diagnoses. Further, no association between APC or PS and bleeding severity or global tests of hemostasis or TG were identified, while paradoxically APC weakly correlated with shorter lag time and time to peak of PCF in BDUC. CONCLUSION Our data demonstrate increased antigen levels of APC in BDUC, which might contribute to the bleeding tendency in some patients and could be a future therapeutic target in BDUC.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Theresa Schramm
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Birgit Forstner-Bergauer
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Mohammed BM, Basore K, Summers B, Pelc LA, Di Cera E. Structural architecture of the acidic region of the B domain of coagulation factor V. J Thromb Haemost 2024; 22:709-714. [PMID: 38007061 PMCID: PMC10922652 DOI: 10.1016/j.jtha.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Coagulation factor (F)V features an A1-A2-B-A3-C1-C2 domain organization and functions as the inactive precursor of FVa, a component of the prothrombinase complex required for rapid thrombin generation in the penultimate step of the coagulation cascade. An intramolecular interaction within the large B domain (residues 710-1545) involves the basic region (BR, residues 963-1008) and acidic region (AR, residues 1493-1537) and locks FV in its inactive state. However, structural information on this important regulatory interaction or on the separate architecture of the AR and BR remains elusive due to conformational disorder of the B domain. OBJECTIVES To reveal the structure of the BR-AR interaction or of its separate components. METHODS The structure of FV is solved by cryogenic electron microscopy. RESULTS A new 3.05 Å resolution cryogenic electron microscopy structure of FV confirms the overall organization of the A and C domains but resolves the segment 1507 to 1545 within a largely disordered B domain. The segment contains most of the AR and is organized as recently reported in FV short, a spliced variant of FV with a significantly shorter and less disordered B domain. CONCLUSION The similar architecture of the AR in FV and FV short provides structural context for physiologically important interactions of this region with the BR in FV and with the basic C-terminal end of tissue factor pathway inhibitor α in FV short.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
9
|
de Laat B, Gehlen R, de Groot PG. Viewpoint: The value of non-criteria antiphospholipid antibodies. Rheumatology (Oxford) 2024; 63:SI64-SI71. [PMID: 38320588 DOI: 10.1093/rheumatology/kead632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 02/08/2024] Open
Abstract
In 2006, at a meeting in Sydney, Australia, consensus was reached by an international group of specialists to establish a number of serological criteria that identify patients with a history of thrombosis or pregnancy complications as having antiphospholipid syndrome (APS). These criteria were originally formulated for research purposes and to compare clinical trials in different centres. However, these same criteria are now generally used and accepted for the diagnosis and treatment of patients. The practice of using these criteria for direct patient care requires that these criteria are based on sound scientific evidence. Indeed, for all the autoantibodies that are officially included in the serological criteria, it has been shown that they induce thrombosis and fetal loss when infused into mice. There are also a number of additional autoantibodies that have been identified in these patients but for these antibodies there was not enough evidence to meet the official APS criteria in 2006. Seventeen years have now passed since the consensus meeting, therefore, this review examines whether additional studies performed with these 'non-criteria' autoantibodies have provided sufficient results to suggest the inclusion of these autoantibodies in the official serological criteria of APS.
Collapse
Affiliation(s)
- Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| | - Rachel Gehlen
- Synapse Research Institute, Maastricht, The Netherlands
| | | |
Collapse
|
10
|
Petri A, Sasikumar P, Folgado PB, Jones D, Xu Y, Ahnström J, Salles-Crawley II, Crawley JTB. TFPIα anticoagulant function is highly dependent on protein S in vivo. SCIENCE ADVANCES 2024; 10:eadk5836. [PMID: 38306422 DOI: 10.1126/sciadv.adk5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Tissue factor pathway inhibitor α (TFPIα) is the major physiological regulator of the initiation of blood coagulation. In vitro, TFPIα anticoagulant function is enhanced by its cofactor, protein S. To define the role of protein S enhancement in TFPIα anticoagulant function in vivo, we blocked endogenous TFPI in mice using a monoclonal antibody (14D1). This caused a profound increase in fibrin deposition using the laser injury thrombosis model. To explore the role of plasma TFPIα in regulating thrombus formation, increasing concentrations of human TFPIα were coinjected with 14D1, which dose-dependently reduced fibrin deposition. Inhibition of protein S cofactor function using recombinant C4b-binding protein β chain significantly reduced the anticoagulant function of human TFPIα in controlling fibrin deposition. We report an in vivo model that is sensitive to the anticoagulant properties of the TFPIα-protein S pathway and show the importance of protein S as a cofactor in the anticoagulant function of TFPIα in vivo.
Collapse
Affiliation(s)
- Anastasis Petri
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Parvathy Sasikumar
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Patricia Badia Folgado
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - David Jones
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Yaoxian Xu
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Josefin Ahnström
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, London, UK
| | - James T B Crawley
- Centre for Haematology, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
11
|
Todaro AM, Radu CM, Ciccone M, Toffanin S, Serino ML, Campello E, Bulato C, Lunghi B, Gemmati D, Cuneo A, Hackeng TM, Simioni P, Bernardi F, Castoldi E. In vitro and ex vivo rescue of a nonsense mutation responsible for severe coagulation factor V deficiency. J Thromb Haemost 2024; 22:410-422. [PMID: 37866515 DOI: 10.1016/j.jtha.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Coagulation factor V (FV) deficiency is a rare bleeding disorder that is usually managed with fresh-frozen plasma. Patients with nonsense mutations may respond to treatment with readthrough agents. OBJECTIVES To investigate whether the F5 p.Arg1161Ter mutation, causing severe FV deficiency in several patients, would be amenable to readthrough therapy. METHODS F5 mRNA and protein expression were evaluated in a F5 p.Arg1161Ter-homozygous patient. Five readthrough agents with different mechanisms of action, i.e. G418, ELX-02, PTC-124, 2,6-diaminopurine (2,6-DAP), and Amlexanox, were tested in in vitro and ex vivo models of the mutation. RESULTS The F5 p.Arg1161Ter-homozygous patient showed residual F5 mRNA and functional platelet FV, indicating detectable levels of natural readthrough. COS-1 cells transfected with the FV-Arg1161Ter cDNA expressed 0.7% FV activity compared to wild-type. Treatment with 0-500 μM G418, ELX-02, and 2,6-DAP dose-dependently increased FV activity up to 7.0-fold, 3.1-fold, and 10.8-fold, respectively, whereas PTC-124 and Amlexanox (alone or in combination) were ineffective. These findings were confirmed by thrombin generation assays in FV-depleted plasma reconstituted with conditioned media of treated cells. All compounds except ELX-02 showed some degree of cytotoxicity. Ex vivo differentiated megakaryocytes of the F5 p.Arg1161Ter-homozygous patient, which were negative at FV immunostaining, turned positive after treatment with all 5 readthrough agents. Notably, they were also able to internalize mutant FV rescued with G418 or 2,6-DAP, which would be required to maintain the crucial platelet FV pool in vivo. CONCLUSION These findings provide in vitro and ex vivo proof-of-principle for readthrough-mediated rescue of the F5 p.Arg1161Ter mutation.
