1
|
Su Y, Yuan Q. Mitochondrial fatty acid oxidase CPT1A ameliorates postoperative cognitive dysfunction by regulating astrocyte ferroptosis. Brain Res 2024; 1850:149424. [PMID: 39725377 DOI: 10.1016/j.brainres.2024.149424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a significant surgery-related complication marked by cognitive decline. Studies indicated that neuroinflammation, ferroptosis, and mitochondrial fatty acid metabolism might play parts in POCD, and might be mediated by Carnitine palmitoyl transferase 1a (CPT1A), but requires further investigations. Therefore, this study aims to investigate the mechanism of mitochondrial fatty acid oxidase CPT1A on mitochondrial function, ferroptosis, and inflammation in POCD pathogenesis. METHODS SVG P12 astrocytes were used to investigate CPT1A's control over mitochondrial function, ferroptosis, and inflammation affecting neurons. CPT1A was overexpressed using shRNA, with or without oligomycin to modulate mitochondrial function. Co-culture of these astrocytes with neurons, under similar conditions, assessed CPT1A's impact on neuron damage via ferroptosis and inflammation. Gene and protein expressions of CPT1A, SYN, PSD95 were measured via RT-PCR and WB. Detection of JC-1, mitochondrial oxygen consumption rate (OCR), ROS, Fe2+ concentration, MOD, SOD and GSH/GSSG using kits was conducted to explore mitochondrial function and ferroptosis. Inflammation was quantified by ELISA for IL-6, IL-1β, and TGF-β. RESULTS We successfully established CPT1A overexpression and knockdown models in astrocytes, confirming CPT1A's ability to enhance mitochondrial membrane potential. Elevated CPT1A levels led to improved mitochondrial function, synaptic integrity, reduced oxidative stress, maintained iron homeostasis, and attenuated neuroinflammation, as reflected by increased SYN, PSD95, OCR, GSH and SOD, decreased ROS,GSSG, MDA, iron levels, and lowered inflammatory factors expression. Treatment with oligomycin reversed these protective effects, demonstrating the dependency of CPT1A's benefits on intact mitochondrial respiration. In co-culture experiments with hippocampal neurons, astrocytes with manipulated CPT1A levels, particularly those co-treated with oligomycin, exacerbated neuronal mitochondrial dysfunction, oxidative stress, iron accumulation, and inflammation. CONCLUSION Overexpression of mitochondrial fatty acid oxidase CPT1A might improve synaptic integrity and rescue POCD by ameliorating astrocyte ferroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Yinglan Su
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen City, Guangdong Province, China.
| | - Qian Yuan
- Department of Urology Surgery, People's Hospital of Shenzhen, Shenzhen City, Guangdong Province, China
| |
Collapse
|
2
|
Zhang W, Wu CC, Ge MM, Yuan XM, Han SY, Zhao FT, Zhang XY, Gao F, Tian YK, Zhang GX, Tian XB. The PGC-1α/ERRα/ULK1 pathway contributes to Perioperative neurocognitive disorders by inducing mitochondrial dysfunction and activating NLRP3 inflammasome in aged mice. Neuropharmacology 2024; 260:110119. [PMID: 39197819 DOI: 10.1016/j.neuropharm.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cui-Cui Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Man Yuan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Yi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng-Tian Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yu Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang-Xiong Zhang
- Department of Anesthesiology, Hubei Province Corps Hospital of The Chinese Armed Police Force (CAPF), Wuhan, China.
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Dong J, Wang Z, Li L, Zhang M, Wang S, Luo Y, Dong Y, Wang X, Wang Y, Wang K, Yin Y. Fasudil Alleviates Postoperative Neurocognitive Disorders in Mice by Downregulating the Surface Expression of α5GABAAR in Hippocampus. CNS Neurosci Ther 2024; 30:e70098. [PMID: 39491498 PMCID: PMC11532233 DOI: 10.1111/cns.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Postoperative neurocognitive disorder (PND) refers to the cognitive impairment experienced by patients after surgery. As a target of sevoflurane, a kind of inhalation anesthetic, the balance of the GABAergic system can be disrupted during the perioperative period. In this study, we explored the promoting effect of abnormal elevation of the α5 subtype of γ-aminobutyric acid type A (GABAA) receptors caused by sevoflurane and surgical trauma on PND, as well as the therapeutic effect of fasudil on PND. METHODS Eight-week-old mice were pretreated with fasudil, and after 10 days, sevoflurane-induced femoral fracture surgery was performed to establish an animal model of PND. The Morris water maze and fear conditioning tests were used to evaluate PND induced by this model. Biochemical and electrophysiological analyses were conducted to assess the protective effect of fasudil on the GABAergic system. RESULTS Following artificial fracture, the hippocampus-dependent memory was damaged in these mice. Fasudil pretreatment, however, ameliorated cognitive function impairment in mice induced by sevoflurane and surgery. Mechanistically, fasudil was found to restore the increased hippocampus expression and function of α5GABAARs in mice with PND. In addition, pretreatment with Fasudil inhibited the enhancement in the calcium ion concentration and phosphorylation of Camk2, as well as the activation of the Radixin pathway which led to increased phosphorylation of the ERM family in the hippocampal CA1 region of the PND model. CONCLUSION Preadministration of fasudil improved postoperative cognitive function in PND mice by inhibiting the activation of Camk2 and Radixin pathways and finally downregulating the surface expression of α5GABAAR in hippocampus neurons.
