1
|
Ferrao Blanco MN, Lesage R, Kops N, Fahy N, Bekedam FT, Chavli A, Bastiaansen-Jenniskens YM, Geris L, Chambers MG, Pitsillides AA, Narcisi R, van Osch GJ. A multi-model approach identifies ALW-II-41-27 as a promising therapy for osteoarthritis-associated inflammation and endochondral ossification. Heliyon 2024; 10:e40871. [PMID: 39717596 PMCID: PMC11664402 DOI: 10.1016/j.heliyon.2024.e40871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, in silico analyses, in vitro experiments and in vivo models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis. A computational model of cellular signaling networks in chondrocytes predicted that in silico activation of EPHA2 in healthy chondrocytes increases inflammatory mediators and induces hypertrophic differentiation, a hallmark of endochondral ossification. We then evaluated the effect of EPHA2 inhibition using the tyrosine kinase inhibitor ALW-II-41-27 in cultured human chondrocytes from individuals with osteoarthritis, demonstrating significant reductions in both inflammation and hypertrophy. Additionally, systemic subcutaneous administration of ALW-II-41-27 in a mouse osteoarthritic model attenuated joint degeneration by reducing local inflammation and pathological endochondral ossification. Collectively, this study demonstrates a novel drug discovery pipeline that integrates computational, experimental, and animal models, paving the way for the development of disease-modifying treatments for osteoarthritis.
Collapse
Affiliation(s)
- Mauricio N. Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
| | - Nicole Kops
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Niamh Fahy
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Applied Science, Technological University of the Shannon: Midlands Midwest, Limerick, Ireland
| | - Fjodor T. Bekedam
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Athina Chavli
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
- Biomechanics Section, KU Leuven, Belgium
- GIGA In Silico Medicine, University of Liège, Belgium
| | - Mark G. Chambers
- Lilly Research Laboratories, Eli Lilly Pharmaceuticals, Indianapolis, USA
| | | | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, University of Technology Delft, Delft, the Netherlands
| |
Collapse
|
2
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
3
|
Lu C, Liu D, Wu Q, Zeng J, Xiong Y, Luo T. EphA2 blockage ALW-II-41-27 alleviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism. NPJ Biofilms Microbiomes 2024; 10:108. [PMID: 39426981 PMCID: PMC11490535 DOI: 10.1038/s41522-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE-/- mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.
Collapse
Affiliation(s)
- Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
5
|
Wang A, Zhu J, Li Y, Jiao M, Zhang S, Ding ZL, Huang JA, Liu Z. Comprehensive analysis of Epha10 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in non-small cell lung cancer. Sci Rep 2024; 14:19623. [PMID: 39179608 PMCID: PMC11344161 DOI: 10.1038/s41598-024-70466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The EphA family belongs to a large group of membrane receptor tyrosine kinases. Emerging evidence indicates that the EphA family participates in tumour occurrence and progression. Nonetheless, the expression patterns and prognostic values of the nine EphAs in non-small cell lung cancer (NSCLC) have rarely been studied before. In the current study, we comprehensively analysed the expression and prognostic role of EphA family members by different means. The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases were used to investigate the expression of EphAs in NSCLC. The cBioPortal database was applied to analyse the prognostic values and genetic mutations of EphAs.We discovered that the expression of EphA10 was significantly higher in NSCLC tissues than in adjacent noncancerous tissues, and survival analyses showed that a higher level of EphA10 predicted poor prognosis. Further exploration into the role of EphA10 by ESTIMATE, CIBERSORT, and ssGSEA analysis found that it was also related to immune infiltration and higher expression of targets of ICI targets. In conclusion, this study revealed that among the EphA family members, EphA10 played an oncogenic role and was a promising biomarker for poor prognosis and better immunotherapy response in NSCLC.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Saiqun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zong-Li Ding
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, 223002, Jiangsu, People's Republic of China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
6
|
Li Y, Fei H, Xiao Z, Lu X, Zhang H, Liu M. Comprehensive analysis of EphA2 in pan-cancer: A prognostic biomarker associated with cancer immunity. Clin Exp Pharmacol Physiol 2024; 51:e13902. [PMID: 38886133 DOI: 10.1111/1440-1681.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Several studies have reported a significant relationship between Ephrin receptor A2 (EphA2) and malignant progression in numerous cancers. However, there is a lack of comprehensive pan-cancer analysis on the prognostic value, mutation status, methylation landscape, and potential immunological function of EphA2. METHOD Using The Cancer Genome Atlas, Genotype Tissue Expression Database and GEO data, we analysed the differences in EphA2 expression between normal and tumour tissues and the effects of EphA2 on the prognosis of different tumours. Furthermore, using GSCALite, cBioPortal, TISDB, ULCLAN and TIMER 2.0 databases or platforms, we comprehensively analysed the potential oncogenic mechanisms or manifestations of EphA2 in 33 different tumour types, including tumour mutation status, DNA methylation status and immune cell infiltration. The correlation of EphA2 with immune checkpoints, tumour mutational burden, DNA microsatellite instability and DNA repair genes was also calculated. Finally, the effects of EphA2 inhibitors on the proliferation of human glioma and lung cancer cells were verified in cellular experiments. RESULTS EphA2 is differentially expressed in different tumours, and patients with overexpression have poorer overall survival. In addition, gene mutations, gene copy number variation and DNA/RNA methylation of EphA2 have been identified in various tumours. Moreover, EphA2 is positively associated with immune infiltration involving macrophages and CD8+ T cells. Further, EphA2 mRNA expression is significantly associated with immune checkpoint in various cancers, especially programmed death-ligand 1. Finally, the EphA2 inhibitor ALW-II-41-27 shows potent anti-tumour activity. CONCLUSION Our first pan-cancer study of EphA2 provides insight into the prognostic and immunological roles of EphA2 in different tumours, suggesting that EphA2 might be a potential biomarker for poor prognosis and immune infiltration in cancer.
Collapse
Affiliation(s)
- Yuchun Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
- Clinical Technology Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanxiao Fei
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuxia Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Veiga RN, de Azevedo ALK, de Oliveira JC, Gradia DF. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med (Berl) 2024; 102:479-493. [PMID: 38393661 DOI: 10.1007/s00109-024-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
9
|
Şenel B, Başaran E, Akyıl E, Güven UM, Büyükköroğlu G. Co-Delivery of siRNA and Docetaxel to Cancer Cells by NLC for Therapy. ACS OMEGA 2024; 9:11671-11685. [PMID: 38496987 PMCID: PMC10938417 DOI: 10.1021/acsomega.3c09098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
The present study aims to develop a delivery system that can carry small interference RNA (siRNA) with small-molecule chemotherapeutic drugs, which can be used in cancer treatment. The drug delivery system combines the advantages of a therapeutic agent with two different mechanisms to ensure that it is used efficiently for cancer therapy. In this study, a nanostructured lipid carrier system was prepared, Docetaxel was loaded to these systems, and the Eph siRNA was adsorbed to the outer surface. In addition, DOTAP was added to the lipophilic phase to load a positive charge on the lipidic structure for interaction with the cells. Moreover, characterization, cytotoxicity, and transfection procedures were performed on the whole system. This candidate system was also compared to Taxotere, which is the first approved Docetaxel-containing drug on the market. Given the results, it was determined that the particle size of NLC-DTX was 165.3 ± 3.5 nm, the ζ potential value was 38.2 ± 1.7 mV, and the PDI was 0.187 ± 0.024. Entrapment efficacy of nanoparticles was found to be 92.89 ± 0.21%. It was determined that the lipidic system prepared in vitro release analyses were able to provide sustained release and exhibit cytotoxicity, even at doses lower than the dose used for Taxotere. The formulations prepared had a higher level of effect on cells when compared with pure DTX and Taxotere, but they also exhibited time-dependent cytotoxicity. It was also observed that the use of Eph siRNA together with the chemotherapeutic agent via formulation also contributed to this cell death. The results of the present study indicate that there is a promising carrier system in order to deliver hydrophilic nucleic acids, such as siRNA, together with lipophilic drugs in cancer treatment.
