1
|
Altunbas G, Kaplan M, Duzen V, Kaya EE, Gokdeniz HG, Taysi S. Determination of Serum Glycogen Synthase 3 Beta Levels in Patients with Heart Failure, a Novel Marker for Diagnosis and Defining Disease Severity? Arq Bras Cardiol 2024; 121:e20240155. [PMID: 39607223 PMCID: PMC11634289 DOI: 10.36660/abc.20240155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 08/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Glycogen synthase kinase 3β (GSK3β) is an enzyme that has roles in the pathogenesis of heart failure (HF). We try to reveal serum GSK3β levels in types of HF. OBJECTIVES In this study, we evaluated serum GSK3β levels in HF patients. Also, we tried to elucidate any possible relationship between serum GSK3β levels and disease severity among three different types of HF patients. METHODS We performed a prospective study and enrolled 112 patients: 50 patients in heart failure with preserved ejection fraction (HFpEF) group, 30 patients in heart failure with mildly reduced ejection fraction (HFmrEF) group, and 32 patients in heart failure with reduced ejection fraction group (HFrEF). We also evaluated 50 healthy controls. Echocardiographic examinations were performed. We measured serum GSK-3β and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We measured highly sensitive C-reactive protein (hs-CRP) levels and calculated neutrophil-lymphocyte ratio (NLR) platelets-to-lymphocyte ratio (PLR) from the hemogram count. Statistical significance was accepted p < 0.05. RESULTS Serum GSK3β levels were significantly higher among patients with HF compared to healthy controls (median GSK3β levels; 117.26 (45.39 -223.85) vs 13.91 (5.6 -23.3) ng/mL, p<0.001). Also, GSK3β levels were highest among patients with HFpEF and lowest among patients with HFrEF; 236.44 (132.89 -432) vs. 38.72 (23.15-67.31) ng/mL respectively (p<0.001). Median NT-proBNP levels, as expected, were significantly higher among patients with HF compared to healthy controls (660 (291 -1000) vs. 92 (78 -102) pg/mL, p<0.001). As a marker of systemic inflammation, hsCRP values, NLR, and PLR did not differ significantly among HF patients and controls. CONCLUSION GSK3β levels were significantly higher among patients with HF. Also, as the ejection fraction declines, GSK3β levels also reduce, probably as a protective mechanism to prevent further apoptosis and myocyte death.
Collapse
Affiliation(s)
- Gokhan Altunbas
- Department of CardiologyGaziantep UniversitySchool of MedicineGaziantepTurquiaDepartment of Cardiology, Gaziantep University School of Medicine, Gaziantep – Turquia
| | - Mehmet Kaplan
- Department of CardiologyGaziantep UniversitySchool of MedicineGaziantepTurquiaDepartment of Cardiology, Gaziantep University School of Medicine, Gaziantep – Turquia
| | - Veysel Duzen
- Department of CardiologyGaziantep UniversitySchool of MedicineGaziantepTurquiaDepartment of Cardiology, Gaziantep University School of Medicine, Gaziantep – Turquia
| | - Emin Erdem Kaya
- Gaziantep City HospitalTraining and Research HospitalGaziantepTurquiaGaziantep City Hospital, Training and Research Hospital, Gaziantep – Turquia
| | - Hafize Gokce Gokdeniz
- Hatay Dortyol State HospitalHatayTurquiaHatay Dortyol State Hospital, Hatay – Turquia
| | - Seyithan Taysi
- Department of BiochemistryGaziantep UniversitySchool of MedicineGaziantepTurquiaDepartment of Biochemistry, Gaziantep University School of Medicine, Gaziantep – Turquia
| |
Collapse
|
2
|
Catrina BI, Batar F, Manitiu I, Prodan L, Tanasescu C, Filip T. Concepts of Cardiac Dyssynchrony and Dynamic Approach. Diagnostics (Basel) 2024; 14:937. [PMID: 38732350 PMCID: PMC11083078 DOI: 10.3390/diagnostics14090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac conduction involves electrical activity from one myocyte to another, creating coordinated contractions in each. Disruptions in the conducting system, such as left bundle branch block (LBBB), can result in premature activation of specific regions of the heart, leading to heart failure and increased morbidity and mortality. Structural alterations in T-tubules and the sarcoplasmic reticulum can lead to dyssynchrony, a condition that can be treated by cardiac resynchronization therapy (CRT), which stands as a cornerstone in this pathology. The heterogeneity in patient responses underscored the necessity of improving the diagnostic approach. Vectocardiography, ultra-high-frequency ECG, 3D echocardiography, and electrocardiographic imaging seem to offer advanced precision in identifying optimal candidates for CRT in addition to the classic diagnostic methods. The advent of His bundle pacing and left bundle branch pacing further refined the approach in the treatment of dyssynchrony, offering more physiological pacing modalities that promise enhanced outcomes by maintaining or restoring the natural sequence of ventricular activation. HOT-CRT emerges as a pivotal innovation combining the benefits of CRT with the precision of His bundle or left bundle branch area pacing to optimize cardiac function in a subset of patients where traditional CRT might fall short.
Collapse
Affiliation(s)
- Bianca Iulia Catrina
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
- Pathophysiology Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Florina Batar
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
- Physiology Pathophysiology Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ioan Manitiu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
- Cardiology Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Liliana Prodan
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
- Pathophysiology Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ciprian Tanasescu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
- Clinical Surgical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Teodora Filip
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (F.B.); (I.M.); (C.T.); (T.F.)
| |
Collapse
|
3
|
Cai S, Chang J, Su M, Wei Y, Sun H, Chen C, Yiu KH. miR-455-5p promotes pathological cardiac remodeling via suppression of PRMT1-mediated Notch signaling pathway. Cell Mol Life Sci 2023; 80:359. [PMID: 37951845 PMCID: PMC10640488 DOI: 10.1007/s00018-023-04987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sidong Cai
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengqi Su
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yinxia Wei
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haoran Sun
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Umbarkar P, Ruiz Ramirez SY, Toro Cora A, Tousif S, Lal H. GSK-3 at the heart of cardiometabolic diseases: Isoform-specific targeting is critical to therapeutic benefit. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166724. [PMID: 37094727 PMCID: PMC10247467 DOI: 10.1016/j.bbadis.2023.166724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3β. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases. In the present review, we will particularly focus on expanding the isoform-specific role of GSK-3 in the pathophysiology of cardiometabolic disorders. We will highlight recent data from our lab that demonstrated the critical role of cardiac fibroblast (CF) GSK-3α in promoting injury-induced myofibroblast transformation, adverse fibrotic remodeling, and deterioration of cardiac function. We will also discuss studies that found the exact opposite role of CF-GSK-3β in cardiac fibrosis. We will review emerging studies with inducible cardiomyocyte (CM)-specific as well as global isoform-specific GSK-3 KOs that demonstrated inhibition of both GSK-3 isoforms provides benefits against obesity-associated cardiometabolic pathologies. The underlying molecular interactions and crosstalk among GSK-3 and other signaling pathways will be discussed. We will briefly review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to treat metabolic disorders. Finally, we will summarize these findings and offer our perspective on envisioning GSK-3 as a therapeutic target for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sulivette Y Ruiz Ramirez
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Angelica Toro Cora
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Ijichi T, Sundararaman N, Martin TG, Pandey R, Koronyo E, Kirk JA, Marbán E, Van Eyk JE, Fert-Bober J. Peptidyl arginine deiminase inhibition alleviates angiotensin II-induced fibrosis. Am J Transl Res 2023; 15:4558-4572. [PMID: 37560217 PMCID: PMC10408542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The conversion of protein arginine residues to citrulline by calcium-dependent peptidyl arginine deiminases (PADs) has been implicated in the pathogenesis of several diseases, indicating that PADs are therapeutic targets. A recent study indicated that PAD4 regulates age-related organ fibrosis and dysfunction; however, the specific role of this PAD and its citrullination substrate remains unclear. We investigated whether pharmacological inhibition of PAD activity could affect the progression of fibrosis and restore heart function. METHODS Cardiac hypertrophy was induced by chronic infusion of angiotensin (Ang) II. After 2 weeks of AngII infusion, a PAD inhibitor (Cl-amidine hydrochloride) or vehicle (saline) was injected every other day for the next 14 days together with the continued administration of AngII for a total of up to 28 days. Cardiac fibrosis and remodeling were evaluated by quantitative heart tissue histology, echocardiography, and mass spectrometry. RESULTS A reverse AngII-induced effect was observed in PAD inhibitor-treated mice (n=6) compared with AngII vehicle-treated mice, as indicated by a significant reduction in the heart/body ratio (AngII: 6.51±0.8 mg/g vs. Cl-amidine: 5.27±0.6 mg/g), a reduction in fibrosis (AngII: 2.1-fold increased vs. Cl-amidine: 1.8-fold increased), and a reduction in left ventricular posterior wall diastole (LWVPd) (AngII: 1.1±0.04 vs. Cl-amidine: 0.78±0.02 mm). Label-free quantitative proteomics analysis of heart tissue indicated that proteins involved in fibrosis (e.g., periostin), cytoskeleton organization (e.g., transgelin), and remodeling (e.g., myosin light chain, carbonic anhydrase) were normalized by Cl-amidine treatment. CONCLUSION Our findings demonstrate that pharmacological inhibition of PAD may be an effective strategy to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Takeshi Ijichi
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Department of Cardiology, School of Medicine, Tokai UniversityIsehara, Kanagawa 259-1193, Japan
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of MedicineMaywood, IL 60153, The United States
| | - Rakhi Pandey
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Etai Koronyo
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of MedicineMaywood, IL 60153, The United States
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| | - Justyna Fert-Bober
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical CenterLos Angeles, CA 90048, The United States
| |
Collapse
|
6
|
Abstract
PURPOSE OF THE REVIEW Dyssynchrony occurs when portions of the cardiac chambers contract in an uncoordinated fashion. Ventricular dyssynchrony primarily impacts the left ventricle and may result in heart failure. This entity is recognized as a major contributor to the development and progression of heart failure. A hallmark of dyssynchronous heart failure (HFd) is left ventricular recovery after dyssynchrony is corrected. This review discusses the current understanding of pathophysiology of HFd and provides clinical examples and current techniques for treatment. RECENT FINDINGS Data show that HFd responds poorly to medical therapy. Cardiac resynchronization therapy (CRT) in the form of conventional biventricular pacing (BVP) is of proven benefit in HFd, but is limited by a significant non-responder rate. Recently, conduction system pacing (His bundle or left bundle branch area pacing) has also shown promise in correcting HFd. HFd should be recognized as a distinct etiology of heart failure; HFd responds best to CRT.