Collapse
Affiliation(s)
- Jinpeng Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | | | - Mengxue Zhang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Ying Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaokun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Kaiyuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yiqing Yin
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
4
|
Wang Z, Dong J, Zhang M, Wang S, Wu J, Wang S, Luo Y, Wang Y, Yin Y. Sevoflurane-induced overexpression of extrasynaptic α5-GABA AR via the RhoA/ROCK2 pathway impairs cognitive function in aged mice. Aging Cell 2024; 23:e14209. [PMID: 38825816 PMCID: PMC11488297 DOI: 10.1111/acel.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Perioperative neurocognitive disorder (PND) is a serious neurologic complication in aged patients and might be associated with sevoflurane exposure. However, the specific pathogenesis is still unclear. The distribution of α5-GABAAR, a γ-aminobutyric acid type A receptor (GABAAR) subtype, at extrasynaptic sites is influenced by the anchor protein radixin, whose phosphorylation is regulated via the RhoA/ROCK2 signaling pathway and plays a crucial role in cognition. However, whether sevoflurane affects the ability of radixin phosphorylation to alter extrasynaptic receptor expression is unknown. Aged mice were exposed to sevoflurane to induce cognitive impairment. Both total proteins and membrane proteins were extracted for analysis. Cognitive function was evaluated using the Morris water maze and fear conditioning test. Western blotting was used to determine the expression of ROCK2 and the phosphorylation of radixin. Furthermore, the colocalization of p-radixin and α5-GABAAR was observed. To inhibit ROCK2 activity, either an adeno-associated virus (AAV) or fasudil hydrochloride was administered. Aged mice treated with sevoflurane exhibited significant cognitive impairment accompanied by increased membrane expression of α5-GABAAR. Moreover, the colocalization of α5-GABAAR and p-radixin increased after treatment with sevoflurane, and this change was accompanied by an increase in ROCK2 expression and radixin phosphorylation. Notably, inhibiting the RhoA/ROCK2 pathway significantly decreased the distribution of extrasynaptic α5-GABAAR and improved cognitive function. Sevoflurane activates the RhoA/ROCK2 pathway and increases the phosphorylation of radixin. Excess α5-GABAAR is anchored to extrasynaptic sites and impairs cognitive ability in aged mice. Fasudil hydrochloride administration improves cognitive function.
Collapse
Affiliation(s)
- Zhun Wang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jiangnan Wu
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengran Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresAcademy of Military Medical SciencesBeijingChina
| | - Yiqing Yin
- Department of AnesthesiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
6
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Yang Y, Liu T, Li J, Yan D, Hu Y, Wu P, Fang F, McQuillan PM, Hang W, Leng J, Hu Z. General anesthetic agents induce neurotoxicity through astrocytes. Neural Regen Res 2024; 19:1299-1307. [PMID: 37905879 PMCID: PMC11467951 DOI: 10.4103/1673-5374.385857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters. Few studies, however, have focused on the effects of general anesthetic agents on neuroglia or astrocytes. Astrocytes can also be an important target of general anesthetic agents as they exert not only sedative, analgesic, and amnesic effects but also mediate general anesthetic-induced neurotoxicity and postoperative cognitive dysfunction. Here, we analyzed recent advances in understanding the mechanism of general anesthetic agents on astrocytes, and found that exposure to general anesthetic agents will destroy the morphology and proliferation of astrocytes, in addition to acting on the receptors on their surface, which not only affect Ca2+ signaling, inhibit the release of brain-derived neurotrophic factor and lactate from astrocytes, but are even involved in the regulation of the pro- and anti-inflammatory processes of astrocytes. These would obviously affect the communication between astrocytes as well as between astrocytes and neighboring neurons, other neuroglia, and vascular cells. In this review, we summarize how general anesthetic agents act on neurons via astrocytes, and explore potential mechanisms of action of general anesthetic agents on the nervous system. We hope that this review will provide a new direction for mitigating the neurotoxicity of general anesthetic agents.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang Province, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, China
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA
| | - Pin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Won D, Lee EH, Chang JE, Nam MH, Park KD, Oh SJ, Hwang JY. The role of astrocytic γ-aminobutyric acid in the action of inhalational anesthetics. Eur J Pharmacol 2024; 970:176494. [PMID: 38484926 DOI: 10.1016/j.ejphar.2024.176494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.