Collapse
Affiliation(s)
- Alice M Todaro
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Claudia M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Maria Ciccone
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Serena Toffanin
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - M Luisa Serino
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Elena Campello
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Cristiana Bulato
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Barbara Lunghi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, Haemostasis & Thrombosis Centre, Ferrara University, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Stojanovski BM, Mohammed BM, Di Cera E. The Prothrombin-Prothrombinase Interaction. Subcell Biochem 2024; 104:409-423. [PMID: 38963494 DOI: 10.1007/978-3-031-58843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The hemostatic response to vascular injury entails a sequence of proteolytic events where several inactive zymogens of the trypsin family are converted to active proteases. The cascade starts with exposure of tissue factor from the damaged endothelium and culminates with conversion of prothrombin to thrombin in a reaction catalyzed by the prothrombinase complex composed of the enzyme factor Xa, cofactor Va, Ca2+, and phospholipids. This cofactor-dependent activation is paradigmatic of analogous reactions of the blood coagulation and complement cascades, which makes elucidation of its molecular mechanism of broad significance to the large class of trypsin-like zymogens to which prothrombin belongs. Because of its relevance as the most important reaction in the physiological response to vascular injury, as well as the main trigger of pathological thrombotic complications, the mechanism of prothrombin activation has been studied extensively. However, a molecular interpretation of this mechanism has become available only recently from important developments in structural biology. Here we review current knowledge on the prothrombin-prothrombinase interaction and outline future directions for the study of this key reaction of the coagulation cascade.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Mohapatra AK, Todaro AM, Castoldi E. Factor V variants in bleeding and thrombosis. Res Pract Thromb Haemost 2024; 8:102330. [PMID: 38404937 PMCID: PMC10883835 DOI: 10.1016/j.rpth.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
A state-of-the-art lecture titled "Factor V variants in bleeding and thrombosis" was presented at the International Society on Thrombosis and Haemostasis (ISTH) congress in 2023. Blood coagulation is a finely regulated cascade of enzymatic reactions culminating in thrombin formation and fibrin deposition at the site of injury. Factor V (FV) plays a central role in this process, as its activated form is an essential procoagulant cofactor in prothrombin activation. However, other molecular forms of FV act as anticoagulant cofactors of activated protein C and tissue factor pathway inhibitor α, respectively, thereby contributing to the regulation of coagulation. This dual procoagulant and anticoagulant character makes FV a central regulator of the hemostatic balance, and quantitative and qualitative alterations of FV may be associated with an increased risk of bleeding or venous thrombosis. Here, we review the procoagulant and anticoagulant functions of FV and the manifold mechanisms by which F5 gene mutations may affect the balance between these opposite functions and thereby predispose individuals to bleeding or venous thrombosis. In particular, we discuss our current understanding of the 3 main pathological conditions related to FV, namely FV deficiency, activated protein C resistance, and the overexpression of FV-short, a minor splicing isoform of FV with tissue factor pathway inhibitor α-dependent anticoagulant properties and an emerging role as a key regulator of the initiation of coagulation. Finally, we summarize relevant new data on this topic presented during the 2023 ISTH Congress.
Collapse
Affiliation(s)
- Adarsh K. Mohapatra
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Alice M. Todaro
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Gierula M, Noakes VM, Salles-Crawley II, Crawley JTB, Ahnström J. The TFPIα C-terminal tail is essential for TFPIα-FV-short-protein S complex formation and synergistic enhancement of TFPIα. J Thromb Haemost 2023; 21:3568-3580. [PMID: 37739040 DOI: 10.1016/j.jtha.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND For maximal TFPIα functionality, 2 synergistic cofactors, protein S and FV-short, are required. Both interact with TFPIα, protein S through Kunitz 3 residues Arg199/Glu226 and FV-short with the C-terminus. How these interactions impact the synergistic enhancement remains unclear. OBJECTIVES To determine the importance of the TFPIα-protein S and TFPIα-FV-short interactions for TFPIα enhancement. METHODS TFPIα variants unable to bind protein S (K3m [R199Q/E226Q]) or FV-short (ΔCT [aa 1-249]) were generated. TFPIα-FV-short binding was studied by plate-binding and co-immunoprecipitation assays; functional TFPIα enhancement by FXa inhibition and prothrombin activation. RESULTS While WT TFPIα and TFPIα K3m bound FV-short with high affinity (Kd∼2nM), TFPIα ΔCT did not. K3m, in contrast to WT, did not incorporate protein S in a TFPIα-FV-short-protein S complex while TFPIα ΔCT bound neither FV-short nor protein S. Protein S enhanced WT TFPIα-mediated FXa inhibition, but not K3m, in the absence of FV-short. However, once FV-short was present, protein S efficiently enhanced TFPIα K3m (EC50: 4.7nM vs 2.0nM for WT). FXa inhibition by ΔCT was not enhanced by protein S alone or combined with FV-short. In FXa-catalyzed prothrombin activation assays, FV-short enhanced TFPIα K3m function in the presence of protein S (5.5 vs 10.4-fold enhancement of WT) whereas ΔCT showed reduced or lack of enhancement by FV-short and protein S, respectively. CONCLUSION Full TFPIα function requires the presence of both cofactors. While synergistic enhancement can be achieved in the absence of TFPIα-protein S interaction, only TFPIα with an intact C-terminus can be synergistically enhanced by protein S and FV-short.
Collapse
|
15
|
Mehic D, Pabinger I, Gebhart J. Investigating patients for bleeding disorders when most of the "usual" ones have been ruled out. Res Pract Thromb Haemost 2023; 7:102242. [PMID: 38193045 PMCID: PMC10772891 DOI: 10.1016/j.rpth.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 01/10/2024] Open
Abstract
A State of the Art lecture titled "Investigating Patients for Bleeding Disorders When Most of the Usual Ones Have Been Ruled Out" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Mild to moderate bleeding disorders (MBDs) in patients in whom no diagnosis of an established disorder, such as platelet function defect, von Willebrand disease, or a coagulation factor deficiency, can be identified are classified as bleeding disorders of unknown cause (BDUCs). Prospective data from the Vienna Bleeding Biobank and other studies have revealed a high proportion of BDUCs of up to 70% among patients with MBD who have a similar bleeding phenotype as other MBDs. As BDUC is a diagnosis of exclusion, the accuracy of the diagnostic workup is essential. For example, repeated testing for von Willebrand disease should be considered if von Willebrand factor values are <80 IU/dL. Current evidence does not support the clinical use of global assays such as thromboelastography, platelet function analyzer, or thrombin generation potential. Rare and novel bleeding disorders due to genetic variants in fibrinolytic factors or natural anticoagulants are rare and should only be analyzed in patients with specific phenotypes and a clear family history. In BDUC, blood group O was identified as a risk factor for increased bleeding severity and bleeding risk after hemostatic challenges. Future studies should improve the phenotypical characterization and ideally identify novel risk factors in BDUC, as a multifactorial pathogenesis is suspected. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
17
|
Castoldi E. Making sense of FV short. Blood 2023; 141:3134-3135. [PMID: 37383004 DOI: 10.1182/blood.2023020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
|
18
|
Mohammed BM, Pelc LA, Rau MJ, Di Cera E. Cryo-EM structure of coagulation factor V short. Blood 2023; 141:3215-3225. [PMID: 36862974 PMCID: PMC10356581 DOI: 10.1182/blood.2022019486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Shimonishi N, Ogiwara K, Yoshida J, Horie K, Nakajima Y, Furukawa S, Takeyama M, Nogami K. Impaired factor V-related anticoagulant mechanisms and deep vein thrombosis associated with A2086D and W1920R mutations. Blood Adv 2023; 7:2831-2842. [PMID: 36780344 PMCID: PMC10279549 DOI: 10.1182/bloodadvances.2022008918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Factor V (FV) plays pivotal roles in both procoagulant and anticoagulant mechanisms. Genetic mutations, FV-W1920R (FVNara) and FV-A2086D (FVBesançon), in the C1 and C2 domains of FV light chain, respectively, seem to be associated with deep vein thrombosis. However, the detailed mechanism(s) through which these mutations are linked to thrombophilia remains to be fully explored. The aim of this study was to clarify thrombotic mechanism(s) in the presence of these FV abnormalities. Full-length wild-type (WT) and mutated FV were prepared using stable, human cell lines (HEK293T) and the piggyBac transposon system. Susceptibility of FVa-A2086D to activated protein C (APC) was reduced, resulting in significant inhibition of APC-catalyzed inactivation with limited cleavage at Arg306 and delayed cleavage at Arg506. Furthermore, APC cofactor activity of FV-A2086D in APC-catalyzed inactivation of FVIIIa through cleavage at Arg336 was impaired. Surface plasmon resonance-based assays demonstrated that FV-A2086D bound to Glu-Gly-Arg-chloromethylketone active site-blocked APC and protein S (P) with similar affinities to that of FV-WT. However, weakened interaction between FVa-A2086D and phospholipid membranes was evident through the prothrombinase assay. Moreover, addition of FVa-A2086D to plasma failed to inhibit tissue factor (TF)-induced thrombin generation and reduce prothrombin times. This inhibitory effect was independent of PC, PS, and antithrombin. The coagulant and anticoagulant characteristics of FV(a)-W1920R were similar to those of FV(a)-A2086D. FV-A2086D presented defects in the APC mechanisms associated with FVa inactivation and FV cofactor activity, similar to FV-W1920R. Moreover, both FV proteins that were mutated in the light chain impaired inhibition of TF-induced coagulation reactions. These defects were consistent with congenital thrombophilia.