Collapse
Affiliation(s)
- Sean J Dikdan
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | | | - Behzad B Pavri
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Gambardella J, Jankauskas SS, D'Ascia SL, Sardu C, Matarese A, Minicucci F, Mone P, Santulli G. Glycation of ryanodine receptor in circulating lymphocytes predicts the response to cardiac resynchronization therapy. J Heart Lung Transplant 2022; 41:438-441. [PMID: 35042640 PMCID: PMC8977242 DOI: 10.1016/j.healun.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023] Open
Abstract
Finding reliable parameters to identify patients with heart failure (HF) that will respond to cardiac resynchronization therapy (CRT) represents a major challenge. We and others have observed post-translational modifications of Ryanodine Receptor (RyR) in several tissues (including skeletal muscle and circulating lymphocytes) of patients with advanced HF. We designed a prospective study to test the hypothesis that RyR1 glycation in circulating lymphocytes could predict CRT responsiveness in patients with non-ischemic HF. We enrolled 94 patients who underwent CRT and 30 individuals without HF, examining RyR1 glycation in peripheral lymphocytes at enrollment and after 1 year. We found that baseline RyR1 glycation independently predicts CRT response at 1 year after adjusting for age, diabetes, QRS duration and morphology, echocardiographic dyssynchrony, and hypertension. Moreover, RyR1 glycation in circulating lymphocytes significantly correlated with pathologic intracellular calcium leak. Taken together, our data show for the first time that RyR1 glycation in circulating lymphocytes represents a novel biomarker to predict CRT responsiveness.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, University of Naples "Federico II" and International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
| | - Stanislovas S Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York
| | | | | | | | - Fabio Minicucci
- Naples Local Health Unit (ASL) of the Italian Ministry of Health, Naples, Italy
| | - Pasquale Mone
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York; University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, University of Naples "Federico II" and International Translational Research and Medical Education (ITME) Consortium, Naples, Italy; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Norman Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, New York.
| |
Collapse
|
8
|
Stachowski-Doll MJ, Papadaki M, Martin TG, Ma W, Gong HM, Shao S, Shen S, Muntu NA, Kumar M, Perez E, Martin JL, Moravec CS, Sadayappan S, Campbell SG, Irving T, Kirk JA. GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circ Res 2022; 130:871-886. [PMID: 35168370 PMCID: PMC8930626 DOI: 10.1161/circresaha.121.319491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS Inducible cardiomyocyte-specific GSK-3β knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3β. Agreeing with the localization of its targets, GSK-3β that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3β in neonatal rat ventricular cardiomyocytes. One of GSK-3β's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3β. Last, GSK-3β myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS We identified a novel mechanism by which GSK-3β localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3β levels were reduced in patients with heart failure, indicating z-disc localized GSK-3β is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.
Collapse
Affiliation(s)
- Marisa J Stachowski-Doll
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Henry M Gong
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Stephanie Shao
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Shi Shen
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Nitha Aima Muntu
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Jody L Martin
- Department of Pharmacology, Cardiovascular Research Institute, UC Davis School of Medicine, CA (J.L.M.)
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (C.S.M.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Stuart G Campbell
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT (S.G.C.)
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| |
Collapse
|
9
|
Muller GK, Song J, Jani V, Wu Y, Liu T, Jeffreys WPD, O’Rourke B, Anderson ME, Kass DA. PDE1 Inhibition Modulates Ca v1.2 Channel to Stimulate Cardiomyocyte Contraction. Circ Res 2021; 129:872-886. [PMID: 34521216 PMCID: PMC8553000 DOI: 10.1161/circresaha.121.319828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Grace K Muller
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joy Song
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vivek Jani
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuejin Wu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ting Liu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William PD Jeffreys
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian O’Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark E Anderson
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Martin TG, Myers VD, Dubey P, Dubey S, Perez E, Moravec CS, Willis MS, Feldman AM, Kirk JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021; 12:2942. [PMID: 34011988 PMCID: PMC8134551 DOI: 10.1038/s41467-021-23272-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance. Decreased expression of BAG3 in the heart is associated with contractile dysfunction and heart failure. Here the authors show that this is due to decreased BAG3-dependent sarcomere protein turnover, which impairs mechanical function, and that sarcomere force-generating capacity is restored with BAG3 gene therapy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Valerie D Myers
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Praveen Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shubham Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Christine S Moravec
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arthur M Feldman
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
11
|
Martin TG, Tawfik S, Moravec CS, Pak TR, Kirk JA. BAG3 expression and sarcomere localization in the human heart are linked to HSF-1 and are differentially affected by sex and disease. Am J Physiol Heart Circ Physiol 2021; 320:H2339-H2350. [PMID: 33989081 DOI: 10.1152/ajpheart.00419.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations to the sarcomere-localized cochaperone protein Bcl2-associated athanogene 3 (BAG3) are associated with dilated cardiomyopathy (DCM) and display greater penetrance in male patients. Decreased protein expression of BAG3 is also associated with nongenetic heart failure; however, the factors regulating cardiac BAG3 expression are unknown. Using left ventricular (LV) tissue from nonfailing and DCM human samples, we found that whole LV BAG3 expression was not significantly impacted by DCM or sex; however, myofilament localized BAG3 was significantly decreased in males with DCM. Females with DCM displayed no changes in BAG3 compared with nonfailing. This sex difference appears to be estrogen independent, as estrogen treatment in ovariectomized female rats had no impact on BAG3 expression. BAG3 gene expression in noncardiac cells is primarily regulated by the heat shock transcription factor-1 (HSF-1). We show whole LV HSF-1 expression and nuclear localized/active HSF-1 each displayed a striking positive correlation with whole LV BAG3 expression. We further found that HSF-1 localizes to the sarcomere Z-disc in cardiomyocytes and that this myofilament-associated HSF-1 pool decreases in heart failure. The decrease of HSF-1 was more pronounced in male patients and tightly correlated with myofilament BAG3 expression. Together our findings indicate that cardiac BAG3 expression and myofilament localization are differentially impacted by sex and disease and are linked to HSF-1.NEW & NOTEWORTHY Myofilament BAG3 expression decreases in male patients with nonischemic DCM but is preserved in female patients with DCM. BAG3 expression in the human heart is tightly linked to HSF-1 expression and nuclear translocation. HSF-1 localizes to the sarcomere Z-disc in the human heart. HSF-1 expression in the myofilament fraction decreases in male patients with DCM and positively correlates with myofilament BAG3.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Sara Tawfik
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
12
|
Tibenska V, Marvanova A, Elsnicova B, Hejnova L, Vebr P, Novotný J, Kolar F, Novakova O, M Zurmanova J. The cardioprotective effect persisting during recovery from cold acclimation is mediated by the β 2-adrenoceptor pathway and Akt activation. J Appl Physiol (1985) 2021; 130:746-755. [PMID: 33332989 DOI: 10.1152/japplphysiol.00756.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infarct size-limiting effect elicited by cold acclimation (CA) is accompanied by increased mitochondrial resistance and unaltered β1-adrenergic receptor (AR) signaling persisting for 2 wk at room temperature. As the mechanism of CA-elicited cardioprotection is not fully understood, we examined the role of the salvage β2-AR/Gi/Akt pathway. Male Wistar rats were exposed to CA (8°C, 5 wk), whereas the recovery group (CAR) was kept at 24°C for additional 2 wk. We show that the total number of myocardial β-ARs in the left ventricular myocardium did not change after CA but decreased after CAR. We confirmed the infarct size-limiting effect in both CA and CAR groups. Acute administration of β2-AR inhibitor ICI-118551 abolished the protective effect in the CAR group but had no effect in the control and CA groups. The inhibitory Giα1/2 and Giα3 proteins increased in the membrane fraction of the CAR group, and the phospho-Akt (Ser473)-to-Akt ratio also increased. Expression, phosphorylation, and mitochondrial location of the Akt target glycogen synthase kinase (GSK-3β) were affected neither by CA nor by CAR. However, GSK-3β translocated from the Z-disk to the H-zone after CA, and acquired its original location after CAR. Our data indicate that the cardioprotection observed after CAR is mediated by the β2-AR/Gi pathway and Akt activation. Further studies are needed to unravel downstream targets of the central regulators of the CA process and the downstream targets of the Akt protein after CAR.NEW & NOTEWORTHY Cardioprotective effect of cold acclimation and that persisting for 2 wk after recovery engage in different mechanisms. The β2-adrenoceptor/Gi pathway and Akt are involved only in the mechanism of infarct size-limiting effect occurring during the recovery phase. GSK-3β translocated from the Z-line to the H-zone of sarcomeres by cold acclimation returns back to the original position after the recovery phase. The results provide new insights potentially useful for the development of cardiac therapies.