Collapse
Affiliation(s)
- Behiye Şenel
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Anadolu University, 26470 Eskisehir, Türkiye
| | - Ebru Başaran
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, 26470 Eskisehir, Türkiye
| | - Evrim Akyıl
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, 26470 Eskisehir, Türkiye
| | - Umay Merve Güven
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Cukurova University, 01330 Adana, Türkiye
| | - Gülay Büyükköroğlu
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Anadolu University, 26470 Eskisehir, Türkiye
| |
Collapse
|
10
|
Kottom TJ, Carmona EM, Limper AH. Targeting host tyrosine kinase receptor EphA2 signaling via small-molecule ALW-II-41-27 inhibits macrophage pro-inflammatory signaling responses to Pneumocystis carinii β-glucans. Antimicrob Agents Chemother 2024; 68:e0081123. [PMID: 38206037 PMCID: PMC10848750 DOI: 10.1128/aac.00811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. β-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. β-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae β-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal β-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Wang Y, Gong J, Ding X, Luo S. CircRTTN upregulates EPHA2 to aggravate the malignant process of melanoma via sponging miR-890. Histol Histopathol 2024; 39:211-224. [PMID: 37158505 DOI: 10.14670/hh-18-622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Malignant melanoma is a kind of tumor derived from melanocytes, which has the characteristics of drug resistance and distant metastasis. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are involved in the pathogenesis of melanoma. Our current study aimed to investigate the role and mechanism of circRTTN in melanoma progression. METHODS The levels of circRTTN, microRNA-890 (miR-890) and EPH receptor A2 (EPHA2) were examined via quantitative real-time PCR (qRT-PCR) and Western blot. Cell Counting Kit-8 (CCK-8), colony formation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, transwell and tube formation assays were conducted to estimate the effects of circRTTN on growth, apoptosis, migration, invasion and angiogenesis of melanoma cells. Western blot was used to measure related marker protein levels. The interaction between miR-890 and circRTTN or EPHA2 was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Xenograft assay was used to assess the effect of circRTTN in vivo. RESULTS CircRTTN and EPHA2 levels were up-regulated, while miR-890 was down-regulated in melanoma tissues and cells. CircRTTN knockdown restrained cell proliferation, migration, invasion and angiogenesis, but promoted cell apoptosis in vitro. CircRTTN was an effective molecular sponge for miR-890, and negatively regulated miR-890 expression. The suppressive role of circRTTN knockdown on cell growth, metastasis and angiogenesis in vitro was abated by blocking miR-890. MiR-890 directly targeted EPHA2. MiR-890 overexpression elicited a similar anti-tumor role in melanoma cells, which was abrogated by overexpression of EPHA2. In addition circRTTN knowdown markedly attenuated xenograft tumor growth in vivo. CONCLUSION Our findings demonstrated that circRTTN mediated melanoma progression via regulating the miR-890/ EPHA2 axis.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Junzuo Gong
- Departement of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Xiaojie Ding
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China.
| | - Shu Luo
- Departement of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| |
Collapse
|
12
|
Joseph R, Dasari SK, Umamaheswaran S, Mangala LS, Bayraktar E, Rodriguez-Aguayo C, Wu Y, Nguyen N, Powell RT, Sobieski M, Liu Y, Kim MS, Corvigno S, Foster K, Hanjra P, Vu TC, Chowdhury MA, Amero P, Stephan C, Lopez-Berestein G, Westin SN, Sood AK. EphA2- and HDAC-Targeted Combination Therapy in Endometrial Cancer. Int J Mol Sci 2024; 25:1278. [PMID: 38279277 PMCID: PMC10816153 DOI: 10.3390/ijms25021278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer.
Collapse
Affiliation(s)
- Robiya Joseph
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Santosh K. Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (P.A.); (G.L.-B.)
| | - Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Nghi Nguyen
- High-Throughput Research and Screening Center, Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA; (N.N.); (R.T.P.); (M.S.); (C.S.)
| | - Reid T. Powell
- High-Throughput Research and Screening Center, Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA; (N.N.); (R.T.P.); (M.S.); (C.S.)
| | - Mary Sobieski
- High-Throughput Research and Screening Center, Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA; (N.N.); (R.T.P.); (M.S.); (C.S.)
| | - Yuan Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Mark Seungwook Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Katherine Foster
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Pahul Hanjra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thanh Chung Vu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Mamur A. Chowdhury
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (P.A.); (G.L.-B.)
| | - Clifford Stephan
- High-Throughput Research and Screening Center, Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA; (N.N.); (R.T.P.); (M.S.); (C.S.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.R.-A.); (P.A.); (G.L.-B.)
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.K.D.); (S.U.); (L.S.M.); (E.B.); (Y.W.); (Y.L.); (M.S.K.); (S.C.); (K.F.); (P.H.); (T.C.V.); (M.A.C.); (S.N.W.)
| |
Collapse
|
13
|
Yasuta Y, Kaminaka R, Nagai S, Mouri S, Ishida K, Tanaka A, Zhou Y, Sakurai H, Yokoyama S. Cooperative function of oncogenic MAPK signaling and the loss of Pten for melanoma migration through the formation of lamellipodia. Sci Rep 2024; 14:1525. [PMID: 38233537 PMCID: PMC10794247 DOI: 10.1038/s41598-024-52020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
The combination of oncogenes and tumor suppressors is involved in cancer development; however, it is still unknown whether their combination plays a critical role in cancer metastasis. We herein investigated whether genetic combinations affected cell migration ability by establishing the immortalized melanocytes, melan-a cells, with an oncogene, either BRAFV600E or GNA11Q209L, and the loss of mouse Pten. The loss of mouse Pten or human PTEN increased the cell migration ability of our established cells and human melanoma cell lines with oncogenic MAPK signaling and the BRAFV600E or NRASQ61R background, but not with the GNA11Q209L background or no oncogenes. Although increased migration was not related to PI3K-AKT activation, those migration is regulated by the induction of some components in the WAVE regulatory complex, resulting in a higher rate of the formation of lamellipodia. On the other hand, BRAFV600E induced EphA2 phosphorylation at serine 897 through RSK and was also required for cell migration and the formation of lamellipodia. Therefore, the oncogenic MAPK pathway and loss of Pten in melanoma were important for cell migration through the formation of lamellipodia, suggesting the significance of an appropriate combination of genetic alterations not only in cancer development, but also cancer metastasis.
Collapse
Affiliation(s)
- Yutaka Yasuta
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuya Kaminaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shutaro Nagai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shuto Mouri
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Katsuya Ishida
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akihiro Tanaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
14
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Zeng J, Wu Q, Xiong S, Lu C, Zhang Z, Huang H, Xiong Y, Luo T. Inhibition of EphA2 protects against atherosclerosis by synergizing with statins to mitigate macrophage inflammation. Biomed Pharmacother 2023; 169:115885. [PMID: 37984301 DOI: 10.1016/j.biopha.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Statins are highly prevalent in patients with coronary artery disease. Statins exert their anti-inflammatory effects on the vascular wall and circulating levels of pro-inflammatory cytokines. However, increasing attention revealed the exacerbation of macrophage inflammation induced by statins, and a clear mechanistic explanation of whether the detrimental effects of statins on macrophage inflammatory phenotypes outweigh the beneficial effects is has not yet been established. Here, RNA-sequencing and RT-qPCR analyses demonstrated that statins significantly upregulated EphA2, Nlrp3, IL-1β and TNF-α expression in macrophages. Mechanistically, we found that atorvastatin reduced KLF4 binding to the EphA2 promoter using KLF4-chromatin immunoprecipitation, suppressed HDAC11-mediated deacetylation and subsequently led to enhanced EphA2 transcription. The 4D-label-free proteomics analysis further confirmed the upregulated EphA2 and inflammatory signals. Furthermore, the proinflammatory effect of atorvastatin was neutralized by an addition of recombinant Fc-ephrinA1, a selective Eph receptor tyrosine kinase inhibitor (ALW-II-41-27) or EphA2-silencing adenovirus (siEphA2). In vivo, EphA2 was identified a proatherogenic factor and apoE-/- mice placed on a high-fat diet following gastric gavage with atorvastatin exhibited a consistent elevation in EphA2 expression. We further observed that the transfection with siEphA2 in atorvastatin-treated mice significantly attenuated atherosclerotic plaque formation and abrogated statin-orchestrated macrophages proinflammatory genes expression as compared to that in atorvastatin alone. Increased plaque stability index was also observed following the addition of siEphA2, as evidenced by increased collagen and smooth muscle content and diminished lipid accumulation and macrophage infiltration. The data suggest that blockage of EphA2 provides an additional therapeutic benefit for further improving the anti-atherogenic effects of statins.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Shiqiang Xiong
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Cong Lu
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Zheng Zhang
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hui Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610014, China.