Collapse
Affiliation(s)
- Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | | | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
20
|
Maroney SA, Siebert AE, Martinez ND, Rasmussen M, Peterson JA, Weiler H, Lincoln J, Mast AE. Platelet tissue factor pathway inhibitor-α dampens cardiac thrombosis and associated fibrosis in mice. J Thromb Haemost 2023; 21:639-651. [PMID: 36696221 PMCID: PMC10200073 DOI: 10.1016/j.jtha.2022.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is the primary inhibitor of events initiating the blood coagulation pathway. Tfpi-/- mice die during embryonic development. The absence of protease-activated receptor (PAR) 4, the major thrombin receptor on mouse platelets, rescues Tfpi-/-mice to adulthood. Among the 3 TFPI isoforms in mice, TFPIα is the only isoform within platelets (pltTFPIα) and the only isoform that inhibits prothrombinase, the enzymatic complex that converts prothrombin to thrombin. OBJECTIVES To determine biological functions of pltTFPIα. METHODS Tfpi-/-/Par4-/- mice were irradiated and transplanted with bone marrow from mice lacking or containing pltTFPIα. Thus, PAR4 expression was restored in the recipient mice, which differed selectively by the presence or absence of pltTFPIα and lacked other forms of TFPI. RESULTS Recipient mice lacking pltTFPIα had reduced survival over the 200-day posttransplant period. Necropsy revealed radiation injury associated with large intraventricular platelet-rich thrombi, whereas other organs were not affected. Thrombi were associated with fibrotic presentations, including increased collagen deposition, periostin-positive activated fibroblasts, myofibroblasts, and macrophage infiltrates. Recipient mice containing pltTFPIα showed evidence of radiation injury but lacked heart pathology. CONCLUSIONS Tfpi-/-/Par4-/- mice develop severe cardiac fibrosis following irradiation and transplantation with bone marrow lacking pltTFPIα. This pathology is markedly reduced when the mice are transplanted with bone marrow containing pltTFPIα. Thus, in this model system pltTFPIα has an important physiological role in dampening pathological responses mediated by activated platelets within the heart tissue.
Collapse
Affiliation(s)
- Susan A Maroney
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Amy E Siebert
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nicholas D Martinez
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Mark Rasmussen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Julie A Peterson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hartmut Weiler
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Alan E Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Reitsma SE, Holle LA, Bouck EG, Monroe DM, Mast AE, Burthem J, Bolton-Maggs PHB, Gidley GN, Wolberg AS. Tissue factor pathway inhibitor is a potential modifier of bleeding risk in factor XI deficiency. J Thromb Haemost 2023; 21:467-479. [PMID: 36696199 PMCID: PMC10111213 DOI: 10.1016/j.jtha.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Factor (F) XI deficiency is associated with increased bleeding risk in some individuals. Neither FXI levels nor clinical clotting assays predict the bleeding risk. Compared with controls, FXI-deficient bleeders have reduced clot formation, decreased fibrin network density, and increased susceptibility to fibrinolysis. Tissue factor pathway inhibitor (TFPI) was recently implicated as a modifying factor in individuals with bleeding of unknown cause. OBJECTIVES To determine the potential of TFPI in modifying the bleeding risk in FXI-deficient individuals. METHODS The effects of TFPI on thrombin generation and clot formation, structure, and fibrinolysis in FXI-deficient plasma were measured in vitro in the absence or presence of inhibitory anti-TFPI antibody or exogenous recombinant TFPIα. Total plasma TFPI concentration was measured in 2 independent cohorts of controls and FXI-deficient individuals classified as bleeders or nonbleeders (cohort 1: 10 controls and 16 FXI-deficient individuals; cohort 2: 48 controls and 57 FXI-deficient individuals) and correlated with ex vivo plasma clot formation and fibrinolysis parameters associated with bleeding risk. RESULTS In an in vitro FXI deficiency model, inhibition of TFPI enhanced thrombin generation and clot formation, increased the network density, and decreased fibrinolysis, whereas an increase in TFPI had the opposite effects. Compared with controls, plasma from FXI-deficient bleeders had higher TFPI concentration. Total plasma TFPI concentrations correlated with parameters from ex vivo clotting and fibrinolysis assays that differentiate FXI-deficient bleeders and nonbleeders. CONCLUSION Coagulation and fibrinolysis parameters that differentiate FXI-deficient nonbleeders and bleeders were altered by plasma TFPIα. Total plasma TFPI was increased in FXI-deficient bleeders. TFPI may modify the bleeding risk in FXI-deficient individuals.