Collapse
Affiliation(s)
- Veronika Tibenska
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Marvanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Vebr
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Martens P, Dupont M, Vermeersch P, Dauw J, Nijst P, Bito V, Mesotten L, Penders J, Janssens S, Tang WHW, Mullens W. Impact of Cardiac Resynchronization Therapy on Global and Cardiac Metabolism and Cardiac Mitochondrial Function. J Card Fail 2021; 27:706-715. [PMID: 33639318 DOI: 10.1016/j.cardfail.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, KU Leuven, UZ Leuven, Leuven, Belgium
| | - Jeroen Dauw
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Liesbet Mesotten
- Department of Nuclear medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Joris Penders
- Department of Laboratory Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Stefan Janssens
- Department of cardiovascular medicine, KULeuven, UZLeuven, Leuven, Belgium
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Department of Laboratory Medicine, KU Leuven, UZ Leuven, Leuven, Belgium; Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
14
|
Nordin H, Nakagawa R, Wallin M, Pernow J, Kass DA, Ståhlberg M. Regional protein expression changes within the left ventricle in a mouse model of dyssynchronous and resynchronized heart failure. ESC Heart Fail 2020; 7:4438-4442. [PMID: 33108709 PMCID: PMC7754720 DOI: 10.1002/ehf2.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/11/2020] [Accepted: 09/15/2020] [Indexed: 11/12/2022] Open
Abstract
Aims The biological mechanisms conveying the salutary effects of cardiac resynchronization therapy in heart failure remain elusive. We have recently developed a mouse model of heart failure with dyssynchrony/resynchronization. The aim of this study was to characterize regional left ventricular heterogeneity in protein expression comparing early (septum) and late (lateral) activated left ventricular wall segments in synchronous (SHF), dyssynchronous (DHF), and resynchronized heart failure (RHF). Methods and results Mice subjected to ischaemia/reperfusion were divided into three groups: sinus rhythm for 4 weeks (SHF), right ventricular pacing for 4 weeks (DHF), and right ventricular pacing for 2 weeks and 2 weeks of sinus rhythm (RHF). Relative concentrations of 92 proteins from septal and lateral left ventricular wall segments (n = 10 per group) were compared within each group. We also analysed the effect of DHF vs. SHF and RHF vs. DHF on protein expression pattern comparing the same left ventricular segments between the groups. Proteins with significantly differential expression between left ventricular segments were analysed for protein–protein correlations, protein–protein interactions, and biological and signalling pathways. Eight proteins were significantly down‐regulated in the late activated (compared with early activated) lateral wall uniquely in RHF (P < 0.05 adjusted for a 5% false discovery rate): Erbb4, Ntf3, Pdgfb, Tnf, Notch3, Qdpr, Tpp1, and Itgb6. Protein correlation matrix showed that six of these were strongly and positively correlated and five had known protein–protein interactions. Biological pathways mainly down‐regulated in late activated myocardium in RHF were MAPK signalling and hypertrophic cardiomyopathy. There were no significantly differentially expressed proteins comparing the same left ventricular segments between the DHF and SHF (range of P‐values: 0.05–1.00) and RHF and DHF (range of P‐values: 0.32–1.00). Conclusions In a mouse model of heart failure with dyssynchrony and resynchronization, we observed down‐regulation of several proteins in the late activated lateral wall, compared with the septum, in resynchronized mice. These proteins display significant protein–protein correlation and share biological signalling pathways, including MAPK activation and hypertrophy signalling.
Collapse
Affiliation(s)
- Hugo Nordin
- Department of Medicine, Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Ryo Nakagawa
- Department of Pediatrics, University of Tokyo Hospital, Tokyo, Japan
| | - Marita Wallin
- Department of Medicine, Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - David A Kass
- Department of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Marcus Ståhlberg
- Department of Medicine, Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Ståhlberg M, Nakagawa R, Bedja D, Zhu G, Lin BL, Saberi A, Lee DI, Kass DA. Chronic Atrial and Ventricular Pacing in the Mouse. Circ Heart Fail 2019; 12:e005655. [PMID: 30764638 DOI: 10.1161/circheartfailure.118.005655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The mouse is the most widely used mammal in experimental biology. Although many clinically relevant in vivo cardiac stressors are used, one that has eluded translation is long-term cardiac pacing. Here, we present the first method to chronically simulate and simultaneously record cardiac electrical activity in conscious mobile mice. We then apply it to study right ventricular pacing induced electromechanical dyssynchrony and its reversal (resynchronization). METHODS AND RESULTS The method includes a custom implantable bipolar stimulation and recording lead and flexible external conduit and electrical micro-commutator linked to a pulse generator/recorder. This achieved continuous pacing for at least 1 month in 77% of implants. Mice were then subjected to cardiac ischemia/reperfusion injury to depress heart function, followed by 4 weeks pacing at the right ventricle (dyssynchrony), right atrium (synchrony), or for 2 weeks right ventricle and then 2 weeks normal sinus (resynchronization). Right ventricular pacing-induced dyssynchrony substantially reduced heart and myocyte function compared with the other groups, increased gene expression heterogeneity (>10 fold) comparing septum to lateral walls, and enhanced growth and metabolic kinase activity in the late-contracting lateral wall. This was ameliorated by restoring contractile synchronization. CONCLUSIONS The new method to chronically pace conscious mice yields stable atrial and ventricular capture and a means to dissect basic mechanisms of electromechanical physiology and therapy. The data on dyssynchrony and resynchronization in ischemia/reperfusion hearts is the most comprehensive to date in ischemic heart disease, and its similarities to nonischemic canine results support the translational utility of the mouse.
Collapse
Affiliation(s)
- Marcus Ståhlberg
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.).,Department of Medicine, Karolinska Institutet, Solna, Sweden (M.S.).,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden (M.S.)
| | - Ryo Nakagawa
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - Brian L Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - Amir Saberi
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.)
| |
Collapse
|
16
|
Antoniou CK, Manolakou P, Magkas N, Konstantinou K, Chrysohoou C, Dilaveris P, Gatzoulis KA, Tousoulis D. Cardiac Resynchronisation Therapy and Cellular Bioenergetics: Effects Beyond Chamber Mechanics. Eur Cardiol 2019; 14:33-44. [PMID: 31131035 PMCID: PMC6523053 DOI: 10.15420/ecr.2019.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiac resynchronisation therapy is a cornerstone in the treatment of advanced dyssynchronous heart failure. However, despite its widespread clinical application, precise mechanisms through which it exerts its beneficial effects remain elusive. Several studies have pointed to a metabolic component suggesting that, both in concert with alterations in chamber mechanics and independently of them, resynchronisation reverses detrimental changes to cellular metabolism, increasing energy efficiency and metabolic reserve. These actions could partially account for the existence of responders that improve functionally but not echocardiographically. This article will attempt to summarise key components of cardiomyocyte metabolism in health and heart failure, with a focus on the dyssynchronous variant. Both chamber mechanics-related and -unrelated pathways of resynchronisation effects on bioenergetics – stemming from the ultramicroscopic level – and a possible common underlying mechanism relating mechanosensing to metabolism through the cytoskeleton will be presented. Improved insights regarding the cellular and molecular effects of resynchronisation on bioenergetics will promote our understanding of non-response, optimal device programming and lead to better patient care.