| |
Collapse
|
16
|
Tröster A, Jores N, Mineev KS, Sreeramulu S, DiPrima M, Tosato G, Schwalbe H. Targeting EPHA2 with Kinase Inhibitors in Colorectal Cancer. ChemMedChem 2023; 18:e202300420. [PMID: 37736700 PMCID: PMC10843416 DOI: 10.1002/cmdc.202300420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The ephrin type-A 2 receptor tyrosine kinase (EPHA2) is involved in the development and progression of various cancer types, including colorectal cancer (CRC). There is also evidence that EPHA2 plays a key role in the development of resistance to the endothelial growth factor receptor (EGFR) monoclonal antibody Cetuximab used clinically in CRC. Despite the promising pharmacological potential of EPHA2, only a handful of specific inhibitors are currently available. In this concept paper, general strategies for EPHA2 inhibition with molecules of low molecular weight (small molecules) are described. Furthermore, available examples of inhibiting EPHA2 in CRC using small molecules are summarized, highlighting the potential of this approach.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Konstantin S Mineev
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Li X, Wang F, Huang L, Yang M, Kuang E. Downregulation of EphA2 stability by RNF5 limits its tumor-suppressive function in HER2-negative breast cancers. Cell Death Dis 2023; 14:662. [PMID: 37816703 PMCID: PMC10564927 DOI: 10.1038/s41419-023-06188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Ephrin receptor A2 (EphA2) plays dual functions in tumorigenesis through ligand-independent tumor promotion or ligand-dependent tumor suppression. However, the regulation of EphA2 tumor-suppressive function remains unclear. Here, we showed that RNF5 interacts with EphA2 and induces its ubiquitination and degradation, decreases the stability and cell surface distribution of EphA2 and alters the balance of its phosphorylation at S897 and Y772. In turn, RNF5 inhibition decreases ERK phosphorylation and increases p53 expression through an increase in the EphA2 level in HER2-negative breast cancer cells. Consequently, RNF5 inhibition increases the adhesion and decreases the migration of HER2-negative breast cancer cells, and RNF5 silencing suppresses the growth of xenograft tumors derived from ER-positive, HER2-negative breast cancer cells with increased EphA2 expression and altered phosphorylation. RNF5 expression is inversely correlated with EphA2 expression in breast cancers, and a high EphA2 level accompanied by a low RNF5 level is related to better survival in patients with ER-positive, HER2-negative breast cancers. These studies revealed that RNF5 negatively regulates EphA2 properties and suppresses its tumor-suppressive function in HER2-negative breast cancers.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Fan Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lu Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Mengtian Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ersheng Kuang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Zhao W, Chen S, Lu B, Wu D, Gu Y, Hao S, Sheng F, Xu Y, Han Y, Chen R, Zhou L, Fu Q, Yao K. Upregulation of EphA2 is associated with apoptosis in response to H 2O 2 and UV radiation-induced cataracts. Arch Biochem Biophys 2023; 747:109756. [PMID: 37714253 DOI: 10.1016/j.abb.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Shi D, Liu W, Zhang X, Zhang Y, Luo B. MiR-BART1-3p and BART18-5p inhibit cell migration, proliferation and activate autophagy in Epstein-Barr virus-associated gastric cancer by targeting erythropoietin-producing human hepatocellular 2. Virus Genes 2023; 59:703-715. [PMID: 37535140 DOI: 10.1007/s11262-023-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Epstein-Barr virus (EBV) is a human tumor-associated virus that encodes various microRNAs. EBV infection causes a variety of malignant tumors, including nasopharyngeal carcinoma and gastric cancer, etc. EBV-associated gastric cancer (EBVaGC) has unique molecular characteristics from other gastric cancers, but its pathogenic mechanism remains unclear. In recent years, erythropoietin-producing human hepatocellular 2 (EphA2) has been reported to be highly expressed in various cancers and promote tumor growth and metastasis. As an important cancer oncogene, EphA2 is a potential therapeutic target. However, whether EBV is involved in the regulation of EphA2 and thus affects the progression of EBVaGC remains unclear. In this study, we found that the expression of EphA2 in EBVaGC cells was significantly lower than that in EBV-negative gastric cancer (EBVnGC) cells. Additionally, overexpression of EphA2 in EBVaGC cells promoted migration and proliferation, and inhibited autophagy. EBV-miR-BART1-3p and BART18-5p were found to target the 3'-UTR of EphA2 and down-regulate its expression. Our results suggest that EBV may be involved in gastric cancer progression by targeting EphA2 through BART1-3p and BART18-5p.
Collapse
Affiliation(s)
- Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, People's Republic of China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, People's Republic of China
| | - Xing Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, People's Republic of China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
- Department of Clinical Laboratory, Zibo Central Hospital, ZiBo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
20
|
Gunji D, Narumi R, Muraoka S, Isoyama J, Ikemoto N, Ishida M, Tomonaga T, Sakai Y, Obama K, Adachi J. Integrative analysis of cancer dependency data and comprehensive phosphoproteomics data revealed the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant colorectal cancer. Mol Omics 2023; 19:624-639. [PMID: 37232035 DOI: 10.1039/d3mo00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
21
|
Tröster A, DiPrima M, Jores N, Kudlinzki D, Sreeramulu S, Gande SL, Linhard V, Ludig D, Schug A, Saxena K, Reinecke M, Heinzlmeir S, Leisegang MS, Wollenhaupt J, Lennartz F, Weiss MS, Kuster B, Tosato G, Schwalbe H. Optimization of the Lead Compound NVP-BHG712 as a Colorectal Cancer Inhibitor. Chemistry 2023; 29:e202203967. [PMID: 36799129 PMCID: PMC10133194 DOI: 10.1002/chem.202203967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Santosh L. Gande
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Alexander Schug
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Frank Lennartz
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| |
Collapse
|
22
|
Liang S, Wang Q, Wen Y, Wang Y, Li M, Wang Q, Peng J, Guo L. Ligand-independent EphA2 contributes to chemoresistance in small-cell lung cancer by enhancing PRMT1-mediated SOX2 methylation. Cancer Sci 2023; 114:921-936. [PMID: 36377249 PMCID: PMC9986087 DOI: 10.1111/cas.15653] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemoresistance is the crux of clinical treatment failure of small-cell lung cancer (SCLC). Cancer stem cells play a critical role in therapeutic resistance of malignant tumors. Studies have shown that the role of erythropoietin-producing hepatocellular A2 (EphA2) in tumors is complex. This study aimed to test the hypothesis that ligand-independent activation of EphA2 modulates chemoresistance by enhancing stemness in SCLC. We verified that EphA2 was activated in chemoresistance sublines in a ligand-independent manner rather than a ligand-dependent manner. Ligand-independent EphA2 enhanced the expression of stemness-associated biomarkers (CD44, Myc, and SOX2), accelerated epithelial-mesenchymal transition (EMT) and reinforced self-renewal to drive the chemoresistance of SCLC, while the P817H mutant EphA2 neutralized intrinsic function. Co-immunoprecipitation (co-IP) and GST-pull down experiments were conducted to verify that EphA2 directly interacted with PRMT1. Moreover, EphA2 increased the expression and activity of PRMT1. Whereafter, PRMT1 interacted with and methylated SOX2 to induce stemness and chemoresistance in SCLC. Pharmacological inhibition of EphA2 showed a synergistic anti-tumor effect with chemotherapy in preclinical models, including patient-derived xenograft (PDX) models. These findings highlight, for the first time, that the EphA2/PRMT1/SOX2 pathway induces chemoresistance in SCLC by promoting stemness. EphA2 is a potential therapeutic target in SCLC treatment.