Collapse
Affiliation(s)
- Stéphanie E Reitsma
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emma G Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Department of Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alan E Mast
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - John Burthem
- Department of Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK; Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | | | - Gillian N Gidley
- Institute of Cancer Sciences, The University of Manchester, Manchester, UK; Department of Haematology, St James' Hospital, Leeds Teaching Hospitals Trust, UK
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
22
|
Dahlbäck B. Natural anticoagulant discovery, the gift that keeps on giving: finding FV-Short. J Thromb Haemost 2023; 21:716-727. [PMID: 36746318 DOI: 10.1016/j.jtha.2023.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The complex reactions of blood coagulation are balanced by several natural anticoagulants resulting in tuned hemostasis. During several decades, the knowledge base of the natural anticoagulants has greatly increased and we have also learned about antiinflammatory and cytoprotective activities expressed by antithrombin and activated protein C (APC). Some coagulation proteins have also been found to function as anticoagulants; e.g., thrombin when bound to thrombomodulin activates protein C. Another example is factor V (FV), which in addition to being a procofactor to FVa has emerged as an anticoagulant. The discovery of APC resistance, caused by FVLeiden, as a thrombosis risk factor resulted in the identification of FV as an APC cofactor working in synergy with protein S in the regulation of FVIIIa in the Xase complex. More recently, a natural anticoagulant FV splice isoform (FV-Short) was discovered when investigating the East Texas bleeding disorder. In FV-Short, the truncated B domain exposes a high-affinity binding site for tissue factor pathway inhibitor alpha (TFPIα), and together with protein S a high-affinity trimolecular complex is generated. The FXa-inhibitory activity of TFPIα is synergistically stimulated by FV-Short and protein S. The circulating FV-Short/protein S/TFPIα complex concentration is normally low (≈0.2 nM) but provides an anticoagulant threshold. In the East Texas bleeding, the concentration of the complex, and thus the threshold, is increased 10-fold, which results in bleeding manifestations. The anticoagulant properties of FV were discovered during investigations of individual patients and follow the great tradition of bed-to-bench and bench-to-bed research in the coagulation field.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, University Hospital, Lund University, 21428 Malmö, Sweden.
| |
Collapse
|
23
|
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J 2023; 122:99-113. [PMID: 36403087 PMCID: PMC9822800 DOI: 10.1016/j.bpj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Tissue factor pathway inhibitor (TFPI) is one such inhibitor, well known for its inhibitory action on the active enzyme complex comprising tissue factor (TF) and activated clotting factor VII. This complex forms when TF embedded in the blood vessel wall is exposed by injury and initiates coagulation. A different role for TFPI, independent of TF:VIIa, has recently been discovered whereby TFPI binds a partially cleaved form of clotting factor V (FV-h) and impedes thrombin generation on activated platelet surfaces. We hypothesized that this TF-independent inhibitory mechanism on platelet surfaces would be a more effective platform for TFPI than the TF-dependent one. We examined the effects of this mechanism on thrombin generation by including the relevant biochemical reactions into our previously validated mathematical model. Additionally, we included the ability of TFPI to bind directly to and inhibit platelet-bound FXa. The new model was sensitive to TFPI levels and, under some conditions, TFPI could completely shut down thrombin generation. This sensitivity was due entirely to the surface-mediated inhibitory reactions. The addition of the new TFPI reactions increased the threshold level of TF needed to elicit a strong thrombin response under flow, but the concentration of thrombin achieved, if there was a response, was unchanged. Interestingly, we found that direct binding of TFPI to platelet-bound FXa had a greater anticoagulant effect than did TFPI binding to FV-h alone, but that the greatest effects occurred if both reactions were at play. The model includes activated platelets' release of FV species, and we explored the impact of varying the FV/FV-h composition of the releasate. We found that reducing the zymogen FV fraction of this pool, and thus increasing the fraction that is FV-h, led to acceleration of thrombin generation.
Collapse
Affiliation(s)
- Kenji Miyazawa
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Karin Leiderman
- Mathematics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
24
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
25
|
Ayombil F, Petrillo T, Kim H, Camire RM. Regulation of Factor V by the Anticoagulant Protease Activated Protein C: Influence of the B-domain and TFPIα. J Biol Chem 2022; 298:102558. [DOI: 10.1016/j.jbc.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
26
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Dahlbäck B, Tran S. A hydrophobic patch (PLVIVG; 1481-1486) in the B-domain of factor V-short is crucial for its synergistic TFPIα-cofactor activity with protein S and for the formation of the FXa-inhibitory complex comprising FV-short, TFPIα, and protein S. J Thromb Haemost 2022; 20:1146-1157. [PMID: 35247027 PMCID: PMC9313797 DOI: 10.1111/jth.15690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Factor V-short (FV756-1458) is a natural splice variant functioning in synergy with protein S as tissue factor pathway inhibitor alpha (TFPIα)-cofactor in inhibition of factor Xa (FXa). An exposed acid region (AR2; 1493-1537) in the B domain binds TFPIα. The preAR2 (1458-1492) is crucial for the synergistic TFPIα-cofactor activity between FV-short and protein S and for assembly of a trimolecular FXa-inhibitory complex among FV-short, protein S, and TFPIα. OBJECTIVE To identify which part of preAR2 is required for the synergistic TFPIα-cofactor activity between FV-short and protein S. METHODS A FXa-inhibition assay was used to test the synergistic TFPIα cofactor activity between protein S and new FV-short variants FV709-1476, FV712-1478, FV712-1481, FV712-1484, FV712-1487, and FV712-1490. A microtiter-based assay analyzed binding among FV-short variants, protein S, and TFPIα. RESULTS FV709-1476, FV712-1478, and FV712-1481 were fully active as synergistic TFPIα cofactors with protein S; FV712-1484 showed intermediate activity; and FV712-1487 and FV712-1490 were inactive. TFPIα interacted with all variants in the absence of protein S but FV712-1478 and FV712-1481 bound TFPIα with highest affinity. None of the FV-short variants bound directly to protein S in the absence of TFPIα. In the presence of TFPIα, efficient cooperative binding was demonstrated between protein S, TFPIα, and FV709-1476, FV712-1478, or FV712-1481. In contrast, no cooperativity among TFPIα, protein S, and FV712-1484, FV712-1487, or FV712-1490 was seen. CONCLUSION A short hydrophobic patch in preAR2 (PLVIVG, 1481-1486) in FV-short is crucial for the synergistic TFPIα-cofactor activity between FV-short and protein S and for the assembly of a trimolecular FXa-inhibitory complex among FV-short, protein S, and TFPIα.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational MedicineUniversity HospitalLund UniversityMalmöSweden
| | - Sinh Tran
- Department of Translational MedicineUniversity HospitalLund UniversityMalmöSweden
| |
Collapse
|
28
|
Wang J, Kotagiri P, Lyons PA, Al-Lamki RS, Mescia F, Bergamaschi L, Turner L, Morgan MD, Calero-Nieto FJ, Bach K, Mende N, Wilson NK, Watts ER, Maxwell PH, Chinnery PF, Kingston N, Papadia S, Stirrups KE, Walker N, Gupta RK, Menon DK, Allinson K, Aitken SJ, Toshner M, Weekes MP, Nathan JA, Walmsley SR, Ouwehand WH, Kasanicki M, Göttgens B, Marioni JC, Smith KG, Pober JS, Bradley JR. Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19. iScience 2022; 25:103971. [PMID: 35224470 PMCID: PMC8863325 DOI: 10.1016/j.isci.2022.103971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
| | - Prasanti Kotagiri
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rafia S. Al-Lamki
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Lorinda Turner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael D. Morgan
- Cancer Research UK –Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fernando J. Calero-Nieto
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Karsten Bach
- Cancer Research UK –Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Nicole Mende
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Emily R. Watts
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) Covid BioResource Collaboration
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Cancer Research UK –Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Patrick H. Maxwell
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
| | - Patrick F. Chinnery
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Sofia Papadia
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kathleen E. Stirrups
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Neil Walker
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ravindra K. Gupta
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - David K. Menon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kieren Allinson
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Sarah J. Aitken
- Cancer Research UK –Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | - Michael P. Weekes
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
| | - James A. Nathan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sarah R. Walmsley
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Willem H. Ouwehand
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Mary Kasanicki
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire CB2 0AW, UK
| | - John C. Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Cancer Research UK –Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Kenneth G.C. Smith
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jordan S. Pober
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - John R. Bradley
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Peterson JA, Gupta S, Martinez ND, Hardesty B, Maroney SA, Mast AE. Factor V east Texas variant causes bleeding in a three-generation family. J Thromb Haemost 2022; 20:565-573. [PMID: 34847292 PMCID: PMC8885967 DOI: 10.1111/jth.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The factor V east Texas bleeding disorder (FVETBD) is caused by increased plasma tissue factor pathway inhibitor-α (TFPIα) concentration. The underlying cause is a variant in F5 causing alternative splicing within exon 13 and producing FV-short, which tightly binds the C-terminus of TFPIα, prolonging its circulatory half-life. OBJECTIVES To diagnose a family presenting with variable bleeding and laboratory phenotypes. PATIENTS/METHODS Samples were obtained from 17 family members for F5 exon 13 sequencing. Plasma/platelet TFPI and platelet FV were measured by ELISA and/or western blot. Plasma thrombin generation potential was evaluated using calibrated automated thrombography. RESULTS The FVET variant was identified in all family members with bleeding symptoms and associated with elevated plasma TFPIα (4.5- to 13.4-fold) and total TFPI (2- to 3-fold). However, TFPIα and FV-short were not elevated in platelets. TF-initiated thrombin generation in patient plasma was diminished but was restored by a monoclonal anti-TFPI antibody or factor VIIa. TFPIα localized within vascular extracellular matrix in an oral lesion biopsy from an affected family member. CONCLUSIONS Factor V east Texas bleeding disorder was diagnosed in an extended family. The variant was autosomal dominant and highly penetrant. Elevated plasma TFPIα, rather than platelet TFPIα, was likely the primary cause of bleeding. Plasma FV-short did not deplete TFPIα from extracellular matrix. In vitro thrombin generation was restored with an anti-TFPI antibody or factor VIIa suggesting effective therapies may be available. Increased awareness of, and testing for, bleeding disorders associated with F5 exon 13 variants and elevated plasma TFPI are needed.