Collapse
Affiliation(s)
- Dongwook Won
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Elliot H Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jee-Eun Chang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
11
|
Wang S, Wang S, Wang Z, Dong J, Zhang M, Wang Y, Wang J, Jia B, Luo Y, Yin Y. The changing of α5-GABAA receptors expression and distribution participate in sevoflurane-induced learning and memory impairment in young mice. CNS Neurosci Ther 2024; 30:e14716. [PMID: 38698533 PMCID: PMC11066188 DOI: 10.1111/cns.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Shengran Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Sixuan Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jianyu Wang
- Department of Pharmaceutics, School of PharmacyShenyang Pharmaceutical UniversityBenxiChina
| | - Beichen Jia
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yiqing Yin
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
12
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
13
|
Ali DN, Ali HM, Lopez MR, Kang S, Choi DS. Astrocytic GABAergic Regulation in Alcohol Use and Major Depressive Disorders. Cells 2024; 13:318. [PMID: 38391931 PMCID: PMC10887002 DOI: 10.3390/cells13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). Most GABAergic neurons synthesize GABA from glutamate and release it in the synaptic cleft in the CNS. However, astrocytes can also synthesize and release GABA, activating GABA receptors in the neighboring neurons in physiological and pathological conditions. As the primary homeostatic glial cells in the brain, astrocytes play a crucial role in regulating GABA homeostasis and synaptic neurotransmission. Accumulating evidence demonstrates that astrocytic GABA dysregulation is implicated in psychiatric disorders, including alcohol use disorder (AUD) and major depressive disorder (MDD), the most prevalent co-occurring psychiatric disorders. Several current medications and emerging pharmacological agents targeting GABA levels are in clinical trials for treating AUD and MDD. This review offers a concise summary of the role of astrocytic GABA regulation in AUD and MDD. We also provide an overview of the current understanding and areas of debate regarding the mechanisms by which astrocytes regulate GABA in the CNS and their potential significance in the molecular basis of AUD and MDD, paving the way toward future research directions and potential therapeutic target areas within this field.
Collapse
Affiliation(s)
- Dina N. Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Hossam M. Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Matthew R. Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
- Neuroscience Program, Rochester, MN 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Fu W, Xu H, Zhao T, Xu J, Wang F. Effects of dexmedetomidine combined with etomidate on postoperative cognitive function in older patients undergoing total intravenous anaesthesia: a randomized, double-blind, controlled trial. BMC Geriatr 2024; 24:97. [PMID: 38273248 PMCID: PMC10809642 DOI: 10.1186/s12877-024-04726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Etomidate has been advocated for anesthesia in older and critically ill patients because of its hemodynamic stability. Clinical studies have shown that dexmedetomidine has neuroprotective and anti-inflammatory properties and improves postoperative cognitive dysfunction in older patients. The present study was to evaluate the effects of the combination of etomidate and dexmedetomidine with different anaesthesia time on postoperative cognitive function in older patients. METHODS A total of 132 older patients undergoing ureteroscopic holmium laser lithotripsy were randomly divided into EN group and ED group equally. Patients whose surgery time was less than or equal to 1 h in each group were allocated to short-time surgery group (EN1 group and ED1 group), and whose surgery time was more than 1h were allocated to long-term surgery group (EN2 group and ED2 group). The primary outcome was the score of the Mini-Mental State Examination. The secondary outcomes were State-Trait Anxiety Inventory scores, Riker sedation agitation scores, Zung Self-Rating Depression Scale scores, the memory span for Arabic numerals, the plasma concentrations of S-100 calcium-binding protein B and neuron specific enolase, the time to spontaneous respiration, recovery, and extubation. RESULTS The MMSE scores at t2-3 were higher in ED1 and ED2 groups than in EN1 and EN2 groups (p<0.05). Compared with ED1 and ED2 groups, the ZSDS scores, the S-AI scores and the T-AI scores at t1-2 were higher in EN1 and EN2 groups (p<0.05), respectively. The recalled Arabic numbers at t1-3 were higher in ED2 group than in EN2 group (p<0.05). The plasma concentration of S-100β at t1-2 in EN1 group and t1-3 in EN2 group were higher than that in ED1 and ED2 groups (p<0.05), respectively. Compared with ED1 and ED2 groups, the plasma concentrations of NSE were higher at t1-3 in EN1 group and t1-4 in EN2 group (p<0.05), respectively. CONCLUSION The administration of dexmedetomidine could improve postoperative cognitive dysfunction, emergence agitation, depression and anxiety, attenuate the plasma concentrations of S-100β and NSE in older patients undergoing total intravenous anaesthesia with etomidate. TRIAL REGISTRATION Registration number: ChiCTR1800015421, Date: 29/03/2018.