Collapse
Affiliation(s)
- Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiuping Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Wen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Furukawa T, Kimura H, Sasaki M, Yamada T, Iwasawa T, Yagi Y, Kato K, Yasui H. Novel [ 111 In]In-BnDTPA-EphA2-230-1 Antibody for Single-Photon Emission Computed Tomography Imaging Tracer Targeting of EphA2. ACS OMEGA 2023; 8:7030-7035. [PMID: 36844571 PMCID: PMC9948553 DOI: 10.1021/acsomega.2c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for diagnostic agents. In this study, the EphA2-230-1 monoclonal antibody (EphA2-230-1) was labeled with [111In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with [111In]In. [111In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, biodistribution, and SPECT/computed tomography (CT) studies. The cellular uptake ratio of [111In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution study, a high uptake of [111In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The superior accumulation of [111In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [111In]In-BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.
Collapse
Affiliation(s)
- Takenori Furukawa
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minon Sasaki
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumu Yamada
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Takumi Iwasawa
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Yusuke Yagi
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Department
of Radiological Technology, Faculty of Medicinal Science, Kyoto College of Medical Science, 1-3 Imakita, Oyama-higashi, Sonobe,
Nantan, Kyoto 622-0022, Japan
| | - Kazunori Kato
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Hiroyuki Yasui
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
24
|
Torlot L, Jarzab A, Albert J, Pók-Udvari Á, Stahler A, Holch JW, Gerlinger M, Heinemann V, Klauschen F, Kirchner T, Kumbrink J, Küster B, Jung A. Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance. J Cancer Res Clin Oncol 2023; 149:669-682. [PMID: 36401637 PMCID: PMC9931833 DOI: 10.1007/s00432-022-04416-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In metastatic colorectal cancer (mCRC), acquired resistance against anti-EGFR targeted monoclonal antibodies, such as cetuximab (CET), was shown to be frequently caused by activating alterations in the RAS genes KRAS or NRAS. To this day, no efficient follow-up treatment option has emerged to treat mCRC in such a setting of resistance. METHODS To uncover potential targets for second-line targeted therapies, we used mass-spectrometric proteomics to shed light on kinome reprogramming in an established cellular model of acquired, KRAS-associated CET resistance. RESULTS This CET resistance was reflected by significant changes in the kinome, most of them individual to each cell line. Interestingly, all investigated resistant cell lines displayed upregulation of the Ephrin type-A receptor 2 (EPHA2), a well-known driver of traits of progression. Expectedly resistant cell lines displayed increased migration (p < 0.01) that was significantly reduced by targeting the EPHA2 signalling axis using RNA interference (RNAi) (p < 0.001), ephrin-A1 stimulation (p < 0.001), dasatinib (p < 0.01), or anti-EPHA2 antibody treatment (p < 0.001), identifying it as an actionable target in mCRC with acquired CET resistance. CONCLUSION These results highlight EPHA2 and its role in mCRC with KRAS-gene mutated acquired CET resistance and support its use as a potential actionable target for the development of future precision medicine therapies.
Collapse
Affiliation(s)
- Lucien Torlot
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
| | - Anna Jarzab
- Chair or Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Johanna Albert
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ágnes Pók-Udvari
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Arndt Stahler
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Berlin, Germany
| | - Julian Walter Holch
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Department of Medicine III, LMU Hospital, Munich, Germany
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany
| | - Marco Gerlinger
- Translational Oncogenomics Lab, The Institute of Cancer Research, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Gastrointestinal Cancer Unit, St Bartholomew's Hospital, London, UK
| | - Volker Heinemann
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Department of Medicine III, LMU Hospital, Munich, Germany
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany
| | - Bernhard Küster
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany
- Chair or Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University (LMU), Munich, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Munich Site, Germany.
- Comprehensive Cancer Center Munich (CCCM), LMU Hospital, Munich, Germany.
| |
Collapse
|
25
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
26
|
Lipofectamine 2000™ at transfection dose promotes EphA2 transcription in an HDAC4-dependent manner to reduce its cytotoxicity. Heliyon 2022; 8:e12118. [PMID: 36544821 PMCID: PMC9761724 DOI: 10.1016/j.heliyon.2022.e12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The cationic liposome is well-known as an efficient nucleic acid delivery tool; however, the stress responses induced by liposome per se have been rarely revealed. In this study, we found that Lipofectamine™ 2000 (lipo2000), a commonly used commercial cationic liposome transfection, could upregulate EphA2 mRNA expression in multiple cells at transfection dose. Furthermore, lipo2000 treatment could increase the level of EphA2 hnRNA (heterogeneous nuclear RNA). Lipo2000-induced EphA2 upregulation could be depleted upon global transcription inhibition, proving that lipo2000 upregulates EphA2 expression via activating its transcription. Moreover, HDAC4 depletion, a known EphA2 trans-acting regulatory factor, could eliminate the lipo2000-induced EphA2 upregulation, demonstrating that lipo2000 promotes EphA2 transcription in an HDAC4 dependent manner. Functionally, EphA2 knockdown did not affect GFP expression level and the interfering efficacy of siGAPDH, suggesting that EphA2 is unrelated to the nucleic acid delivery capacity of lipo2000. Nevertheless, EphA2 depletion significantly activated autophagy and apoptosis, increasing the cytotoxic effects of lipo2000, which could be rescued by EphA2 restoration, indicating that EphA2 is essential to overcome liposome-related cytotoxicity. Finally, we found that lipo2000 could activate EphA2 transcription in an HDAC4-dependent manner. EphA2 is not associated with the transfection efficiency of lipo2000, but it is vital to reduce lipo2000 cytotoxicity, suggesting that when conducting liposome-mediated gene function studies, especially for EphA2, the stress response of liposomes should be considered to obtain objective results.
Collapse
|
27
|
Baggio C, Udompholkul P, Gambini L, Pellecchia M. Targefrin: A Potent Agent Targeting the Ligand Binding Domain of EphA2. J Med Chem 2022; 65:15443-15456. [PMID: 36331527 PMCID: PMC9706575 DOI: 10.1021/acs.jmedchem.2c01391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Overexpression of the receptor tyrosine kinase EphA2 is invariably associated with poor prognosis and development of aggressive metastatic cancers. Guided by our recently solved X-ray structure of the complex between an agonistic peptide and EphA2-LBD, we report on a novel agent, targefrin, that binds to EphA2-LBD with a 21 nM dissociation constant by isothermal titration calorimetry and presents an IC50 value of 10.8 nM in a biochemical assay. In cell-based assays, a dimeric version of the agent is as effective as the natural dimeric ligands (ephrinA1-Fc) in inducing cellular receptor internalization and degradation in several pancreatic cancer cell lines. When conjugated with chemotherapy, the agents can effectively deliver paclitaxel to pancreatic cancers in a mouse xenograft study. Given the pivotal role of EphA2 in tumor progression, we are confident that the agents reported could be further developed into innovative EphA2-targeting therapeutics.