Collapse
Affiliation(s)
| | - Sweta Gupta
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Brandon Hardesty
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Alan E. Mast
- Versiti, Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
30
|
Maag A, van Rein N, Schuijt TJ, Kopatz WF, Kruijswijk D, Thomassen S, Hackeng TM, Camire RM, van der Poll T, Meijers JCM, Bos MHA, van ’t Veer C. Major bleeding during oral anticoagulant therapy associated with factor V activation by factor Xa. J Thromb Haemost 2022; 20:328-338. [PMID: 34773381 PMCID: PMC9299225 DOI: 10.1111/jth.15589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Plasma thrombin generation (TG) provides important information on coagulation status; however, current TG output parameters do not predict major bleeding of patients on anticoagulants. We recently reported that factor V (FV) activation by factor X (FX)a contributes importantly to the initiation phase of TG. Here we investigated how this pathway varies in the normal population and whether FXa-mediated activation of FV is associated with major bleeding in patients on anticoagulant therapy. APPROACH We employed TIX-5, a specific inhibitor of FV activation by FXa, to estimate the contribution of FXa-mediated FV activation to tissue factor (TF)-initiated TG. RESULTS We show that the contribution of this pathway to plasma TG varies considerably in the normal population, as measured by the time needed to form the first traces of thrombin (TG lag time; mean prolongation by TIX-5 40%, range 0%-116%). Comparing patients on vitamin K antagonists (VKA) of the BLEED study (263 patients with and 538 patients without major bleeding), showed a marked prolongation in the median TG lag time in the presence of TIX-5 in cases (12.83 versus 11.00 minutes, P = 0.0030), while the TG lag time without TIX-5 only showed a minor although significant difference (5.83 vs. 5.67 minutes, P = 0.0198). The TIX-5 sensitivity (lag time + TIX-5/lag time + vehicle) in the upper quartile was associated with a 1.62-fold (95% confidence interval 1.04-2.52) increased risk of major bleeding compared to the lowest quartile. CONCLUSION A greater dependence on FXa-mediated activation of FV of TG is associated with increased risk of major bleeding during VKA therapy.
Collapse
Affiliation(s)
- Anja Maag
- Center for Experimental and Molecular MedicineAmsterdam Infection and Immunity Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Nienke van Rein
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Tim J. Schuijt
- Clinical Chemistry and Hematology LaboratoryHospital Gelderse Vallei EdeEdethe Netherlands
| | - Wil F. Kopatz
- Department of Experimental Vascular MedicineAmsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Danielle Kruijswijk
- Center for Experimental and Molecular MedicineAmsterdam Infection and Immunity Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Stella Thomassen
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtthe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtthe Netherlands
| | - Rodney M. Camire
- Division of Hematology and the Perelman Center for Cellular and Molecular TherapeuticsChildren’s Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tom van der Poll
- Center for Experimental and Molecular MedicineAmsterdam Infection and Immunity Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular MedicineAmsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamthe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Cornelis van ’t Veer
- Center for Experimental and Molecular MedicineAmsterdam Infection and Immunity Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
31
|
Teraz-Orosz A, Gierula M, Petri A, Jones D, Keniyopoullos R, Folgado PB, Santamaria S, Crawley JTB, Lane DA, Ahnström J. Laminin G1 residues of protein S mediate its TFPI cofactor function and are competitively regulated by C4BP. Blood Adv 2022; 6:704-715. [PMID: 34731882 PMCID: PMC8791571 DOI: 10.1182/bloodadvances.2021005382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein S is a cofactor in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. It enhances TFPIα-mediated inhibition of factor (F)Xa activity and generation. The enhancement is dependent on a TFPIα-protein S interaction involving TFPIα Kunitz 3 and protein S laminin G-type (LG)-1. C4b binding protein (C4BP), which binds to protein S LG1, almost completely abolishes its TFPI cofactor function. However, neither the amino acids involved in TFPIα enhancement nor the mechanisms underlying the reduced TFPI cofactor function of C4BP-bound protein S are known. To screen for functionally important regions within protein S LG1, we generated 7 variants with inserted N-linked glycosylation attachment sites. Protein S D253T and Q427N/K429T displayed severely reduced TFPI cofactor function while showing normal activated protein C (APC) cofactor function and C4BP binding. Based on these results, we designed 4 protein S variants in which 4 to 6 surface-exposed charged residues were substituted for alanine. One variant, protein S K255A/E257A/D287A/R410A/K423A/E424A, exhibited either abolished or severely reduced TFPI cofactor function in plasma and FXa inhibition assays, both in the presence or absence of FV-short, but retained normal APC cofactor function and high-affinity C4BP binding. The C4BP β-chain was expressed to determine the mechanisms behind the reduced TFPI cofactor function of C4BP-bound protein S. Like C4BP-bound protein S, C4BP β-chain-bound protein S had severely reduced TFPI cofactor function. These results show that protein S Lys255, Glu257, Asp287, Arg410, Lys423, and Glu424 are critical for protein S-mediated enhancement of TFPIα and that binding of the C4BP β-chain blocks this function.