Collapse
Affiliation(s)
| | - Panagiota Manolakou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Nikolaos Magkas
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos Konstantinou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Polychronis Dilaveris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
17
|
Yu Z, Gong X, Yu Y, Li M, Liang Y, Qin S, Fulati Z, Zhou N, Shu X, Nie Z, Dai S, Chen X, Wang J, Chen R, Su Y, Ge J. The mechanical effects of CRT promoting autophagy via mitochondrial calcium uniporter down-regulation and mitochondrial dynamics alteration. J Cell Mol Med 2019; 23:3833-3842. [PMID: 30938090 PMCID: PMC6533471 DOI: 10.1111/jcmm.14227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 11/26/2022] Open
Abstract
The mechanism of cardiac resynchronization therapy (CRT) remains unclear. In this study, mitochondria calcium uniporter (MCU), dynamin‐related protein‐1 (DNM1L/Drp1) and their relationship with autophagy in heart failure (HF) and CRT are investigated. Thirteen male beagle's dogs were divided into three groups (sham, HF, CRT). Animals received left bundle branch (LBB) ablation followed by either 8‐week rapid atrial pacing or 4‐week rapid atrial pacing and 4‐week biventricular pacing. Cardiac function was evaluated by echocardiography. Differentially expressed genes (DEGs) were detected by microarray analysis. General morphological changes, mitochondrial ultrastructure, autophagosomes and mitophagosomes were investigated. The cardiomyocyte stretching was adopted to imitate the mechanical effect of CRT. Cells were divided into three groups (control, angiotensin‐II and angiotensin‐II + stretching). MCU, DNM1L/Drp1 and autophagy markers were detected by western blots or immunofluorescence. In the present study, CRT could correct cardiac dysfunction, decrease cardiomyocyte's size, alleviate cardiac fibrosis, promote the formation of autophagosome and mitigate mitochondrial injury. CRT significantly influenced gene expression profile, especially down‐regulating MCU and up‐regulating DNM1L/Drp1. Cell stretching reversed the angiotensin‐II induced changes of MCU and DNM1L/Drp1 and partly restored autophagy. CRT's mechanical effects down‐regulated MCU, up‐regulated DNM1L/Drp1 and subsequently enhanced autophagy. Besides, the mechanical stretching prevented the angiotensin‐II‐induced cellular enlargement.
Collapse
Affiliation(s)
- Ziqing Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Xue Gong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yixiu Liang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Shengmei Qin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Zibire Fulati
- Shanghai Institute of Medical Imaging, Shanghai, PR China.,Department of Echocardiography, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Nianwei Zhou
- Shanghai Institute of Medical Imaging, Shanghai, PR China.,Department of Echocardiography, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xianhong Shu
- Shanghai Institute of Medical Imaging, Shanghai, PR China.,Department of Echocardiography, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Zhenning Nie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Shimo Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xueying Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Department of Cardiovascular Diseases, Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yangang Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China.,Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
18
|
Ahmad F, Singh AP, Tomar D, Rahmani M, Zhang Q, Woodgett JR, Tilley DG, Lal H, Force T. Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload. J Mol Cell Cardiol 2019; 130:65-75. [PMID: 30928428 DOI: 10.1016/j.yjmcc.2019.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/09/2019] [Accepted: 03/25/2019] [Indexed: 01/19/2023]
Abstract
Chronic pressure-overload (PO)- induced cardiomyopathy is one of the leading causes of left ventricular (LV) remodeling and heart failure. The role of the α isoform of glycogen synthase kinase-3 (GSK-3α) in PO-induced cardiac remodeling is unclear and its downstream molecular targets are largely unknown. To investigate the potential roles of GSK-3α, cardiomyocyte-specific GSK-3α conditional knockout (cKO) and control mice underwent trans-aortic constriction (TAC) or sham surgeries. Cardiac function in the cKOs and littermate controls declined equally up to 2 weeks of TAC. At 4 week, cKO animals retained concentric LV remodeling and showed significantly less decline in contractile function both at systole and diastole, vs. controls which remained same until the end of the study (6 wk). Histological analysis confirmed preservation of LV chamber and protection against TAC-induced cellular hypertrophy in the cKO. Consistent with attenuated hypertrophy, significantly lower level of cardiomyocyte apoptosis was observed in the cKO. Mechanistically, GSK-3α was found to regulate mitochondrial permeability transition pore (mPTP) opening and GSK-3α-deficient mitochondria showed delayed mPTP opening in response to Ca2+ overload. Consistently, overexpression of GSK-3α in cardiomyocytes resulted in elevated Bax expression, increased apoptosis, as well as a reduction of maximum respiration capacity and cell viability. Taken together, we show for the first time that GSK-3α regulates mPTP opening under pathological conditions, likely through Bax overexpression. Genetic ablation of cardiomyocyte GSK-3α protects against chronic PO-induced cardiomyopathy and adverse LV remodeling, and preserves contractile function. Selective inhibition of GSK-3α using isoform-specific inhibitors could be a viable therapeutic strategy to limit PO-induced heart failure.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Anand P Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohamed Rahmani
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Douglas G Tilley
- Center for Translational Medicine, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Papadaki M, Holewinski RJ, Previs SB, Martin TG, Stachowski MJ, Li A, Blair CA, Moravec CS, Van Eyk JE, Campbell KS, Warshaw DM, Kirk JA. Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function. JCI Insight 2018; 3:121264. [PMID: 30333300 DOI: 10.1172/jci.insight.121264] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Patients with diabetes are at significantly higher risk of developing heart failure. Increases in advanced glycation end products are a proposed pathophysiological link, but their impact and mechanism remain incompletely understood. Methylglyoxal (MG) is a glycolysis byproduct, elevated in diabetes, and modifies arginine and lysine residues. We show that left ventricular myofilament from patients with diabetes and heart failure (dbHF) exhibited increased MG modifications compared with nonfailing controls (NF) or heart failure patients without diabetes. In skinned NF human and mouse cardiomyocytes, acute MG treatment depressed both calcium sensitivity and maximal calcium-activated force in a dose-dependent manner. Importantly, dbHF myocytes were resistant to myofilament functional changes from MG treatment, indicating that myofilaments from dbHF patients already had depressed function arising from MG modifications. In human dbHF and MG-treated mice, mass spectrometry identified increased MG modifications on actin and myosin. Cosedimentation and in vitro motility assays indicate that MG modifications on actin and myosin independently depress calcium sensitivity, and mechanistically, the functional consequence requires actin/myosin interaction with thin-filament regulatory proteins. MG modification of the myofilament may represent a critical mechanism by which diabetes induces heart failure, as well as a therapeutic target to avoid the development of or ameliorate heart failure in these patients.
Collapse
Affiliation(s)
- Maria Papadaki
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | | | - Samantha Beck Previs
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Marisa J Stachowski
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Amy Li
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Cheavar A Blair
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - Christine S Moravec
- The Cleveland Clinic, Department of Molecular Cardiology, Cleveland, Ohio, USA
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, California, USA
| | - Kenneth S Campbell
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - David M Warshaw
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| |
Collapse
|
20
|
Stachowski MJ, Holewinski RJ, Grote E, Venkatraman V, Van Eyk JE, Kirk JA. Phospho-Proteomic Analysis of Cardiac Dyssynchrony and Resynchronization Therapy. Proteomics 2018; 18:e1800079. [PMID: 30129105 DOI: 10.1002/pmic.201800079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Cardiac dyssynchrony arises from conduction abnormalities during heart failure and worsens morbidity and mortality. Cardiac resynchronization therapy (CRT) re-coordinates contraction using bi-ventricular pacing, but the cellular and molecular mechanisms involved remain largely unknown. The aim is to determine how dyssynchronous heart failure (HFdys ) alters the phospho-proteome and how CRT interacts with this unique phospho-proteome by analyzing Ser/Thr and Tyr phosphorylation. Phospho-enriched myocardium from dog models of Control, HFdys , and CRT is analyzed via MS. There were 209 regulated phospho-sites among 1761 identified sites. Compared to Con and CRT, HFdys is hyper-phosphorylated and tyrosine phosphorylation is more likely to be involved in signaling that increased with HFdys and was exacerbated by CRT. For each regulated site, the most-likely targeting-kinase is predicted, and CK2 is highly specific for sites that are "fixed" by CRT, suggesting activation of CK2 signaling occurs in HFdys that is reversed by CRT, which is supported by western blot analysis. These data elucidate signaling networks and kinases that may be involved and deserve further study. Importantly, a possible role for CK2 modulation in CRT has been identified. This may be harnessed in the future therapeutically to compliment CRT, improving its clinical effects.