Collapse
Affiliation(s)
| | | | - Luca Gambini
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences,
School of Medicine, University of California
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
28
|
Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2. Gene Ther 2022; 29:588-600. [PMID: 33414521 DOI: 10.1038/s41434-020-00213-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Accumulating evidence has demonstrated that microRNA-519a (miR-519a) acts as the tumor suppressor in various cancers, but little is known regarding its intrinsic regulatory mechanisms in non-small cell lung cancer (NSCLC). Here, we aimed to investigate the role of miR-519a-targeted ephrinA2 receptor (EphA2) in radiosensitivity of NSCLC. MiR-519a and EphA2 expression in NSCLC and paracancerous tissues were detected using RT-qPCR and western blot analysis. A549 cell line was cultured and radiation-resistant cell line A549R was constructed using fractionated X-ray irradiation of these cells at 60 Gy. Colony formation ability and radioresistance of parent strain A549 and resistant strain A549R were detected with restored miR-519a and depleted EphA2. MTT assay was used to measure cell proliferation, flow cytometry was performed for determination of cell cycle distribution and apoptosis. The migration and invasion abilities were assessed by Transwell assay. The target relationship between miR-519a and EphA2 was verified. Results suggested that miR-519a was downregulated and EphA2 was upregulated in NSCLC tissues and cells, and miR-519a targeted EphA2. MiR-519a expression declined, while EphA2 expression elevated in A549R cells versus A549 cells. Upregulated miR-519a and downregulated EphA2 suppressed D0, Dq, survival fraction (SF2) and N-value, arrested cells at G0/G1 phase, advanced the apoptosis and attenuated migration, proliferation, and invasion of A549 and A549R cells. Overexpression of EphA2 reversed the promotion of upregulated miR-519a on radiosensitivity of NSCLC cells. Our results revealed that miR-519a enhances radiosensitivity of NSCLC by inhibiting EphA2 expression. Moreover, miR-519a serves as a target for NSCLC treatment.
Collapse
|
29
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
30
|
Lafferty A, O'Farrell AC, Migliardi G, Khemka N, Lindner AU, Sassi F, Zanella ER, Salvucci M, Vanderheyden E, Modave E, Boeckx B, Halang L, Betge J, Ebert MPA, Dicker P, Argilés G, Tabernero J, Dienstmann R, Medico E, Lambrechts D, Bertotti A, Isella C, Trusolino L, Prehn JHM, Byrne AT. Molecular Subtyping Combined with Biological Pathway Analyses to Study Regorafenib Response in Clinically Relevant Mouse Models of Colorectal Cancer. Clin Cancer Res 2021; 27:5979-5992. [PMID: 34426441 DOI: 10.1158/1078-0432.ccr-21-0818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers. EXPERIMENTAL DESIGN Molecularly subtyped PDXs were annotated for REG response. Subtyping was based on gene expression (CMS, consensus molecular subtype) and copy-number alteration (CNA). Baseline tumor vascularization, apoptosis, and proliferation signatures were studied to identify predictive biomarkers within subtypes. Phospho-proteomic analysis was used to identify novel classifiers. Supervised RNA sequencing analysis was performed on PDXs that progressed, or did not progress, following REG treatment. RESULTS Improved REG response was observed in CMS4, although intra-subtype response was variable. Tumor vascularity did not correlate with outcome. In CMS4 tumors, reduced proliferation and higher sensitivity to apoptosis at baseline correlated with response. Reverse phase protein array (RPPA) analysis revealed 4 phospho-proteomic clusters, one of which was enriched with non-progressor models. A classification decision tree trained on RPPA- and CMS-based assignments discriminated non-progressors from progressors with 92% overall accuracy (97% sensitivity, 67% specificity). Supervised RNA sequencing revealed that higher basal EPHA2 expression is associated with REG resistance. CONCLUSIONS Subtype classification systems represent canonical "termini a quo" (starting points) to support REG biomarker identification, and provide a platform to identify resistance mechanisms and novel contexts of vulnerability. Incorporating functional characterization of biological systems may optimize the biomarker identification process for multitargeted kinase inhibitors.
Collapse
Affiliation(s)
- Adam Lafferty
- Department of Physiology and Medical Physics, Precision Cancer Medicine Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Precision Cancer Medicine Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giorgia Migliardi
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Niraj Khemka
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andreas U Lindner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Evy Vanderheyden
- Department of Human Genetics, VIB Center for Cancer Biology, Leuven, Belgium, Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Elodie Modave
- Department of Human Genetics, VIB Center for Cancer Biology, Leuven, Belgium, Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Department of Human Genetics, VIB Center for Cancer Biology, Leuven, Belgium, Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Luise Halang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Johannes Betge
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias P A Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Dicker
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Guillem Argilés
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Rodrigo Dienstmann
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Diether Lambrechts
- Department of Human Genetics, VIB Center for Cancer Biology, Leuven, Belgium, Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Andrea Bertotti
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Claudio Isella
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Precision Cancer Medicine Group, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Giordano G, Merlini A, Ferrero G, Mesiano G, Fiorino E, Brusco S, Centomo ML, Leuci V, D’Ambrosio L, Aglietta M, Sangiolo D, Grignani G, Pignochino Y. EphA2 Expression in Bone Sarcomas: Bioinformatic Analyses and Preclinical Characterization in Patient-Derived Models of Osteosarcoma, Ewing's Sarcoma and Chondrosarcoma. Cells 2021; 10:cells10112893. [PMID: 34831119 PMCID: PMC8616526 DOI: 10.3390/cells10112893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are a group of heterogeneous malignant mesenchymal tumors. Complete surgical resection is still the cornerstone of treatment, but, in the advanced/unresectable setting, their management remains challenging and not significantly improved by target- and immuno-therapies. We focused on the tyrosine kinase Eph type-A receptor-2 (EphA2), a key oncoprotein implicated in self-renewal, angiogenesis, and metastasis, in several solid tumors and thus representing a novel potential therapeutic target. Aiming at better characterizing its expression throughout the main bone sarcoma histotypes, we investigated EPHA2 expression in the Cancer Cell Lines Encyclopedia and in public datasets with clinical annotations. looking for correlations with molecular, histopathological and patients’ features and clinical outcomes in a total of 232 osteosarcomas, 197 Ewing’s sarcomas, and 102 chondrosarcomas. We observed EPHA2 expression in bone sarcoma cell lines. We demonstrated higher EPHA2 expression in tumor tissues when compared to normal counterparts. A significant correlation was found between EPHA2 expression and Huvos grade (osteosarcoma) and with worse overall survival (dedifferentiated chondrosarcoma). Next, we characterized EPHA2 expression and activation in bone sarcoma primary tissues and in patient-derived xenografts generated in our laboratory to verify their reliability as in vivo models of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Furthermore, for the first time, we demonstrated EPHA2 expression in chondrosarcoma, suggesting its potential key role in this histotype. Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.
Collapse
Affiliation(s)
- Giorgia Giordano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-0119933503
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
- Department of Computer Science, University of Torino, 10124 Torino, Italy
| | - Giulia Mesiano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Erika Fiorino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
32
|
Furukawa T, Kimura H, Torimoto H, Yagi Y, Kawashima H, Arimitsu K, Yasui H. A Putative Single-Photon Emission CT Imaging Tracer for Erythropoietin-Producing Hepatocellular A2 Receptor. ACS Med Chem Lett 2021; 12:1238-1244. [PMID: 34413953 DOI: 10.1021/acsmedchemlett.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors are receptor tyrosine kinases involved in cell-cell contact. The EphA2 receptor is associated with cancer proliferation and migration. Therefore, EphA2 receptor imaging has the potential for cancer diagnosis. Here, we synthesized N-(5-((4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamoyl)-2-methylphenyl)-5-[123I]iodonicotinamide ([123I]ETB) and evaluated it as an imaging tracer for single-photon emission computed tomography (SPECT) imaging of the EphA2 receptor. [123I]ETB was designed on the basis of ALW-II-41-27, an inhibitor of EphA2 receptor kinase. Nonradioactive ETB was also synthesized and has been shown to efficiently inhibit EphA2 receptor kinase activity in vitro (IC50: ETB, 90.2 ± 18.9 nM). A cell-binding assay demonstrated that [125I]ETB binds specifically to the EphA2 receptor. The ex vivo biodistribution study of [125I]ETB in U87MG tumor-bearing mice also revealed tumor uptake (2.2% ID/g at 240 min). In addition, [123I]ETB uptake in tumors was visualized via SPECT/CT imaging. On the basis of the above, [123I]ETB can be considered a potential SPECT imaging tracer for the EphA2 receptor.