Collapse
Affiliation(s)
| | | | | | - David Jones
- Centre for Haematology, Imperial College London, London, UK
| | | | | | | | | | - David A. Lane
- Centre for Haematology, Imperial College London, London, UK
| | | |
Collapse
|
32
|
Dahlbäck B, Tran S. The preAR2 region (1458-1492) in factor V-Short is crucial for the synergistic TFPIα-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-Short, protein S, and TFPIα. J Thromb Haemost 2022; 20:58-68. [PMID: 34623729 DOI: 10.1111/jth.15547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Factor V-Short (FV756-1458) is a natural splice variant in which 702 residues are deleted from the B domain. It exposes an acid region (AR2; 1493-1537) that binds tissue factor pathway inhibitor alpha (TFPIα). Protein S also interacts with TFPIα and serves as TFPIα-cofactor in factor Xa (FXa) inhibition. FV-Short and protein S function as synergistic TFPIα-cofactors in inhibition of FXa. FV810-1492 is an artificial FV-Short variant that cannot synergize with protein S as TFPIα cofactor even though it contains AR2 and binds TFPIα. OBJECTIVE To elucidate the mechanisms for the synergism between FV756-1458 and protein S as TFPIα cofactors. METHODS Four FV-Short variants were created, FV756-1458 and FV712-1458 contained the preAR2 region (1458-1492), whereas FV810-1492 and FV713-1492 lacked this region. The synergistic TFPIα cofactor activity between FV-Short variants and protein S was analyzed by FXa-inhibition. A microtiter-based assay tested binding between FV-Short variants, protein S, and TFPIα. RESULTS The two preAR2-containing FV-Short variants were active as synergistic TFPIα cofactors, whereas the other two were inactive. All variants bound to TFPIα. None of the FV-Short variants bound directly to protein S. The combination of TFPIα and preAR2-containing FV-Short variants bound protein S, whereas TFPIα together with the preAR2-minus variants did not. Protein S potentiated TFPIα-binding to the preAR2-containing variants and binding between TFPIα and protein S was stimulated only by the preAR2-containing variants. CONCLUSION The preAR2 region is demonstrated to be crucial for the synergistic TFPIα-cofactor activity between FV-Short and protein S and for the assembly of a trimolecular FXa-inhibitory complex comprising FV-Short, protein S, and TFPIα.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| |
Collapse
|
33
|
Kristensen SR, Nybo J, Pedersen S. Thrombin generation measured on ST Genesia, a new platform in the coagulation routine lab: Assessment of analytical and between-subject variation. Res Pract Thromb Haemost 2022; 6:e12654. [PMID: 35128301 PMCID: PMC8803999 DOI: 10.1002/rth2.12654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The thrombin generation (TG) assay, which measures global coagulation, has mainly been used as a research tool to investigate thrombotic and bleeding disorders. Recently, Diagnostica Stago launched the ST Genesia, a fully automated system to perform "routine version" of this assay. The objectives of this study were to evaluate the imprecision compared with the previous method, Thrombinoscope CAT, and to establish reference intervals. METHODS Thrombin generation was measured in platelet-poor citrated plasma from 20 normal controls (fresh and after freezing at -80°C up to 12-13 weeks) on CAT and ST Genesia in duplicate to estimate the total variation, and within and between variations. The reference intervals were estimated nonparametrically in 30 men, 30 women taking combined oral contraceptives (COCs), and 30 women not taking COCs. These were sampled in both Vacutainer and Monovette tubes (i.e., tubes with a high and minimal contact activation, respectively). RESULTS Freezing had minimal effects. Imprecision was comparable between the ST Genesia and CAT, with a strong correlation between the two methods. TG was higher when sampled in Vacutainer than in Monovette. We observed a distinct difference between women taking and not taking COCs, whereas men and women not taking COC were quite similar. CONCLUSIONS Thrombin generation on ST Genesia showed an analytical variation similar to that of CAT. The results depended on the type of sample tubes; thus, reference intervals must be established for the collection tubes used in each laboratory. Furthermore, a considerable difference was observed between women using and not using COCs.
Collapse
Affiliation(s)
- Søren Risom Kristensen
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Jette Nybo
- Department of Clinical BiochemistryAalborg University HospitalAalborgDenmark
| | - Shona Pedersen
- Department of Basic Medical SciencesCollege of MedicineQU HealthQatar UniversityDohaQatar
| |
Collapse
|
34
|
Antisense-Mediated Down-Regulation of Factor V-Short Splicing in a Liver Cell Line Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coagulation factor V (FV) is a liver-derived protein encoded by the F5 gene. Alternative splicing of F5 exon 13 produces a low-abundance splicing isoform, known as FV-short, which binds the anticoagulant protein tissue factor pathway inhibitor (TFPIα) with high affinity, stabilising it in the circulation and potently enhancing its anticoagulant activity. Accordingly, rare F5 gene mutations that up-regulate FV-short splicing are associated with bleeding. In this study we have explored the possibility of decreasing FV-short splicing by antisense-based splicing modulation. To this end, we have designed morpholino antisense oligonucleotides (MAOs) targeting the FV-short-specific donor and acceptor splice sites and tested their efficacy in a liver cell line (HepG2) that naturally expresses full-length FV and FV-short. Cells were treated with 0–20 µM MAO, and full-length FV and FV-short mRNA expression was analysed by RT-(q)PCR. Both MAOs, alone or in combination, decreased the FV-short/full-length FV mRNA ratio down to ~50% of its original value in a specific and dose-dependent manner. This pilot study provides proof-of-principle for the possibility to decrease FV-short expression by antisense-mediated splicing modulation. In turn, this may form the basis for novel therapeutic approaches to bleeding disorders caused by FV-short over-expression and/or elevated TFPIα (activity) levels.
Collapse
|
35
|
Marar TT, Martinez ND, Maroney SA, Siebert AE, Wu J, Stalker TJ, Tomaiuolo M, Delacroix S, Simari RD, Mast AE, Brass LF. The contribution of TFPIα to the hemostatic response to injury in mice. J Thromb Haemost 2021; 19:2182-2192. [PMID: 34160126 PMCID: PMC8571650 DOI: 10.1111/jth.15430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an essential regulator of coagulation, limiting thrombin generation and preventing thrombosis. In humans and mice, TFPIα is the sole isoform present in platelets. OBJECTIVE Here, we asked whether TFPIα, because of its release from platelets at sites of injury, has a unique role in limiting the hemostatic response. METHODS TFPIα-mutant (TfpiΔα/Δα ) mice were generated by introducing a stop codon in the C-terminus. Platelet accumulation, platelet activation, and fibrin accumulation were measured following penetrating injuries in the jugular vein and cremaster muscle arterioles, and imaged by fluorescence and scanning electron microscopy. Time to bleeding cessation was recorded in the jugular vein studies. RESULTS TfpiΔα/Δα mice were viable and fertile. Plasma TFPI levels were normal in the TfpiΔα/Δα mice, no TFPI protein or activity was present in their platelets and thrombin-antithrombin complex levels were indistinguishable from Tfpi+/+ littermates. There was a small, but statistically significant reduction in the time to bleeding cessation following jugular vein puncture injury in the TfpiΔα/Δα mice, but no measurable changes in platelet or fibrin accumulation or in hemostatic plug architecture following injury of the micro- or macrovasculature. CONCLUSION Loss of TFPIα expression does not produce a global prothrombotic state in mice. Platelet TFPIα is expected to be released or displayed in a focal manner at the site of injury, potentially accumulating to high concentrations in the narrow gaps between platelets. If so, the data from the vascular injury models studied here indicate this is not essential for a normal hemostatic response in mice.