Collapse
Affiliation(s)
- Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Eric Grote
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
21
|
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2018; 471:735-743. [PMID: 30099631 DOI: 10.1007/s00424-018-2191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | | |
Collapse
|
22
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
23
|
Kutyifa V, Naqvi SY, Brown M, McNitt S, Goldenberg I, Klein H, Moss AJ. Comparison of Long-Term Survival Benefits With Cardiac Resynchronization Therapy in Patients With Mild Heart Failure With Versus Without Diabetes Mellitus (from the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy [MADIT-CRT]). Am J Cardiol 2018; 121:1567-1574. [PMID: 29625702 DOI: 10.1016/j.amjcard.2018.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 01/09/2023]
Abstract
We have previously shown a reduction in HF events with cardiac resynchronization therapy with defibrillator (CRT-D) in patients with mild heart failure (HF) and diabetes mellitus (DM). It remains unknown whether HF remission in DM patients with CRT-D translates into reduced mortality. The effects of CRT-D versus an implantable cardioverter-defibrillator (ICD) alone to reduce long-term mortality were assessed in patients with left bundle branch block with DM (n = 386) and without DM (n = 982), enrolled in the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy (MADIT-CRT). We further subdivided DM patients by insulin and noninsulin therapy. Kaplan-Meier survival analyses and multivariate cox proportional hazards regression models were utilized. At the 7-year follow-up, CRT-D was associated with a lower mortality in DM patients compared with ICD alone (21% vs 42%, p = 0.02), similar to non-DM patients (16 vs 24%, p = 0.014). CRT-D was associated with a 41% reduction in the risk of long-term all-cause mortality in DM patients (hazard ratio [HR] 0.59, 95% confidence interval 0.36 to 0.96, p = 0.033) and a similar reduction in non-DM patients (HR 0.69, 95% confidence interval 0.48 to 0.99, p = 0.045, treatment-diabetes interaction p = 0.611). Among DM patients, mortality benefit was evident in insulin-treated patients only (HR 0.40, p = 0.030). Reductions in HF events were present in all groups. In the MADIT-CRT, patients with mild HF with DM derive significant long-term survival benefit from CRT-D, similar to those without DM. The mortality benefit from CRT-D within the DM subgroup seems to be confined to patients with insulin treated diabetes.
Collapse
Affiliation(s)
- Valentina Kutyifa
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York.
| | - Syed Yaseen Naqvi
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| | - Mary Brown
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| | - Scott McNitt
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| | - Ilan Goldenberg
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| | - Helmut Klein
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| | - Arthur J Moss
- Cardiology Division, Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Hsu S, Kokkonen-Simon KM, Kirk JA, Kolb TM, Damico RL, Mathai SC, Mukherjee M, Shah AA, Wigley FM, Margulies KB, Hassoun PM, Halushka MK, Tedford RJ, Kass DA. Right Ventricular Myofilament Functional Differences in Humans With Systemic Sclerosis-Associated Versus Idiopathic Pulmonary Arterial Hypertension. Circulation 2018; 137:2360-2370. [PMID: 29352073 PMCID: PMC5976528 DOI: 10.1161/circulationaha.117.033147] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Patients with systemic sclerosis (SSc)-associated pulmonary arterial hypertension (PAH) have a far worse prognosis than those with idiopathic PAH (IPAH). In the intact heart, SSc-PAH exhibits depressed rest and reserve right ventricular (RV) contractility compared with IPAH. We tested whether this disparity involves underlying differences in myofilament function. METHODS Cardiac myocytes were isolated from RV septal endomyocardial biopsies from patients with SSc-PAH, IPAH, or SSc with exertional dyspnea but no resting PAH (SSc-d); control RV septal tissue was obtained from nondiseased donor hearts (6-7 per group). Isolated myocyte passive length-tension and developed tension-calcium relationships were determined and correlated with in vivo RV function and reserve. RV septal fibrosis was also examined. RESULTS Myocyte passive stiffness from length-tension relations was similarly increased in IPAH and SSc-PAH compared with control, although SSc-PAH biopsies had more interstitial fibrosis. More striking disparities were found between active force-calcium relations. Compared with controls, maximal calcium-activated force (Fmax) was 28% higher in IPAH but 37% lower in SSc-PAH. Fmax in SSc-d was intermediate between control and SSc-PAH. The calcium concentration required for half-maximal force (EC50) was similar between control, IPAH, and SSc-d but lower in SSc-PAH. This disparity disappeared in myocytes incubated with the active catalytic subunit of protein kinase A. Myocyte Fmax directly correlated with in vivo RV contractility assessed by end-systolic elastance (R2 =0.46, P=0.002) and change in end-systolic elastance with exercise (R2 =0.49, P=0.008) and was inversely related with exercise-induced chamber dilation (R2 =0.63, P<0.002), which also was a marker of depressed contractile reserve. CONCLUSIONS A primary defect in human SSc-PAH resides in depressed sarcomere function, whereas this is enhanced in IPAH. These disparities correlate with in vivo RV contractility and contractile reserve and are consistent with worse clinical outcomes in SSc-PAH. The existence of sarcomere disease before the development of resting PAH in patients with SSc-d suggests that earlier identification and intervention may prove useful.
Collapse
Affiliation(s)
- Steven Hsu
- Divisions of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL
| | - Todd M. Kolb
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rachel L. Damico
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephen C. Mathai
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Monica Mukherjee
- Divisions of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ami A. Shah
- Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fredrick M. Wigley
- Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth B. Margulies
- Division of Cardiology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Paul M. Hassoun
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - David A. Kass
- Divisions of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace 2018; 20:1898-1909. [DOI: 10.1093/europace/euy035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Nienke J Verzaal
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| |
Collapse
|
26
|
Wang SB, Venkatraman V, Crowgey EL, Liu T, Fu Z, Holewinski R, Ranek M, Kass DA, O'Rourke B, Van Eyk JE. Protein S-Nitrosylation Controls Glycogen Synthase Kinase 3β Function Independent of Its Phosphorylation State. Circ Res 2018; 122:1517-1531. [PMID: 29563102 DOI: 10.1161/circresaha.118.312789] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE GSK-3β (glycogen synthase kinase 3β) is a multifunctional and constitutively active kinase known to regulate a myriad of cellular processes. The primary mechanism to regulate its function is through phosphorylation-dependent inhibition at serine-9 residue. Emerging evidence indicates that there may be alternative mechanisms that control GSK-3β for certain functions. OBJECTIVES Here, we sought to understand the role of protein S-nitrosylation (SNO) on the function of GSK-3β. SNO-dependent modulation of the localization of GSK-3β and its ability to phosphorylate downstream targets was investigated in vitro, and the network of proteins differentially impacted by phospho- or SNO-dependent GSK-3β regulation and in vivo SNO modification of key signaling kinases during the development of heart failure was also studied. METHODS AND RESULTS We found that GSK-3β undergoes site-specific SNO both in vitro, in HEK293 cells, H9C2 myoblasts, and primary neonatal rat ventricular myocytes, as well as in vivo, in hearts from an animal model of heart failure and sudden cardiac death. S-nitrosylation of GSK-3β significantly inhibits its kinase activity independent of the canonical phospho-inhibition pathway. S-nitrosylation of GSK-3β promotes its nuclear translocation and access to novel downstream phosphosubstrates which are enriched for a novel amino acid consensus sequence motif. Quantitative phosphoproteomics pathway analysis reveals that nuclear GSK-3β plays a central role in cell cycle control, RNA splicing, and DNA damage response. CONCLUSIONS The results indicate that SNO has a differential effect on the location and activity of GSK-3β in the cytoplasm versus the nucleus. SNO modification of GSK-3β occurs in vivo and could contribute to the pathobiology of heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Sheng-Bing Wang
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Vidya Venkatraman
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Erin L Crowgey
- Department of Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE (E.L.C.)
| | - Ting Liu
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | | | - Ronald Holewinski
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Mark Ranek
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - David A Kass
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Brian O'Rourke
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Jennifer E Van Eyk
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.) .,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| |
Collapse
|
27
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
28
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
29
|
Rao P, Faddis M. Cardiac resynchronisation therapy: current indications, management and basic troubleshooting. Heart 2017; 103:2000-2007. [DOI: 10.1136/heartjnl-2016-310656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/11/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
|
30
|
Kinase inhibitor screening using artificial neural networks and engineered cardiac biowires. Sci Rep 2017; 7:11807. [PMID: 28924210 PMCID: PMC5603510 DOI: 10.1038/s41598-017-12048-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022] Open
Abstract
Kinase inhibitors are often used as cancer targeting agents for their ability to prevent the activation of cell growth and proliferation signals. Cardiotoxic effects have been identified for some marketed kinase inhibitors that were not detected during clinical trials. We hypothesize that more predictive cardiac functional assessments of kinase inhibitors on human myocardium can be established by combining a high-throughput two-dimensional (2D) screening assay and a high-content three-dimensional (3D) engineered cardiac tissue (BiowireTM) based assay, and using human induced pluripotent stem cell-derived CMs (hiPSC-CMs). A subset (80) of compounds from the GlaxoSmithKline published kinase inhibitor set were tested on hiPSC-CM monolayers and significant effects on cell viability, calcium transients, and contraction frequency were observed. Artificial neural network modelling was then used to analyze the experimental results in an efficient and unbiased manner to select for kinase inhibitors with minimal effects on cell viability and function. Inhibitors of specific interest based on the modeling were evaluated in the 3D Biowire tissues. The three-dimensional Biowire platform eliminated oversensitivity in detecting both Ca2+ transient amplitude enhancements as well as the acute detrimental effects on cell viability due to the kinase inhibitor application as compared to the monolayer testing.