Collapse
Affiliation(s)
- Takenori Furukawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hanae Torimoto
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenji Arimitsu
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
33
|
Wu Y, Huang J, Ivan C, Sun Y, Ma S, Mangala LS, Fellman BM, Urbauer DL, Jennings NB, Ram P, Coleman RL, Hu W, Sood AK. MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecol Oncol 2021; 163:181-190. [PMID: 34391578 DOI: 10.1016/j.ygyno.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.
Collapse
Affiliation(s)
- Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yunjie Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bryan M Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Diana L Urbauer
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
34
|
Wang G, Wang Y, Yang X, Zhang Y, Lu Y, Li Y. The expression and diagnostic value of serum levels of EphA2 and VEGF-A in patients with colorectal cancer. Cancer Biomark 2021; 31:399-408. [PMID: 34092605 DOI: 10.3233/cbm-201745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several molecules are highly expressed in the serum of cancer patients, and can be used as serological markers. This approach has become one of the important auxiliary diagnostic methods for cancer. AIM To investigate the correlation between the serum levels of EphA2 and VEGF-A and the pathogenesis of colorectal cancer (CRC) as well as the potential value of these molecules in the diagnosis of CRC. METHODS ELISA was used to detect the levels of EphA2 and VEGF-A in the peripheral venous serum of 106 newly diagnosed patients with CRC and 69 normal controls. The relationship between the serum EphA2 and VEGF-A levels and the clinicopathological characteristics of CRC patients was analyzed. ROC analysis was used to investigate the diagnostic value of the serum EphA2 and VEGF-A levels in CRC, and the optimal cutoff value was calculated. RESULTS The serum levels of EphA2 and VEGF-A in the CRC group were higher than those in the control as well as CEA, the serum level of EphA2 was positively correlated with the VEGF-A levels, but neither was significantly associated with the clinicopathological parameters of CRC. The ROC curve showed that the single index AUC was < 0.7 except for VEGF-A, and the accuracy of the combined diagnosis was higher than that of any other single index. The diagnosis scheme involving all three markers was the best (the sensitivity was 60.40%, the specificity was 92.8%, and the accuracy was 53.1%). The best critical values calculated were EphA2 > 297.92 ng/ml, EphA2 > 183.92 pg/ml and CEA > 5.19 ng/ml. CONCLUSION The serum levels of EphA2 and VEGF-A are high in CRC patients, and the combine detection of CEA, EphA2 and VEGF-A can significantly improve the diagnostic accuracy of CRC.
Collapse
Affiliation(s)
- Ganbiao Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of General Surgery, Guzhen County Traditional Chinese Medicine Hospital, Guzhen, Bengbu, Anhui, China.,Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yigao Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaodong Yang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yaqin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yida Lu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
35
|
Volz C, Breid S, Selenz C, Zaplatina A, Golfmann K, Meder L, Dietlein F, Borchmann S, Chatterjee S, Siobal M, Schöttle J, Florin A, Koker M, Nill M, Ozretić L, Uhlenbrock N, Smith S, Büttner R, Miao H, Wang B, Reinhardt HC, Rauh D, Hallek M, Acker-Palmer A, Heukamp LC, Ullrich RT. Inhibition of Tumor VEGFR2 Induces Serine 897 EphA2-Dependent Tumor Cell Invasion and Metastasis in NSCLC. Cell Rep 2021; 31:107568. [PMID: 32348765 DOI: 10.1016/j.celrep.2020.107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF)-VEGFR2 signaling has shown limited efficacy in lung cancer patients. Here, we demonstrate that inhibition of VEGFR2 in tumor cells, expressed in ∼20% of non-squamous non-small cell lung cancer (NSCLC) patients, leads to a pro-invasive phenotype. Drug-induced inhibition of tumor VEGFR2 interferes with the formation of the EphA2/VEGFR2 heterocomplex, thereby allowing RSK to interact with Serine 897 of EphA2. Inhibition of RSK decreases phosphorylation of Serine 897 EphA2. Selective genetic modeling of Serine 897 of EphA2 or inhibition of EphA2 abrogates the formation of metastases in vivo upon VEGFR2 inhibition. In summary, these findings demonstrate that VEGFR2-targeted therapy conditions VEGFR2-positive NSCLC to Serine 897 EphA2-dependent aggressive tumor growth and metastasis. These data shed light on the molecular mechanisms explaining the limited efficacy of VEGFR2-targeted anti-angiogenic treatment in lung cancer patients.
Collapse
Affiliation(s)
- Caroline Volz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Sara Breid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Alina Zaplatina
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Kristina Golfmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Lydia Meder
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Felix Dietlein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, US Institute for Pathology, Cambridge, MA, USA
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany; University of Cologne, Department I of Internal Medicine, German Hodgkin Study Group (GHSG), Cologne, Germany; University of Cologne, Department I of Internal Medicine, Else Kröner Forschungskolleg Clonal Evolution in Cancer, Cologne, Germany
| | - Sampurna Chatterjee
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Maike Siobal
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Jakob Schöttle
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Medical Faculty, Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital Medical School, Cologne, Germany
| | - Mirjam Koker
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Luka Ozretić
- Department of Cellular Pathology, Royal Free Hospital, London NW3 2QG, UK
| | - Niklas Uhlenbrock
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Steven Smith
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Medical School, Cologne, Germany
| | - Hui Miao
- Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Christian Reinhardt
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Frankfurt, Germany
| | | | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany; Center for Molecular Medicine, Cologne, Germany.
| |
Collapse
|
36
|
Wang H, Qiu W. EPHA2, a promising therapeutic target for hepatocellular carcinoma. Mol Cell Oncol 2021; 8:1910009. [PMID: 34027045 PMCID: PMC8128187 DOI: 10.1080/23723556.2021.1910009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Identifying critical drivers of oncogenesis and tumor progression is essential for developing effective hepatocellular carcinoma (HCC) therapeutics. Our recent findings has demonstrated that targeting Ephrin Receptor A2 (EPHA2) suppresses HCC initiation and progression by dual inhibition of the Protein Kinase B (AKT) and Signal Transducer and Activator of Transcription 3 (STAT3) signaling.
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
37
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
38
|
Franzén B, Viktorsson K, Kamali C, Darai-Ramqvist E, Grozman V, Arapi V, Hååg P, Kaminskyy VO, Hydbring P, Kanter L, Nyrén S, Ekman S, De Petris L, Lewensohn R. Multiplex immune protein profiling of fine-needle aspirates from patients with non-small-cell lung cancer reveals signatures associated with PD-L1 expression and tumor stage. Mol Oncol 2021; 15:2941-2957. [PMID: 33768639 PMCID: PMC8564641 DOI: 10.1002/1878-0261.12952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Biomarker signatures identified through minimally invasive procedures already at diagnosis of non‐small‐cell lung cancer (NSCLC) could help to guide treatment with immune checkpoint inhibitors (ICI). Here, we performed multiplex profiling of immune‐related proteins in fine‐needle aspirate (FNA) samples of thoracic lesions from patients with NSCLC to assess PD‐L1 expression and identify related protein signatures. Transthoracic FNA samples from 14 patients were subjected to multiplex antibody‐based profiling by proximity extension assay (PEA). PEA profiling employed protein panels relevant to immune and tumor signaling and was followed by Qlucore® Omics Explorer analysis. All lesions analyzed were NSCLC adenocarcinomas, and PEA profiles could be used to monitor 163 proteins in all but one sample. Multiple key immune signaling components (including CD73, granzyme A, and chemokines CCL3 and CCL23) were identified and expression of several of these proteins (e.g., CCL3 and CCL23) correlated to PD‐L1 expression. We also found EphA2, a marker previously linked to inferior NSCLC prognosis, to correlate to PD‐L1 expression. Our identified protein signatures related to stage included, among others, CXCL10 and IL12RB1. We conclude that transthoracic FNA allows for extensive immune and tumor protein profiling with assessment of putative biomarkers of important for ICI treatment selection in NSCLC.