Collapse
Affiliation(s)
- Wuchang Fu
- The Second Clinical Medical college of North, Sichuan Medical College (Nanchong Central Hospital), Nanchong, 637000, China
| | - Hongchun Xu
- The Department of Anesthesiology, Shunqing District, Affiliated Hospital, North Sichuan Medical College, Sichuan Province, No. 1, MaoYuan South Road, Nanchong City, 637000, China
| | - Ting Zhao
- The north sichuan medical college, Nanchong, 637000, China
| | - Jun Xu
- The north sichuan medical college, Nanchong, 637000, China
| | - Fangjun Wang
- The Department of Anesthesiology, Shunqing District, Affiliated Hospital, North Sichuan Medical College, Sichuan Province, No. 1, MaoYuan South Road, Nanchong City, 637000, China.
| |
Collapse
|
15
|
Xin Y, Chu T, Zhou S, Xu A. α5GABA A receptor: A potential therapeutic target for perioperative neurocognitive disorders, a review of preclinical studies. Brain Res Bull 2023; 205:110821. [PMID: 37984621 DOI: 10.1016/j.brainresbull.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Perioperative neurocognitive disorders (PND) are a common complication in elderly patients following surgery, which not only prolongs the recovery period but also affects their future quality of life and imposes a significant burden on their family and society. Multiple factors, including aging, vulnerability, anesthetic drugs, cerebral oxygen desaturation, and severe pain, have been associated with PND. Unfortunately, no effective drug is currently available to prevent PND. α5 γ-aminobutyric acid subtype A (α5GABAA) receptors have been implicated in cognitive function modulation. Positive or negative allosteric modulators of α5GABAA receptors have been found to improve cognitive impairment under different conditions. Therefore, targeting α5GABAA receptors may represent a promising treatment strategy for PND. This review focuses on preclinical studies of α5GABAA receptors and the risk factors associated with PND, primarily including aging, anesthetics, and neuroinflammation. Specifically, positive allosteric modulators of α5GABAA receptors have improved cognitive function in aged experimental animals. In contrast, negative allosteric modulators of α5GABAA receptors have been found to facilitate cognitive recovery in aged or adult experimental animals undergoing anesthesia and surgery but not in aged experimental animals under anesthesia alone. The reasons for the discordant findings have yet to be elucidated. In preclinical studies, different strategies of drug administration, as well as various behavioral tests, may influence the stability of the results. These issues need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
16
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Ariza A, Naeini SM, Khodaei S, Ba J, Wang DS, Orser BA. Cell-surface biotinylation of GABA A receptors in mouse hippocampal slices after sevoflurane anesthesia. STAR Protoc 2023; 4:102450. [PMID: 37480561 PMCID: PMC10382930 DOI: 10.1016/j.xpro.2023.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/24/2023] Open
Abstract
Here, we present a protocol for studying the cell-surface proteins in hippocampal slices after in vivo administration of sevoflurane, an inhaled general anesthetic drug, to mice. We describe steps for anesthetic delivery, hippocampal slice preparation, and cell-surface biotinylation. We then detail the isolation of surface proteins and their quantification through Western blotting. This protocol can be adapted to study changes in other surface proteins following exposure to various general anesthetic drugs. For complete details on the use and execution of this protocol, please refer to Wang et al. (2012),1 Zurek et al. (2014),2 and Yu et al. (2019).3.