Collapse
|
31
|
Ngkelo A, Richart A, Kirk JA, Bonnin P, Vilar J, Lemitre M, Marck P, Branchereau M, Le Gall S, Renault N, Guerin C, Ranek MJ, Kervadec A, Danelli L, Gautier G, Blank U, Launay P, Camerer E, Bruneval P, Menasche P, Heymes C, Luche E, Casteilla L, Cousin B, Rodewald HR, Kass DA, Silvestre JS. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J Exp Med 2017; 213:1353-74. [PMID: 27353089 PMCID: PMC4925026 DOI: 10.1084/jem.20160081] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022] Open
Abstract
Ngkelo et al. use a mast cell–deficient mouse model to reveal a protective role of mast cells in myocardial infarction, through regulation of the cardiac contractile machinery. Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.
Collapse
Affiliation(s)
- Anta Ngkelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Adèle Richart
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Jonathan A Kirk
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Philippe Bonnin
- INSERM, U965, Hôpital Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, F-75010 Paris, France
| | - Jose Vilar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathilde Lemitre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Pauline Marck
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Maxime Branchereau
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Sylvain Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Nisa Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Coralie Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mark J Ranek
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Anaïs Kervadec
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Gregory Gautier
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Ulrich Blank
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Pierre Launay
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Philippe Menasche
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Christophe Heymes
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Elodie Luche
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Béatrice Cousin
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Jean-Sébastien Silvestre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
32
|
Prominent differences in left ventricular performance and myocardial properties between right ventricular and left ventricular-based pacing modes in rats. Sci Rep 2017; 7:5931. [PMID: 28725029 PMCID: PMC5517524 DOI: 10.1038/s41598-017-06197-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023] Open
Abstract
Biventricular pacing is an important modality to improve left ventricular (LV) synchronization and long-term function. However, the biological effects of this treatment are far from being elucidated and existing animal models are limited and demanding. Recently, we introduced an implanted device for double-site epicardial pacing in rats and echocardiographically demonstrated favorable effects of LV and biventricular (LV-based) pacing modes typically observed in humans. Here, this new animal model was further characterized. Electrodes were implanted either on the right atria (RA) and right ventricle (RV) or on the RV and LV. Following recovery, rats were either used for invasive hemodynamic measurements (pressure-volume analysis) or exposed to sustained RV vs. biventricular tachypacing for 3 days. RV pacing compromised, while LV-based pacing modes markedly enhanced cardiac performance. Changes in LV performance were associated with prominent compensatory changes in arterial resistance. Sustained RV tachypacing increased the electrocardiogram QTc interval by 7.9 ± 3.1 ms (n = 6, p < 0.05), dispersed refractoriness between the right and left pacing sites and induced important molecular changes mainly in the early-activated septal tissue. These effects were not observed during biventricular tachypacing (n = 6). Our results demonstrate that the rat is an attractive new model to study the biological consequences of LV dyssynchrony and resynchronization.
Collapse
|
33
|
Qiu Q, Yang L, Mai JT, Yang Y, Xie Y, Chen YX, Wang JF. Acute Effects of Multisite Biventricular Pacing on Dyssynchrony and Hemodynamics in Canines With Heart Failure. J Card Fail 2017; 23:304-311. [DOI: 10.1016/j.cardfail.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 01/14/2023]
|
34
|
Naar J, Mortensen L, Winter R, Johnson J, Shahgaldi K, Manouras A, Braunschweig F, Ståhlberg M. Heart rate and dyssynchrony in patients with cardiac resynchronization therapy: a pilot study. SCAND CARDIOVASC J 2017; 51:143-152. [PMID: 28335644 DOI: 10.1080/14017431.2017.1308007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The objective of this pilot study was to describe the impact of paced heart rate on left ventricular (LV) mechanical dyssynchrony in synchronous compared to dyssynchronous pacing modes in patients with heart failure. METHODS Echocardiography was performed in 14 cardiac resynchronization therapy (CRT) patients at paced heart rates of 70 and 90 bpm in synchronous- (CRT), and dyssynchronous (atrial pacing + wide QRS activation) pacing modes. LV dyssynchrony was quantified using the 12-segment standard deviation model (Ts-SD) derived from Tissue Doppler Imaging. In addition, cardiac cycle intervals were assessed using cardiac state diagrams and stroke volume (SV) and filling pressure were estimated. RESULTS Ts-SD decreased significantly with CRT at 90 bpm (25 ± 12 ms) compared to 70 bpm (35 ± 15 ms, p = .01), but remained unchanged with atrial pacing at different paced heart rates (p = .96). The paced heart rate dependent reduction in Ts-SD was consistent when Ts-SD was indexed to average Ts and systolic time interval. Cardiac state diagram derived analysis of cardiac cycle intervals demonstrated a significant reduction of the pre-ejection interval and an increase in diastole with CRT compared to atrial pacing. SV was maintained at the higher paced heart rate with CRT pacing but decreased with atrial pacing. DISCUSSION Due to the small sample size in this pilot study general and firm conclusions are difficult to render. However, the data suggest that pacing at higher heart rates acutely reduces remaining LV dyssynchrony during CRT, but not during atrial pacing with dyssynchronous ventricular activation. These results need confirmation in a larger patient cohort.
Collapse
Affiliation(s)
- Jan Naar
- a Department of Cardiology , Na Homolce Hospital , Prague , Czech Republic.,b Department of Cardiology , Karolinska University Hospital , Stockholm , Sweden
| | - Lars Mortensen
- b Department of Cardiology , Karolinska University Hospital , Stockholm , Sweden.,c Department of Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Reidar Winter
- d Department of Medical Engineering, School of Technology and Health , KTH, Royal Institute of Technology , Stockholm , Sweden
| | - Jonas Johnson
- d Department of Medical Engineering, School of Technology and Health , KTH, Royal Institute of Technology , Stockholm , Sweden
| | - Kambiz Shahgaldi
- e Department of Clinical Physiology , Sunderby Hospital , Luleå , Sweden
| | - Aristomenis Manouras
- b Department of Cardiology , Karolinska University Hospital , Stockholm , Sweden
| | - Frieder Braunschweig
- b Department of Cardiology , Karolinska University Hospital , Stockholm , Sweden
| | - Marcus Ståhlberg
- b Department of Cardiology , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
35
|
Abstract
Dyssynchronous contraction of the ventricle significantly worsens morbidity and mortality in patients with heart failure (HF). Approximately one-third of patients with HF have cardiac dyssynchrony and are candidates for cardiac resynchronization therapy (CRT). The initial understanding of dyssynchrony and CRT was in terms of global mechanics and hemodynamics, but lack of clinical benefit in a sizable subgroup of recipients who appear otherwise appropriate has challenged this paradigm. This article reviews current understanding of these cellular and subcellular mechanisms, arguing that these aspects are key to improving CRT use, as well as translating its benefits to a wider HF population.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Kirk JA, Chakir K, Lee KH, Karst E, Holewinski RJ, Pironti G, Tunin RS, Pozios I, Abraham TP, de Tombe P, Rockman HA, Van Eyk JE, Craig R, Farazi TG, Kass DA. Pacemaker-induced transient asynchrony suppresses heart failure progression. Sci Transl Med 2017; 7:319ra207. [PMID: 26702095 DOI: 10.1126/scitranslmed.aad2899] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uncoordinated contraction from electromechanical delay worsens heart failure pathophysiology and prognosis, but restoring coordination with biventricular pacing, known as cardiac resynchronization therapy (CRT), improves both. However, not every patient qualifies for CRT. We show that heart failure with synchronous contraction is improved by inducing dyssynchrony for 6 hours daily by right ventricular pacing using an intracardiac pacing device, in a process we call pacemaker-induced transient asynchrony (PITA). In dogs with heart failure induced by 6 weeks of atrial tachypacing, PITA (starting on week 3) suppressed progressive cardiac dilation as well as chamber and myocyte dysfunction. PITA enhanced β-adrenergic responsiveness in vivo and normalized it in myocytes. Myofilament calcium response declined in dogs with synchronous heart failure, which was accompanied by sarcomere disarray and generation of myofibers with severely reduced function, and these changes were absent in PITA-treated hearts. The benefits of PITA were not replicated when the same number of right ventricular paced beats was randomly distributed throughout the day, indicating that continuity of dyssynchrony exposure is necessary to trigger the beneficial biological response upon resynchronization. These results suggest that PITA could bring the benefits of CRT to the many heart failure patients with synchronous contraction who are not CRT candidates.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Khalid Chakir
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyoung Hwan Lee
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gianluigi Pironti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard S Tunin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Iraklis Pozios
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Theodore P Abraham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pieter de Tombe
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA
| | - Howard A Rockman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer E Van Eyk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - David A Kass
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Martens P, Verbrugge F, Nijst P, Dupont M, Tang WHW, Mullens W. Impact of Iron Deficiency on Response to and Remodeling After Cardiac Resynchronization Therapy. Am J Cardiol 2017; 119:65-70. [PMID: 27780556 DOI: 10.1016/j.amjcard.2016.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022]
Abstract
Iron deficiency is prevalent in heart failure with reduced ejection fraction and relates to symptomatic status, readmission, and all-cause mortality. The relation between iron status and response to cardiac resynchronization therapy (CRT) remains insufficiently elucidated. This study assesses the impact of iron deficiency on clinical response and reverse cardiac remodeling and outcome after CRT. Baseline characteristics, change in New York Heart Association functional class, reverse cardiac remodeling on echocardiography, and clinical outcome (i.e., all-cause mortality and heart failure readmissions) were retrospectively evaluated in consecutive CRT patients who had full iron status and complete blood count available at implantation, implanted at a single tertiary care center with identical dedicated multidisciplinary CRT follow-up from October 2008 to August 2015. A total of 541 patients were included with mean follow-up of 38 ± 22 months. Prevalence of iron deficiency was 56% at implantation. Patients with iron deficiency exhibited less symptomatic improvement 6 months after implantation (p value <0.001). In addition, both the decrease in left ventricular end-diastolic diameter (-3.1 vs -6.2 mm; p value = 0.011) and improvement in ejection fraction (+11% vs +15%, p value = 0.001) were significantly lower in patients with iron deficiency. Iron deficiency was significantly associated with an increased risk for heart failure admission or all-cause mortality (adjusted hazard ratio 1.718, 95% confidence interval 1.178 to 2.506), irrespectively of the presence of anemia (Hemoglobin <12 g/dl in women and <13 g/dl in men). In conclusion, iron deficiency is prevalent and affects both clinical response and reverse cardiac remodeling after CRT implantation. Moreover, it is a powerful predictor of adverse clinical outcomes in CRT.