Collapse
Affiliation(s)
- Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Vitali Grozman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Hydbring
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kanter
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
EPHA2 Interacts with DNA-PK cs in Cell Nucleus and Controls Ionizing Radiation Responses in Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13051010. [PMID: 33671073 PMCID: PMC7957683 DOI: 10.3390/cancers13051010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Ephrin (EFN)/ Erythropoietin-producing human hepatocellular receptors (Eph) signaling has earlier been reported to regulate non-small cell lung cancer (NSCLC) cell survival and cell death as well as invasion and migration. Here, the role of Ephrin type-A receptor 2 (EphA2) on the DNA damage response (DDR) signaling and ionizing radiation (IR) cellular effect was studied in NSCLC cells. Silencing of EphA2 resulted in IR sensitization, with increased activation of caspase-3, PARP-1 cleavage and reduced clonogenic survival. Profiling of EphA2 expression in a NSCLC cell line panel showed a correlation to an IR refractory phenotype. EphA2 was found to be transiently and rapidly phosphorylated at Ser897 in response to IR, which was paralleled with the activation of ribosomal protein S6 kinase (RSK). Using cell fractionation, a transient increase in both total and pSer897 EphA2 in the nuclear fraction in response to IR was revealed. By immunoprecipitation and LC-MS/MS analysis of EphA2 complexes, nuclear localized EphA2 was found in a complex with DNA-PKcs. Such complex formation rapidly increased after IR but returned back to basal level within an hour. Targeting EphA2 with siRNA or by treatment with EFNA1 ligand partly reduced phosphorylation of DNA-PKcs at S2056 at early time points after IR. Thus, we report that EphA2 interacts with DNA-PKcs in the cell nucleus suggesting a novel mechanism involving the EphA2 receptor in DDR signaling and IR responsiveness.
Collapse
|
40
|
Wang H, Hou W, Perera A, Bettler C, Beach JR, Ding X, Li J, Denning MF, Dhanarajan A, Cotler SJ, Joyce C, Yin J, Ahmed F, Roberts LR, Qiu W. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep 2021; 34:108765. [PMID: 33626345 PMCID: PMC7954228 DOI: 10.1016/j.celrep.2021.108765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Janus Kinase 1/genetics
- Janus Kinase 1/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Retrospective Studies
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Carlee Bettler
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Yin
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
41
|
Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, Ravaei A, Linde J, Lampert A, Costa IG, Zimmer-Bensch G. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci 2021; 22:1332. [PMID: 33572758 PMCID: PMC7866228 DOI: 10.3390/ijms22031332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.
Collapse
Affiliation(s)
- Daniel Pensold
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Gehrmann
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Georg Pitschelatow
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Asa Walberg
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Kai Braunsteffer
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
| | - Julia Reichard
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44100 Ferrara, Italy;
| | - Jenice Linde
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| | - Angelika Lampert
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
- RWTH Aachen Medical Faculty, Institute of Physiology, 52074 Aachen, Germany
| | - Ivan G. Costa
- RWTH Aachen Medical Faculty, Institute for Computational Genomics, 52074 Aachen, Germany; (J.G.); (I.G.C.)
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (D.P.); (G.P.); (A.W.); (K.B.); (J.R.); (J.L.)
- Research Training Group 2416 Multi Senses—Multi Scales, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
42
|
Allocca C, Cirafici AM, Laukkanen MO, Castellone MD. Serine 897 Phosphorylation of EPHA2 Is Involved in Signaling of Oncogenic ERK1/2 Drivers in Thyroid Cancer Cells. Thyroid 2021; 31:76-87. [PMID: 32762307 DOI: 10.1089/thy.2019.0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Phosphorylation of the intracellular domain of the EPHA2 receptor tyrosine kinase (RTK) on serine 897 (S897) has been demonstrated to mediate EPHA2 oncogenic activity. Here, we show that in thyroid cancer cells harboring driver oncogenes that signal through the extracellular regulated kinase (ERK1/2) signaling pathway [rearranged RET RTK (RET/PTC), KRAS(G12R), or BRAFV600E oncogenes], EPHA2 is robustly phosphorylated on S897. EPHA2 S897 is embedded in a consensus sequence for phosphorylation by the AGC family kinases, including p90RSK (ribosomal protein S6 kinase), a direct ERK1/2 target. Methods: We show that recombinant p90RSK phosphorylates in vitro EPHA2 S897 and that treatment with chemical inhibitors targeting p90RSK or other components of the ERK1/2 pathway blunts S897 phosphorylation. Results: RNA interference-mediated knockdown combined with rescue experiments demonstrated that EPHA2 S897 phosphorylation mediates thyroid cancer cell proliferation and motility. Conclusions: These findings point to EPHA2 S897 as a crucial mediator of the oncogenic activity of the ERK1/2 signaling cascade in thyroid cancer.
Collapse
Affiliation(s)
- Chiara Allocca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Anna Maria Cirafici
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" (IEOS), CNR, Naples, Italy
| | | | | |
Collapse
|
43
|
Shen L, Li Z, Shen L. Quantitative Tyrosine Phosphoproteomic Analysis of Resistance to Radiotherapy in Nasopharyngeal Carcinoma Cells. Cancer Manag Res 2020; 12:12667-12678. [PMID: 33328764 PMCID: PMC7733897 DOI: 10.2147/cmar.s260028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Background Radioresistance poses a major challenge in nasopharyngeal carcinoma (NPC) treatment. Protein tyrosine phosphorylation has emerged as a key device in the control of resistance to therapy in cancer cells. Methods Using tandem mass tag (TMT) labeling and phospho-antibody affinity enrichment followed by high-resolution LC-MS/MS analysis, quantitative tyrosine phosphorylome analysis was performed in CNE2 (parental) and its radioresistant subline CNE2-IR. Results Altogether, 233 tyrosine phosphorylation sites in 179 protein groups were identified, among which 179 sites in 140 proteins were quantified. Among the quantified proteins, 38 tyrosine phosphorylation proteins are up-regulated and 18 tyrosine phosphorylation proteins are down-regulated in CNE2-IR vs CNE2. Increased tyrosine phosphorylation in multiple receptor/protein tyrosine kinases (EPHA2, EGFR, IGF1R, ABL1 and LYN) was identified in CNE2-IR vs CNE2 cells. Intensive bioinformatic analyses revealed robust activation of multiple biological processes/pathways including E-cadherin stabilization, cell-cell adhesion, and cell junction organization in radioresistant CNE2-IR cells. Specifically, we observed that the CNE2 cells incubated with EphrinA1-Fc exhibited higher EPHA2 Y772 phosphorylation and lower E-cadherin expression, as compared with PBS control. Furthermore, an ATP-competitive EPHA2 RTK inhibitor (ALW-II-41-27, ALW) reduced EPHA2 Y772 phosphorylation and increased the expression of E-cadherin in CNE2-IR cells. Colony formation analysis showed that EFNA1 (EFNA1 is the ligand of EPHA2) treatment in CNE2 significantly promoted colony formation after 6Gy irradiation; while incubation with EPHA2 inhibitor ALW-II-41-27 in CNE2-IR cells impaired colony formation after irradiation, as compared with solvent control (DMSO). Conclusion In conclusion, phosphoproteomic approach allowed us to link tyrosine kinases signaling with radioresistance in NPC. Further studies are necessary to delineate the molecular function of EPHA2/E-cadherin signaling in radioresistant NPC and to explore rational combination therapy and its underlying mechanism.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
44
|
Srivastava S, Pang KM, Iida M, Nelson MS, Liu J, Nam A, Wang J, Mambetsariev I, Pillai R, Mohanty A, McDaniel N, Behal A, Kulkarni P, Wheeler DL, Salgia R. Activation of EPHA2-ROBO1 Heterodimer by SLIT2 Attenuates Non-canonical Signaling and Proliferation in Squamous Cell Carcinomas. iScience 2020; 23:101692. [PMID: 33196021 PMCID: PMC7644594 DOI: 10.1016/j.isci.2020.101692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.