Collapse
Affiliation(s)
- Anthony Ariza
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | | | - Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joycelyn Ba
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Beverley Anne Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
18
|
Luscher B, Maguire JL, Rudolph U, Sibille E. GABA A receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci 2023; 44:586-600. [PMID: 37543478 PMCID: PMC10511219 DOI: 10.1016/j.tips.2023.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
In the past 20 years, our understanding of the pathophysiology of depression has evolved from a focus on an imbalance of monoaminergic neurotransmitters to a multifactorial picture including an improved understanding of the role of glutamatergic excitatory and GABAergic inhibitory neurotransmission. FDA-approved treatments targeting the glutamatergic [esketamine for major depressive disorder (MDD)] and GABAergic (brexanolone for peripartum depression) systems have become available. This review focuses on the GABAA receptor (GABAAR) system as a target for novel antidepressants and discusses the mechanisms by which modulation of δ-containing GABAARs with neuroactive steroids (NASs) or of α5-containing GABAARs results in antidepressant or antidepressant-like actions and discusses clinical data on NASs. Moreover, a potential mechanism by which α5-GABAAR-positive allosteric modulators (PAMs) may improve cognitive deficits in depression is presented.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Psychiatry, Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of the Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
20
|
Khodaei S, Wang DS, Orser BA. Reduced excitatory neurotransmission in the hippocampus after inflammation and sevoflurane anaesthesia. BJA OPEN 2023; 6:100143. [PMID: 37588178 PMCID: PMC10430808 DOI: 10.1016/j.bjao.2023.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 08/18/2023]
Abstract
Background Inflammation and general anaesthesia likely contribute to perioperative neurocognitive disorders, possibly by causing a neuronal imbalance of excitation and inhibition. We showed previously that treatment with lipopolysaccharide (LPS) and sevoflurane causes a sustained increase in a tonic inhibitory conductance in the hippocampus; however, whether excitatory neurotransmission is also altered remains unknown. The goal of this study was to examine excitatory synaptic currents in the hippocampus after treatment with LPS and sevoflurane. Synaptic plasticity in the hippocampus, a cellular correlate of learning and memory, was also studied. Methods Mice were injected with vehicle or LPS (1 mg kg-1 i.p.), and after 24 h they were then exposed to vehicle or sevoflurane (2.3%; 2 h). Hippocampal slices were prepared 48 h later. Excitatory synaptic currents were recorded from pyramidal neurones. Long-term potentiation (LTP) and long-term depression (LTD) were studied in the Schaffer collateral-cornu ammonis 1 pathway. Results The amplitude of miniature excitatory postsynaptic currents (EPSCs) was reduced after LPS+sevoflurane (P<0.001), whereas that of spontaneous EPSCs was unaltered, as evidenced by cumulative distribution plots. The frequency, area, and kinetics of both miniature and spontaneous EPSCs were unchanged, as were LTP and LTD. Conclusions The reduced amplitude of miniature EPSCs, coupled with the previously reported increase in tonic inhibition, indicates that the combination of LPS and sevoflurane markedly disrupts the balance of excitation and inhibition. Restoring this balance by pharmacologically enhancing excitatory neurotransmission and inhibiting the tonic current may represent an effective therapeutic option for perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Beverley A. Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
21
|
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex. J Neurosci 2023; 43:14-27. [PMID: 36384682 PMCID: PMC9838699 DOI: 10.1523/jneurosci.1661-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.
Collapse
|
22
|
Khodaei S, Wang DS, Lee Y, Chung W, Orser BA. Sevoflurane and lipopolysaccharide-induced inflammation differentially affect γ-aminobutyric acid type A receptor-mediated tonic inhibition in the hippocampus of male mice. Br J Anaesth 2023; 130:e7-e10. [PMID: 36336522 DOI: 10.1016/j.bja.2022.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yulim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
23
|
Sedation during regional anesthesia: less is more. Can J Anaesth 2022; 69:1453-1458. [PMID: 36289152 DOI: 10.1007/s12630-022-02338-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
|
24
|
Wu MY, Zou WJ, Yu P, Yang Y, Li SJ, Liu Q, Xie J, Chen SQ, Lin WJ, Tang Y. Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function. Neural Regen Res 2022; 17:2253-2259. [PMID: 35259846 PMCID: PMC9083168 DOI: 10.4103/1673-5374.336875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shao-Jian Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si-Qi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine; Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Khodaei S, Wang DS, Ariza A, Syed RM, Orser BA. The Impact of Inflammation and General Anesthesia on Memory and Executive Function in Mice. Anesth Analg 2022; 136:999-1011. [PMID: 36469752 DOI: 10.1213/ane.0000000000006221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PNDs) are complex, multifactorial conditions that are associated with poor long-term outcomes. Inflammation and exposure to general anesthetic drugs are likely contributing factors; however, the relative impact of each factor alone versus the combination of these factors remains poorly understood. The goal of this study was to compare the relative impact of inflammation, general anesthesia, and the combination of both factors on memory and executive function. METHODS To induce neuroinflammation at the time of exposure to an anesthetic drug, adult male mice were treated with lipopolysaccharide (LPS) or vehicle. One day later, they were anesthetized with etomidate (or vehicle). Levels of proinflammatory cytokines were measured in the hippocampus and