Collapse
Affiliation(s)
- Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Petra Nijst
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Doctoral School for Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
38
|
β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility. Proc Natl Acad Sci U S A 2016; 113:14426-14431. [PMID: 27911784 DOI: 10.1073/pnas.1609308113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Frank-Starling law of the heart is a physiological phenomenon that describes an intrinsic property of heart muscle in which increased cardiac filling leads to enhanced cardiac contractility. Identified more than a century ago, the Frank-Starling relationship is currently known to involve length-dependent enhancement of cardiac myofilament Ca2+ sensitivity. However, the upstream molecular events that link cellular stretch to the length-dependent myofilament Ca2+ sensitivity are poorly understood. Because the angiotensin II type 1 receptor (AT1R) and the multifunctional transducer protein β-arrestin have been shown to mediate mechanosensitive cellular signaling, we tested the hypothesis that these two proteins are involved in the Frank-Starling mechanism of the heart. Using invasive hemodynamics, we found that mice lacking β-arrestin 1, β-arrestin 2, or AT1R were unable to generate a Frank-Starling force in response to changes in cardiac volume. Although wild-type mice pretreated with the conventional AT1R blocker losartan were unable to enhance cardiac contractility with volume loading, treatment with a β-arrestin-biased AT1R ligand to selectively activate β-arrestin signaling preserved the Frank-Starling relationship. Importantly, in skinned muscle fiber preparations, we found markedly impaired length-dependent myofilament Ca2+ sensitivity in β-arrestin 1, β-arrestin 2, and AT1R knockout mice. Our data reveal β-arrestin 1, β-arrestin 2, and AT1R as key regulatory molecules in the Frank-Starling mechanism, which potentially can be targeted therapeutically with β-arrestin-biased AT1R ligands.
Collapse
|
39
|
Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016; 93:65-72. [PMID: 27062709 PMCID: PMC5036981 DOI: 10.1016/j.maturitas.2016.03.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
Both cardiovascular disease and aging are associated with changes in the sympathetic nervous system. Indeed, mounting evidence indicates that adrenergic receptors are functionally involved in numerous processes underlying both aging and cardiovascular disorders, in particular heart failure. This article will review the pathophysiological role of the sympathetic nervous system in heart failure and cardiovascular aging.
Collapse
Affiliation(s)
- Gaetano Santulli
- College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guido Iaccarino
- Division of Internal Medicine, Department of Medicine and Surgery, University of Salerno, Italy.
| |
Collapse
|
40
|
Rusconi F, Ceriotti P, Miragoli M, Carullo P, Salvarani N, Rocchetti M, Di Pasquale E, Rossi S, Tessari M, Caprari S, Cazade M, Kunderfranco P, Chemin J, Bang ML, Polticelli F, Zaza A, Faggian G, Condorelli G, Catalucci D. Peptidomimetic Targeting of Cavβ2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation 2016; 134:534-46. [PMID: 27486162 DOI: 10.1161/circulationaha.116.021347] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane. RESULTS On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavβ2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavβ2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavβ2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavβ2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavβ2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. CONCLUSIONS We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavβ2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.
Collapse
Affiliation(s)
- Francesca Rusconi
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | - Paola Ceriotti
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Insulin Signaling in Bupivacaine-induced Cardiac Toxicity: Sensitization during Recovery and Potentiation by Lipid Emulsion. Anesthesiology 2016; 124:428-42. [PMID: 26646023 DOI: 10.1097/aln.0000000000000974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of local anesthetics on the regulation of glucose homeostasis by protein kinase B (Akt) and 5'-adenosine monophosphate-activated protein kinase (AMPK) is unclear but important because of the implications for both local anesthetic toxicity and its reversal by IV lipid emulsion (ILE). METHODS Sprague-Dawley rats received 10 mg/kg bupivacaine over 20 s followed by nothing or 10 ml/kg ILE (or ILE without bupivacaine). At key time points, heart and kidney were excised. Glycogen content and phosphorylation levels of Akt, p70 s6 kinase, s6, insulin receptor substrate-1, glycogen synthase kinase-3β, AMPK, acetyl-CoA carboxylase, and tuberous sclerosis 2 were quantified. Three animals received Wortmannin to irreversibly inhibit phosphoinositide-3-kinase (Pi3k) signaling. Isolated heart studies were conducted with bupivacaine and LY294002-a reversible Pi3K inhibitor. RESULTS Bupivacaine cardiotoxicity rapidly dephosphorylated Akt at S473 to 63 ± 5% of baseline and phosphorylated AMPK to 151 ± 19%. AMPK activation inhibited targets downstream of mammalian target of rapamycin complex 1 via tuberous sclerosis 2. Feedback dephosphorylation of IRS1 to 31 ± 8% of baseline sensitized Akt signaling in hearts resulting in hyperphosphorylation of Akt at T308 and glycogen synthase kinase-3β to 390 ± 64% and 293 ± 50% of baseline, respectively. Glycogen accumulated to 142 ± 7% of baseline. Irreversible inhibition of Pi3k upstream of Akt exacerbated bupivacaine cardiotoxicity, whereas pretreating with a reversible inhibitor delayed the onset of toxicity. ILE rapidly phosphorylated Akt at S473 and T308 to 150 ± 23% and 167 ± 10% of baseline, respectively, but did not interfere with AMPK or targets of mammalian target of rapamycin complex 1. CONCLUSION Glucose handling by Akt and AMPK is integral to recovery from bupivacaine cardiotoxicity and modulation of these pathways by ILE contributes to lipid resuscitation.
Collapse
|
42
|
Abstract
Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target.
Collapse
|
43
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
44
|
Kirk JA, Holewinski RJ, Crowgey EL, Van Eyk JE. Protein kinase G signaling in cardiac pathophysiology: Impact of proteomics on clinical trials. Proteomics 2016; 16:894-905. [PMID: 26670943 DOI: 10.1002/pmic.201500401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023]
Abstract
The protective role of cyclic guanosine monophosphate (cGMP)-stimulated protein kinase G (PKG) in the heart makes it an attractive target for therapeutic drug development to treat a variety of cardiac diseases. Phosphodiesterases degrade cGMP, thus phosphodiesterase inhibitors that can increase PKG are of translational interest and the subject of ongoing human trials. PKG signaling is complex, however, and understanding its downstream phosphorylation targets and upstream regulation are necessary steps toward safe and efficacious drug development. Proteomic technologies have paved the way for assays that allow us to peer broadly into signaling minutia, including protein quantity changes and phosphorylation events. However, there are persistent challenges to the proteomic study of PKG, such as the impact of the expression of different PKG isoforms, changes in its localization within the cell, and alterations caused by oxidative stress. PKG signaling is also dependent upon sex and potentially the genetic and epigenetic background of the individual. Thus, the rigorous application of proteomics to the field will be necessary to address how these effectors can alter PKG signaling and interfere with pharmacological interventions. This review will summarize PKG signaling, how it is being targeted clinically, and the proteomic challenges and techniques that are being used to study it.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin L Crowgey
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
45
|
Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE. Methods for SWATH™: Data Independent Acquisition on TripleTOF Mass Spectrometers. Methods Mol Biol 2016; 1410:265-79. [PMID: 26867750 PMCID: PMC11552544 DOI: 10.1007/978-1-4939-3524-6_16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Data independent acquisition (DIA also termed SWATH) is an emerging technology in the field of mass spectrometry based proteomics. Although the concept of DIA has been around for over a decade, the recent advancements, in particular the speed of acquisition, of mass analyzers have pushed the technique into the spotlight and allowed for high-quality DIA data to be routinely acquired by proteomics labs. In this chapter we will discuss the protocols used for DIA acquisition using the Sciex TripleTOF mass spectrometers and data analysis using the Sciex processing software.