Collapse
Affiliation(s)
- Saumya Srivastava
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ka Ming Pang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Michael S. Nelson
- Light Microscopy Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Jiayi Liu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jiale Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nellie McDaniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Amita Behal
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
45
|
Song W, Kim LC, Han W, Hou Y, Edwards DN, Wang S, Blackwell TS, Cheng F, Brantley-Sieders DM, Chen J. Phosphorylation of PLCγ1 by EphA2 Receptor Tyrosine Kinase Promotes Tumor Growth in Lung Cancer. Mol Cancer Res 2020; 18:1735-1743. [PMID: 32753469 PMCID: PMC7641970 DOI: 10.1158/1541-7786.mcr-20-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
EphA2 receptor tyrosine kinase (RTK) is often expressed at high levels in cancer and has been shown to regulate tumor growth and metastasis across multiple tumor types, including non-small cell lung cancer. A number of signaling pathways downstream of EphA2 RTK have been identified; however, mechanisms of EphA2 proximal downstream signals are less well characterized. In this study, we used a yeast-two-hybrid screen to identify phospholipase C gamma 1 (PLCγ1) as a novel EphA2 interactor. EphA2 interacts with PLCγ1 and the kinase activity of EphA2 was required for phosphorylation of PLCγ1. In human lung cancer cells, genetic or pharmacologic inhibition of EphA2 decreased phosphorylation of PLCγ1 and loss of PLCγ1 inhibited tumor cell growth in vitro. Knockout of PLCγ1 by CRISPR-mediated genome editing also impaired tumor growth in a KrasG12D-p53-Lkb1 murine lung tumor model. Collectively, these data show that the EphA2-PLCγ1 signaling axis promotes tumor growth of lung cancer and provides rationale for disruption of this signaling axis as a potential therapeutic option. IMPLICATIONS: The EphA2-PLCG1 signaling axis promotes tumor growth of non-small cell lung cancer and can potentially be targeted as a therapeutic option.
Collapse
Affiliation(s)
- Wenqiang Song
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Laura C Kim
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
46
|
Xiang YP, Xiao T, Li QG, Lu SS, Zhu W, Liu YY, Qiu JY, Song ZH, Huang W, Yi H, Tang YY, Xiao ZQ. Y772 phosphorylation of EphA2 is responsible for EphA2-dependent NPC nasopharyngeal carcinoma growth by Shp2/Erk-1/2 signaling pathway. Cell Death Dis 2020; 11:709. [PMID: 32848131 PMCID: PMC7449971 DOI: 10.1038/s41419-020-02831-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
EphA2 is an important oncogenic protein and emerging drug target, but the oncogenic role and mechanism of ligand-independent phosphorylation of EphA2 at tyrosine 772 (pY772-EphA2) is unclear. In this study, we established nasopharyngeal carcinoma (NPC) cell lines with stable expression of exogenous EphA2 and EphA2-Y772A (phosphorylation inactivation) using endogenous EphA2-knockdown cells, and observed that pY772A EphA2 was responsible for EphA2-promoting NPC cell proliferation and anchorage-independent and in vivo growth in mice. Mechanistically, EphA2-Y772A mediated EphA2-activating Shp2/Erk-1/2 signaling pathway in the NPC cells, and Gab1 (Grb2-associated binder 1) and Grb2 (growth factor receptor-bound protein 2) were involved in pY772-EphA2 activating this signaling pathway. Our results further showed that Shp2/Erk-1/2 signaling mediated pY772-EphA2-promoting NPC cell proliferation and anchorage-independent growth. Moreover, we observed that EphA2 tyrosine kinase inhibitor ALW-II-41-27 inhibited pY772-EphA2 and EphA2-Y772A decreased the inhibitory effect of ALW-II-41-27 on NPC cell proliferation. Collectively, our results demonstrate that pY772-EphA2 is responsible for EphA2-dependent NPC cell growth in vitro and in vivo by activating Shp2/Erk-1/2 signaling pathway, and is a pharmacologic target of ALW-II-41-27, suggesting that pY772-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.
Collapse
Affiliation(s)
- Yi-Ping Xiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qi-Guang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Ya Liu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie-Ya Qiu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zheng-Hui Song
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, 410008, China. .,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
47
|
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020; 13:114. [PMID: 32811512 PMCID: PMC7433191 DOI: 10.1186/s13045-020-00944-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Eph receptors and the corresponding Eph receptor-interacting (ephrin) ligands jointly constitute a critical cell signaling network that has multiple functions. The tyrosine kinase EphA2, which belongs to the family of Eph receptors, is highly produced in tumor tissues, while found at relatively low levels in most normal adult tissues, indicating its potential application in cancer treatment. After 30 years of investigation, a large amount of data regarding EphA2 functions have been compiled. Meanwhile, several compounds targeting EphA2 have been evaluated and tested in clinical studies, albeit with limited clinical success. The present review briefly describes the contribution of EphA2-ephrin A1 signaling axis to carcinogenesis. In addition, the roles of EphA2 in resistance to molecular-targeted agents were examined. In particular, we focused on EphA2's potential as a target for cancer treatment to provide insights into the application of EphA2 targeting in anticancer strategies. Overall, EphA2 represents a potential target for treating malignant tumors.
Collapse
Affiliation(s)
- Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yuhang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Yan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
48
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
49
|
Tsubochi H, Minegishi K, Goto A, Nakamura R, Matsubara D, Dobashi Y. EphA2, a possible target of miR-200a, functions through the AKT2 pathway in human lung carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2201-2210. [PMID: 32922621 PMCID: PMC7476936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We previously reported that miR-200a was highly up-regulated in lung carcinoma, exhibiting a copy number increase (CNI) of the AKT2 gene (AKT2+ group) in defined subsets, i.e., adenocarcinoma and early stages of carcinoma (pStage I/II). In this study, we searched possible targets of miR-200a in these subsets by IHC analyses focusing on the expression of known target proteins of miR-200a: beta-catenin, EphA2, ZEB1, PTEN, and YAP-1, as well as E-cadherin, the expression of which is suppressed by ZEB1. Among those 6 proteins, when all 38 cases of surgically resected specimens were analyzed as a whole, IHC score of ZEB1 was inversely (ρ=-.417) and E-cadherin was positively (ρ=.345) correlated with miR-200a expression. However, only EphA2 was inversely correlated with the expression of miR-200a in adenocarcinoma (ρ=-.496) and in pStage I/II group (ρ=-.547), while no correlation was seen in non-adenocarcinoma, squamous cell carcinoma, or pStage III carcinoma. Furthermore, by comparison of 3 groups categorized according to the AKT gene increase, only EphA2 was down-regulated to a statistically significant level in the AKT2+ group in both adenocarcinoma (p=.0447) and pStage I/II carcinoma (p=.0458). These results suggest that in lung carcinomas, higher Akt activation caused by increased AKT2 gene copy number leads to the upregulation of miR-200a, which exerts its function as a suppressor of EphA2 in adenocarcinoma and the early stages of carcinomas.
Collapse
Affiliation(s)
- Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
| | - Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University School of MedicineJapan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Ishikawa, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
- Department of Pathology, International University of Health and Welfare HospitalNasushiobara, Tochigi, Japan
| |
Collapse
|
50
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|