cortex 24 hours after LPS treatment. Recognition memory and executive function were assessed starting 24 hours after anesthesia using the novel object recognition assay and the puzzle box, respectively. Data are expressed as mean (or median) differences (95% confidence interval). RESULTS LPS induced neuroinflammation, as indicated by elevated levels of proinflammatory cytokines, including interleukin-1β (LPS versus control, hippocampus: 3.49 pg/mg [2.06-4.92], P < .001; cortex: 2.60 pg/mg [0.83-4.40], P = .010) and tumor necrosis factor-α (hippocampus: 3.50 pg/mg [0.83-11.82], P = .002; cortex: 2.38 pg/mg [0.44-4.31], P = .021). Recognition memory was impaired in mice treated with LPS, as evinced by a lack of preference for the novel object (novel versus familiar: 1.03 seconds [-1.25 to 3.30], P = .689), but not in mice treated with etomidate alone (novel versus familiar: 2.38 seconds [0.15-4.60], P = .031). Mice cotreated with both LPS and etomidate also exhibited memory deficits (novel versus familiar: 1.40 seconds [-0.83 to 3.62], P = .383). In the puzzle box, mice treated with either LPS or etomidate alone showed no deficits. However, the combination of LPS and etomidate caused deficits in problem-solving tasks (door open task: -0.21 seconds [-0.40 to -0.01], P = .037; plug task: -0.30 seconds [-0.50 to -0.10], P < .001; log values versus control), indicating impaired executive function. CONCLUSIONS Impairments in recognition memory were driven by inflammation. Deficits in executive function were only observed in mice cotreated with LPS and etomidate. Thus, an interplay between inflammation and etomidate anesthesia led to cognitive deficits that were not observed with either factor alone. These findings suggest that inflammation and anesthetic drugs may interact synergistically, or their combination may unmask covert or latent deficits induced by each factor alone, leading to PNDs.
Collapse
|
26
|
Bahr MH, Elgamel AF, Ahmed AG, Abdelkader M. Early Postoperative Cognitive Dysfunction in Women Undergoing Elective and Emergent Caesarian Section under General Anaesthesia: A Comparative Study. Anesth Pain Med 2022; 12:e131475. [PMID: 36937083 PMCID: PMC10016137 DOI: 10.5812/aapm-131475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 02/13/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) following cesarean section (CS) is a growing and underestimated problem with unknown mechanisms. Studies suggest that general anesthesia (GA) plays a role in the development of early POCD. Objectives This study aimed to assess the incidence of early POCD after elective and emergent CS under GA. Methods We assessed the difference between the elective and emergent groups regarding the mini-mental state examination (MMSE), hemodynamic effects such as mean blood pressure (MBP), and heart rate (HR). Paired t-test was applied for intragroup comparison, and Student's t-test (or Mann-Whitney U test, as appropriate) for intergroup comparison. Results MMSE one hour after the operation was significantly lower than preoperative MMSE in the emergent group, and the MMSE tended to return to normal values faster in the elective than in the emergent group. Moreover, we found a significantly lower MBP and higher HR (at 15, 30, and 45 minutes) in both groups compared to preoperative values. Regarding intergroup comparison, MBP (at 30 minutes) significantly decreased in the elective group compared to the emergent group. Conclusions There was a significantly lower POCD, especially at the first hour postoperatively, in the elective CS than in the emergent CS. Elective CS might have a positive effect on the women's health as a mode of delivery.
Collapse
Affiliation(s)
- Mahmoud Hussein Bahr
- Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
- Corresponding Author: Faculty of Medicine, Beni Suef University, Beni Suef, Egypt.
| | | | | | | |
Collapse
|
27
|
Troppoli TA, Zanos P, Georgiou P, Gould TD, Rudolph U, Thompson SM. Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit-Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biol Psychiatry 2022; 92:216-226. [PMID: 35120711 PMCID: PMC9198111 DOI: 10.1016/j.biopsych.2021.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal reward processing, typically anhedonia, is a hallmark of human depression and is accompanied by altered functional connectivity in reward circuits. Negative allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors (GABA-NAMs) have rapid antidepressant-like properties in rodents and exert few adverse effects, but molecular targets underlying their behavioral and synaptic effects remain undetermined. We hypothesized that GABA-NAMs act at the benzodiazepine site of GABAA receptors containing α5 subunits to increase gamma oscillatory activity, strengthen synapses in reward circuits, and reverse anhedonia. METHODS Anhedonia was induced by chronic stress in male mice and assayed by preferences for sucrose and female urine (n = 5-7 mice/group). Hippocampal slices were then prepared for electrophysiological recording (n = 1-6 slices/mouse, 4-6 mice/group). Electroencephalography power was quantified in response to GABA-NAM and ketamine administration (n = 7-9 mice/group). RESULTS Chronic stress reduced sucrose and female urine preferences and hippocampal temporoammonic-CA1 synaptic strength. A peripheral injection of the GABA-NAM MRK-016 restored hedonic behavior and AMPA-to-NMDA ratios in wild-type mice. These actions were prevented by pretreatment with the benzodiazepine site antagonist flumazenil. MRK-016 administration increased gamma power over the prefrontal cortex in wild-type mice but not α5 knockout mice, whereas ketamine promoted gamma power in both genotypes. Hedonic behavior and AMPA-to-NMDA ratios were only restored by MRK-016 in stressed wild-type mice but not α5 knockout mice. CONCLUSIONS α5-Selective GABA-NAMs exert rapid anti-anhedonic actions and restore the strength of synapses in reward regions by acting at the benzodiazepine site of α5-containing GABAA receptors. These results encourage human studies using GABA-NAMs to treat depression by providing readily translatable measures of target engagement.