Collapse
Affiliation(s)
- Tanya T. Marar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jie Wu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J. Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinny Delacroix
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Robert D. Simari
- Department of Cardiovascular Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F. Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Castoldi E. F5-Atlanta: Factor V-short strikes again. J Thromb Haemost 2021; 19:1638-1640. [PMID: 34176223 PMCID: PMC8362210 DOI: 10.1111/jth.15351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabetta Castoldi
- Department of BiochemistryCARIMMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
38
|
Zimowski KL, Petrillo T, Ho MD, Wechsler J, Shields JE, Denning G, Jhita N, Rivera AA, Escobar MA, Kempton CL, Camire RM, Doering CB. F5-Atlanta: A novel mutation in F5 associated with enhanced East Texas splicing and FV-short production. J Thromb Haemost 2021; 19:1653-1665. [PMID: 33773040 DOI: 10.1111/jth.15314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Elucidating the molecular pathogenesis underlying East Texas bleeding disorder (ET) led to the discovery of alternatively spliced F5 transcripts harboring large deletions within exon 13. These alternatively spliced transcripts produce a shortened form of coagulation factor V (FV) in which a large portion of its B-domain is deleted. These FV isoforms bind tissue factor pathway inhibitor alpha (TFPIα) with high affinity, prolonging its circulatory half-life and enhancing its anticoagulant effects. While two missense pathogenic variants highlighted this alternative splicing event, similar internally deleted FV proteins are found in healthy controls. OBJECTIVE We identified a novel heterozygous 832 base pair deletion within F5 exon 13, termed F5-Atlanta (F5-ATL), in a patient with severe bleeding. Our objective is to investigate the effect of this deletion on F5 and FV expression. METHODS & RESULTS Assessment of patient plasma revealed markedly elevated levels of total and free TFPI and a FV isoform similar in size to the FV-short described in ET. Sequencing analyses of cDNA revealed the presence of a transcript alternatively spliced using the ET splice sites, thereby removing the F5-ATL deletion. This alternative splicing pattern was recapitulated by heterologous expression in mammalian cells. CONCLUSIONS These findings support a mechanistic model consisting of cis-acting regulatory sequences encoded within F5 exon 13 that control alternative splicing at the ET splice sites and thereby regulate circulating FV-short and TFPIα levels.
Collapse
Affiliation(s)
- Karen L Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Teodolinda Petrillo
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Michelle D Ho
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Julie Wechsler
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jordan E Shields
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | | | | | - Miguel A Escobar
- University of Texas Houston Health Science Center, Houston, Texas, USA
| | - Christine L Kempton
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Mehic D, Colling M, Pabinger I, Gebhart J. Natural anticoagulants: A missing link in mild to moderate bleeding tendencies. Haemophilia 2021; 27:701-709. [PMID: 34110661 PMCID: PMC8518679 DOI: 10.1111/hae.14356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Introduction There is a growing interest in natural anticoagulants as a cause of mild to moderate bleeding disorders (MBDs), particularly in patients with bleeding of unknown cause (BUC), which is defined as having a mild to moderate bleeding phenotype without a definite diagnosis despite exhaustive and repeated laboratory investigations. Recently, abnormalities in two natural anticoagulant pathways, thrombomodulin (TM), and tissue factor pathway inhibitor (TFPI), were identified in single patients or families as the underlying cause for a bleeding tendency. Aim The objective of this review is to discuss the current understanding of the role of natural anticoagulants in MBDs using available clinical and translational data. Methods A Cochrane Library and PubMed (MEDLINE) search focusing on selected natural anticoagulants and their role in MBDs was conducted. Results Data on the influence of natural anticoagulants including protein C, protein S, antithrombin, TM, and TFPI or factors with anticoagulant properties like fibrinogen gamma prime (γ’) on MBDs are scarce. Observations from sepsis treatment and from translational research highlight their importance as regulators of the haemostatic balance, especially via the activated protein C‐related pathway, and suggest a role in some MBDs. Conclusion Similar to the distinct genetic variants of natural anticoagulants linked to thrombosis, we hypothesize that novel variants may be associated with a bleeding tendency and could be identified using next generation sequencing.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meaghan Colling
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Ruben EA, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structures of human coagulation factors V and Va. Blood 2021; 137:3137-3144. [PMID: 33684942 PMCID: PMC8176766 DOI: 10.1182/blood.2021010684] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Coagulation factor V (fV) is the precursor of fVa, which, together with fXa, Ca2+, and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. We solved the cryogenic electron microscopy (cryo-EM) structures of human fV and fVa at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly, but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding fXa, and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain that is responsible for prothrombin binding. Ordering of this region and full exposure of the fXa epitope emerge as necessary steps in the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of fV and fVa and pioneer the analysis of coagulation factors by cryo-EM.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
41
|
Peterson JA, Maroney SA, Martinez ND, Mast AE. Major Reservoir for Heparin-Releasable TFPIα (Tissue Factor Pathway Inhibitor α) Is Extracellular Matrix. Arterioscler Thromb Vasc Biol 2021; 41:1942-1955. [PMID: 33827254 PMCID: PMC8269748 DOI: 10.1161/atvbaha.120.315728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
42
|
Elevated levels of tissue factor pathway inhibitor in patients with mild to moderate bleeding tendency. Blood Adv 2021; 5:391-398. [PMID: 33496735 DOI: 10.1182/bloodadvances.2020003464] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/05/2020] [Indexed: 12/26/2022] Open
Abstract
High levels of tissue factor pathway inhibitor (TFPI), caused by a longer TFPIα half-life after binding to a factor V splice variant and variants in the F5 gene, were recently identified in 2 families with an as-yet-unexplained bleeding tendency. This study aimed to investigate free TFPIα in a well-characterized cohort of 620 patients with mild to moderate bleeding tendencies and its association to genetic alterations in the F5 gene. TFPIα levels were higher in patients with bleeding compared with healthy controls (median [interquartile range], 8.2 [5.5-11.7] vs 7.8 [4.3-11.1]; P = .026). A higher proportion of patients had free TFPIα levels more than or equal to the 95th percentile compared with healthy controls (odds ratio [OR] [95% confidence interval (CI)], 2.82 [0.98-8.13]). This was pronounced in the subgroup of patients in whom no bleeding disorder could be identified (bleeding of unknown cause [BUC; n = 420]; OR [95% CI], 3.03 [1.02-8.98]) and in platelet function defects (PFDs) (n = 121; OR [95% CI], 3.47 [1.09-11.08]). An increase in free TFPIα was associated with a mild delay in thrombin generation (prolonged lag time and time to peak), but not with alterations in routinely used global clotting tests. We could neither identify new or known genetic variations in the F5 gene that are associated with free TFPIα levels, nor an influence of the single-nucleotide variant rs10800453 on free TFPIα levels in our patient cohort. An imbalance of natural coagulation inhibitors such as TFPIα could be an underlying cause or contributor for unexplained bleeding, which is most probably multifactorial in a majority of patients.