Collapse
Affiliation(s)
- Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea D Matlock
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
46
|
Abstract
Dyssynchronous contraction of the ventricle significantly worsens morbidity and mortality in patients with heart failure (HF). Approximately one-third of patients with HF have cardiac dyssynchrony and are candidates for cardiac resynchronization therapy (CRT). The initial understanding of dyssynchrony and CRT was in terms of global mechanics and hemodynamics, but lack of clinical benefit in a sizable subgroup of recipients who appear otherwise appropriate has challenged this paradigm. This article reviews current understanding of these cellular and subcellular mechanisms, arguing that these aspects are key to improving CRT use, as well as translating its benefits to a wider HF population.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Fert-Bober J, Giles JT, Holewinski RJ, Kirk JA, Uhrigshardt H, Crowgey EL, Andrade F, Bingham CO, Park JK, Halushka MK, Kass DA, Bathon JM, Van Eyk JE. Citrullination of myofilament proteins in heart failure. Cardiovasc Res 2015; 108:232-42. [PMID: 26113265 PMCID: PMC4614685 DOI: 10.1093/cvr/cvv185] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/12/2022] Open
Abstract
AIMS Citrullination, the post-translational conversion of arginine to citrulline by the enzyme family of peptidylarginine deiminases (PADs), is associated with several diseases, and specific citrullinated proteins have been shown to alter function while others act as auto-antigens. In this study, we identified citrullinated proteins in human myocardial samples, from healthy and heart failure patients, and determined several potential functional consequences. Further we investigated PAD isoform cell-specific expression in the heart. METHODS AND RESULTS A citrullination-targeted proteomic strategy using data-independent (SWATH) acquisition method was used to identify the modified cardiac proteins. Citrullinated-induced sarcomeric proteins were validated using two-dimensional gel electrophoresis and investigated using biochemical and functional assays. Myocardial PAD isoforms were confirmed by RT-PCR with PAD2 being the major isoform in myocytes. In total, 304 citrullinated sites were identified that map to 145 proteins among the three study groups: normal, ischaemia, and dilated cardiomyopathy. Citrullination of myosin (using HMM fragment) decreased its intrinsic ATPase activity and inhibited the acto-HMM-ATPase activity. Citrullinated TM resulted in stronger F-actin binding and inhibited the acto-HMM-ATPase activity. Citrullinated TnI did not alter the binding to F-actin or acto-HMM-ATPase activity. Overall, citrullination of sarcomeric proteins caused a decrease in Ca(2+) sensitivity in skinned cardiomyocytes, with no change in maximal calcium-activated force or hill coefficient. CONCLUSION Citrullination unique to the cardiac proteome was identified. Our data indicate important structural and functional alterations to the cardiac sarcomere and the contribution of protein citrullination to this process.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John T Giles
- Division of Rheumatology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ronald J Holewinski
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA
| | - Jonathan A Kirk
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Helge Uhrigshardt
- Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Erin L Crowgey
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA
| | - Felipe Andrade
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Clifton O Bingham
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | - Joan M Bathon
- Division of Rheumatology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jennifer E Van Eyk
- The Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Advanced Clinical BioSystems Research Institute, Advanced Health Science Building, 9229, Los Angeles, CA, USA Bayview Proteomics Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015; 64:3573-87. [PMID: 26109417 PMCID: PMC4587639 DOI: 10.2337/db14-1107] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/14/2015] [Indexed: 11/13/2022]
Abstract
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Genaro A Ramirez-Correa
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| | - Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nahyr S Lugo-Fagundo
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mingguo Xu
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anne M Murphy
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Szepietowska B, Kutyifa V, Ruwald MH, Solomon SD, Ruwald AC, McNitt S, Polonsky B, Thomas S, Moss AJ, Zareba W. Effect of Cardiac Resynchronization Therapy in Patients With Insulin-Treated Diabetes Mellitus. Am J Cardiol 2015; 116:393-9. [PMID: 26048851 DOI: 10.1016/j.amjcard.2015.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus (DM) modify outcome in patients with heart failure (HF). We aimed to analyze the risk for death, HF alone, combined end point HF/death, and ventricular tachycardia/ventricular fibrillation (VT/VF) in patients with mild HF without DM and in those with DM, further stratified by the presence of insulin treatment. We determined whether cardiac resynchronization therapy with defibrillator (CRT-D) versus implantable cardioverter defibrillator improves clinical outcomes in these 3 subgroups. Cox proportional hazards regression models were used to analyze 1,278 patients with left bundle branch block in the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy trial. Treatment with CRT-D versus implantable cardioverter defibrillator was associated with 76% risk reduction in all-cause mortality (hazard ratio 0.24; 95% confidence interval 0.08 to 0.74, p = 0.012) in subgroup of diabetic patients treated with insulin only (interaction p = 0.043). Significant risk reduction in HF alone, HF/death, and the VT/VF after CRT-D was observed across investigated groups and similar left ventricular reverse remodeling to CRT-D. In conclusion, patients with mild HF with DM treated with insulin derive significant risk reduction in mortality, in HF, and VT/VF after implantation of CRT-D. Diabetic patients not receiving insulin benefit from CRT-D by reduction of HF events.
Collapse
Affiliation(s)
- Barbara Szepietowska
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Valentina Kutyifa
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Martin H Ruwald
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York; Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark
| | - Scott D Solomon
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne C Ruwald
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York; Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark
| | - Scott McNitt
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Bronislava Polonsky
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Sabu Thomas
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Arthur J Moss
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York
| | - Wojciech Zareba
- Department of Medicine, Cardiology, Heart Research Follow up Program, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
50
|
Lee AY, Moss AJ, Ruwald MH, Kutyifa V, McNitt S, Polonsky B, Zareba W, Ruwald AC. Temporal Influence of Heart Failure Hospitalizations Prior to Implantable Cardioverter Defibrillator or Cardiac Resynchronization Therapy With Defibrillator on Subsequent Outcome in Mild Heart Failure Patients (from MADIT-CRT). Am J Cardiol 2015; 115:1423-7. [PMID: 25817576 DOI: 10.1016/j.amjcard.2015.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/15/2022]
Abstract
The temporal effect of heart failure (HF) hospitalization occurring at different time periods before implantation has not yet been studied in detail. The aim of the present study was to investigate the potential association between time from last HF hospitalization to device implantation and effects on subsequent outcomes and benefit from cardiac resynchronization therapy with a defibrillator (CRT-D). Multivariate Cox models were used to determine the temporal influence of previous HF hospitalization on the end point of HF or death within all left bundle branch block implantable cardioverter-defibrillator (ICD) and CRT-D patients enrolled in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT) trial (n = 1,250) and to evaluate the clinical benefit of CRT-D implantation, comparing CRT-D patients with ICD patients within each previous HF hospitalization group. The patients with previous HF hospitalization ≤12 months before device implantation had the greatest incidence of HF or death during 4-year follow-up (31%), while those with previous HF hospitalization >12 months and those with no previous HF hospitalization had similar lower rates of HF or death (22% and 24%, respectively). All patients treated with CRT-D derived significant clinical benefit compared with their ICD counterparts, regardless of time of previous hospitalization (hazard ratios 0.38 [no previous hospitalization], 0.49 (≤12 months), and 0.45 (>12 months); p for interaction = 0.67). In conclusion, in the present study of patients with mild HF with prolonged QRS intervals and LBBB, a previous HF hospitalization ≤12 months was associated with increased risk for HF or death compared with >12 months and no previous HF hospitalizations. The clinical benefit of CRT-D was evident in all patients regardless of time from last HF hospitalization to implantation compared with ICD only.
Collapse
Affiliation(s)
- Andy Y Lee
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York
| | - Arthur J Moss
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York.
| | - Martin H Ruwald
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York; Department of Cardiology, Gentofte University Hospital, Hellerup, Denmark
| | - Valentina Kutyifa
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York
| | - Scott McNitt
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York
| | - Bronislava Polonsky
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York
| | - Wojciech Zareba
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York
| | - Anne-Christine Ruwald
- University of Rochester Medical Center, Heart Research Follow-Up Program, Rochester, New York; Department of Cardiology, Gentofte University Hospital, Hellerup, Denmark
| |
Collapse
|