Collapse
Affiliation(s)
- Timothy A. Troppoli
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Molecular Medicine Program, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Current address: Department of Psychology, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, 2109, PO Box 1678, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201
| | - Uwe Rudolph
- Department of Comparative Biosciences and Carl R. Woese Institute for Genomic Biology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802-6178
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,To whom correspondence should be addressed:
| |
Collapse
|
28
|
Fu N, Zhu R, Zeng S, Li N, Zhang J. Effect of Anesthesia on Oligodendrocyte Development in the Brain. Front Syst Neurosci 2022; 16:848362. [PMID: 35664684 PMCID: PMC9158484 DOI: 10.3389/fnsys.2022.848362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.
Collapse
|
29
|
Singh A, Broad J, Brenna CTA, Kaustov L, Choi S. The Effects of Dexmedetomidine on Perioperative Neurocognitive Outcomes After Noncardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ANNALS OF SURGERY OPEN 2022; 3:e130. [PMID: 37600088 PMCID: PMC10431438 DOI: 10.1097/as9.0000000000000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The purpose of this review is to examine the effect of dexmedetomidine on delayed neurocognitive recovery (dNCR; cognitive dysfunction ≥1 week postoperative) after major noncardiac surgery. Background Dexmedetomidine (DEX) effectively reduces delirium in the intensive care unit and reportedly attenuates cognitive decline following major noncardiac surgery. Ascertaining the true effect on postoperative cognition is difficult because studies are limited by suboptimal selection of cognitive assessment tools, timing of testing, and criteria for defining significant cognitive decline. Methods Prospective randomized trials comparing perioperative DEX to placebo for major noncardiac surgery assessing cognitive function ≥1 week postoperative were included. Pediatric, nonhuman, and non-English trials, and those where executive function was not assessed were excluded. Data were abstracted by 3 reviewers independently and in parallel according to PRISMA guidelines. The a priori binary primary outcome is dNCR defined as cognitive function declining by the minimal clinically important difference or accepted alternate measure (eg, Reliable Change Index ≥1.96). Bias was assessed with the Cochrane Collaboration tool. Data were pooled using a random effects model. Results Among 287 citations identified, 26 (9%) met criteria for full-text retrieval. Eleven randomized trials (1233 participants) were included for qualitative analysis, and 7 trials (616 participants) were included for meta-analysis of dNCR. Dexmedetomidine did not reduce the incidence of dNCR significantly (OR 0.57, 95% CI 0.30-1.10, P = 0.09) compared with placebo. There was no difference in the incidence of delirium (OR 0.94, 95% CI 0.55-1.63, P = 0.83) and a higher incidence of hemodynamic instability (OR 2.11, 95% CI 1.22-3.65, P = 0.008). Conclusions Dexmedetomidine does not reduce dNCR 1 week after major noncardiac surgery. This meta-analysis does not yet support the use of perioperative DEX to improve short term cognitive outcomes at this time; trials underway may yet change this conclusion while larger trials are needed to refine the point estimate of effect and examine long-term cognitive outcomes.