Collapse
|
43
|
Castoldi E, Hézard N, Mourey G, Wichapong K, Poggi M, Ibrahim-Kosta M, Thomassen MCLGD, Fournel A, Hayward CPM, Alessi MC, Hackeng TM, Rosing J, Morange PE. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J Thromb Haemost 2021; 19:1186-1199. [PMID: 33605529 DOI: 10.1111/jth.15274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Coagulation factor V (FV), present in plasma and platelets, has both pro- and anticoagulant functions. OBJECTIVE We investigated an FV-deficient patient (FV:C 3%, FV:Ag 4%) paradoxically presenting with recurrent venous thrombosis (11 events) instead of bleeding. METHODS/RESULTS Thrombophilia screening revealed only heterozygosity for the F2 20210G>A mutation. Although thrombin generation in the patient's platelet-poor plasma was suggestive of a hypocoagulable state, thrombin generation in the patient's platelet-rich plasma (PRP) was higher than in control PRP and extremely resistant to activated protein C (APC). This was partially attributable to the complete abolition of the APC-cofactor activity of FV and a marked reduction of plasma tissue factor pathway inhibitor antigen and activity. The patient was homozygous for a novel missense mutation (Ala2086Asp, FVBesançon ) that favors a "closed conformation" of the C2 domain, predicting impaired binding of FV(a) to phospholipids. Recombinant FVBesançon was hardly secreted, indicating that this mutation is responsible for the patient's FV deficiency. Model system experiments performed using highly diluted plasma as a source of FV showed that, compared with normal FVa, FVaBesançon has slightly (≤1.5-fold) unfavorable kinetic parameters (Km , Vmax ) of prothrombin activation, but also a lower rate of APC-catalyzed inactivation in the presence of protein S. CONCLUSIONS FVBesançon induces a hypercoagulable state via quantitative (markedly decreased FV level) and qualitative (phospholipid-binding defect) effects that affect anticoagulant pathways (anticoagulant activities of FV, FVa inactivation, tissue factor pathway inhibitor α level) more strongly than the prothrombinase activity of FVa. A possible specific role of platelet FV cannot be excluded.
Collapse
Affiliation(s)
- Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nathalie Hézard
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Guillaume Mourey
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Marjorie Poggi
- C2VN, INSERM, INRA, Aix Marseille University, Marseille, France
| | | | | | - Alexandra Fournel
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | | | | | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Jan Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | | |
Collapse
|
44
|
Ahnström J, Gilbert GE. Factor V mutation illuminates the dominant anticoagulant role and importance of an unidentified platelet modifier. J Thromb Haemost 2021; 19:1168-1170. [PMID: 33880872 DOI: 10.1111/jth.15273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Gary E Gilbert
- Department of Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Insights into the Functional Role of ADTRP (Androgen-Dependent TFPI-Regulating Protein) in Health and Disease. Int J Mol Sci 2021; 22:ijms22094451. [PMID: 33923232 PMCID: PMC8123165 DOI: 10.3390/ijms22094451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
The novel protein ADTRP, identified and described by us in 2011, is androgen-inducible and regulates the expression and activity of Tissue Factor Pathway Inhibitor, the major inhibitor of the Tissue Factor-dependent pathway of coagulation on endothelial cells. Single-nucleotide polymorphisms in ADTRP associate with coronary artery disease and myocardial infarction, and deep vein thrombosis/venous thromboembolism. Some athero-protective effects of androgen could exert through up-regulation of ADTRP expression. We discovered a critical role of ADTRP in vascular development and vessel integrity and function, manifested through Wnt signaling-dependent regulation of matrix metalloproteinase-9. ADTRP also hydrolyses fatty acid esters of hydroxy-fatty acids, which have anti-diabetic and anti-inflammatory effects and can control metabolic disorders. Here we summarize and analyze the knowledge on ADTRP and try to decipher its functions in health and disease.
Collapse
|
46
|
Petrillo T, Ayombil F, Van't Veer C, Camire RM. Regulation of factor V and factor V-short by TFPIα: Relationship between B-domain proteolysis and binding. J Biol Chem 2021; 296:100234. [PMID: 33376137 PMCID: PMC7948760 DOI: 10.1074/jbc.ra120.016341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963–1008 and acidic region 2, AR2; 1493–1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which forms of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ∼1 nM) to TFPIα-BR, which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (μM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full-length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.
Collapse
Affiliation(s)
- Teodolinda Petrillo
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rodney M Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
47
|
Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18:2801-2811. [PMID: 32702208 DOI: 10.1111/jth.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023]
Abstract
Protein S is a critical regulator of coagulation that functions as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. It also has direct anticoagulant functions, inhibiting the intrinsic tenase and prothrombinase complexes. Through these functions, protein S regulates coagulation during both its initiation and its propagation phases. The importance of protein S in hemostatic regulation is apparent from the strong association between protein S deficiencies and increased risk for venous thrombosis. This is most likely because both APC and TFPIα are inefficient anticoagulants in the absence of any cofactors. The detailed molecular mechanisms involved in protein S cofactor functions remain to be fully clarified. However, recent advances in the field have greatly improved our understanding of these functions. Evidence suggests that protein S anticoagulant properties often depend on the presence of synergistic cofactors and the formation of multicomponent complexes on negatively charged phospholipid surfaces. Their high affinity binding to negatively charged phospholipids helps bring the anticoagulant proteins to the membranes, resulting in efficient and targeted regulation of coagulation. In this review, we provide an update on protein S and how it functions as a critical hemostatic regulator.
Collapse
|
48
|
Thomas W, Downes K, Desborough MJR. Bleeding of unknown cause and unclassified bleeding disorders; diagnosis, pathophysiology and management. Haemophilia 2020; 26:946-957. [PMID: 33094877 DOI: 10.1111/hae.14174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Bleeding of unknown cause (BUC), also known as unclassified bleeding disorders (UBD), has been defined as a clear bleeding tendency in the presence of normal haemostatic tests. There are challenges in the diagnosis and management of these patients. BUC/UBD encompasses a heterogenous group of disorders which may include undiagnosed rare monogenic diseases, polygenic reasons for bleeding; and patients without a clear bleeding disorder but with a previous bleeding event. Nevertheless, these patients may have heavy menstrual bleeding or be at risk of bleeding when undergoing surgical procedures, or childbirth; optimizing haemostasis and establishing a mode of inheritance is important to minimize morbidity. The bleeding score has been used to clinically assess and describe these patients, but its value remains uncertain. In addition, accurate distinction between normal and pathological bleeding remains difficult. Several studies have investigated cohorts of these patients using research haemostasis tests, including thrombin generation and fibrinolytic assays, yet no clear characteristics have consistently emerged. Thus far, detailed genetic analysis of these patients has not been fruitful in unravelling the cause of bleeding. There is a need for standardization of diagnosis and management guidelines for these patients. This review gives an overview of this field with some suggestions for future research.
Collapse
Affiliation(s)
- Will Thomas
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Downes
- East Midlands and East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Michael J R Desborough
- Haemostasis and Thrombosis Centre, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
49
|
Siebert AE, Mast AE. Platelet anticoagulant proteins: Modulators of thrombosis propensity within a procoagulant cell. J Thromb Haemost 2020; 18:2083-2086. [PMID: 32729671 PMCID: PMC7722139 DOI: 10.1111/jth.14995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Affiliation(s)
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
50
|
Thomas W, White D, MacDonald S, Downes K, Obaji S, Desborough M. Diagnostic work up of patients with increased bleeding tendency: Comment. Haemophilia 2020; 26:e209-e210. [PMID: 32311812 DOI: 10.1111/hae.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Will Thomas
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Danielle White
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Stephen MacDonald
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, UK
- East Midlands and East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Samya Obaji
- Cardiff Haemophilia Centre, University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|