Collapse
Affiliation(s)
- Amara Singh
- From the Department of Anesthesia, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Perioperative Brain Health Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jeremy Broad
- From the Department of Anesthesia, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Connor T. A. Brenna
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Perioperative Brain Health Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Lilia Kaustov
- From the Department of Anesthesia, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Perioperative Brain Health Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Stephen Choi
- From the Department of Anesthesia, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Perioperative Brain Health Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
30
|
Lu J, Lu L, Yu Y, Oliphant K, Drobyshevsky A, Claud EC. Early preterm infant microbiome impacts adult learning. Sci Rep 2022; 12:3310. [PMID: 35228616 PMCID: PMC8885646 DOI: 10.1038/s41598-022-07245-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Interventions to mitigate long-term neurodevelopmental deficits such as memory and learning impairment in preterm infants are warranted. Manipulation of the gut microbiome affects host behaviors. In this study we determined whether early maturation of the infant microbiome is associated with neurodevelopment outcomes. Germ free mice colonized at birth with human preterm infant microbiomes from infants of advancing post menstrual age (PMA) demonstrated an increase in bacterial diversity and a shift in dominance of taxa mimicking the human preterm microbiome development pattern. These characteristics along with changes in a number of metabolites as the microbiome matured influenced associative learning and memory but not locomotor ability, anxiety-like behaviors, or social interaction in adult mice. As a regulator of learning and memory, brain glial cell-derived neurotrophic factor increased with advancing PMA and was also associated with better performance in associative learning and memory in adult mice. We conclude that maturation of the microbiome in early life of preterm infants primes adult associative memory and learning ability. Our findings suggest a critical window of early intervention to affect maturation of the preterm infant microbiome and ultimately improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Lei Lu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Kaitlyn Oliphant
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, 60202, USA
| | - Erika C Claud
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
31
|
Chung W, Wang DS, Khodaei S, Pinguelo A, Orser BA. GABA A Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Front Aging Neurosci 2022; 13:802582. [PMID: 35087395 PMCID: PMC8787299 DOI: 10.3389/fnagi.2021.802582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs stimulates the release of soluble factors that increase the cell-surface expression and function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs; however, the receptor targets in astrocytes for anesthetic drugs have not been identified. GABAA receptors, which are the major targets of general anesthetic drugs in neurons, are also expressed in astrocytes, raising the possibility that these drugs act on GABAA receptors in astrocytes to trigger the release of soluble factors. To date, no study has directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic drugs that are frequently used in clinical practice. Thus, the goal of this study was to determine whether the function of GABAA receptors in astrocytes was modulated by the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane. Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male mice. Astrocytes were identified by their morphologic and electrophysiologic properties. Focal puff application of GABA (300 μM) was applied with a Picospritzer system to evoke GABA responses. Currents were studied before and during the application of the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100 μM) or sevoflurane (532 μM). Results: GABA consistently evoked inward currents that were inhibited by picrotoxin. Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7, P < 0.05), respectively. Conclusion: The function of astrocytic GABAA receptors in the hippocampus was increased by etomidate and sevoflurane. Future studies will determine whether these general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of soluble factors that may contribute to PNDs.
Collapse
Affiliation(s)
- Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, Chungnam National University, Daejeon, South Korea
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arsene Pinguelo
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
32
|
Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022; 13:812905. [PMID: 35153712 PMCID: PMC8825374 DOI: 10.3389/fnsyn.2021.812905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.
Collapse
Affiliation(s)
- Iris A. Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Iris A. Speigel
| | - Hugh C. Hemmings Jr.
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
33
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
34
|
Mulkey DK, Olsen ML, Ou M, Cleary CM, Du G. Putative Roles of Astrocytes in General Anesthesia. Curr Neuropharmacol 2022; 20:5-15. [PMID: 33588730 PMCID: PMC9199541 DOI: 10.2174/1570159x19666210215120755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA;,Address correspondence to this author at the Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA; E-mail:
| | | | | | - Colin M. Cleary
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA
| | | |
Collapse
|
35
|
Chen C, Wang Y, Rao J, Tang W, Wu W, Li Y, Xu G, Zhong W. Propofol Versus Sevoflurane General Anaesthesia for Selective Impairment of Attention Networks After Gynaecological Surgery in Middle-Aged Women: A Randomised Controlled Trial. Front Psychiatry 2022; 13:917766. [PMID: 35911222 PMCID: PMC9330155 DOI: 10.3389/fpsyt.2022.917766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Attention is an essential component of cognitive function that may be impaired after surgery with anaesthesia. Propofol intravenous anaesthesia and sevoflurane inhalational anaesthesia are frequently used in gynaecological surgery. However, which type of anaesthetic has fewer cognitive effects postoperatively remains unclear. We compared the differences in attention network impairment after surgery in women receiving propofol versus sevoflurane general anaesthesia. PATIENTS AND METHODS Eighty-three patients with gynaecological diseases who were 40-60 years of age were involved in the study. All patients underwent elective gynaecological surgery under either total intravenous anaesthesia or sevoflurane inhalational anaesthesia, depending on randomisation. The efficiencies of the three attention networks were captured using the attention network test preoperatively and on the 1st and 5th postoperative days. RESULTS Both groups of patients showed differences in impairments on the 1st and 5th postoperative days. Pairwise comparisons indicated that the alerting and orienting networks of patients in the propofol group were impaired to a greater extent than those of patients in the sevoflurane group on the 1st postoperative day, while the executive control network was impaired to a lesser extent. On the 5th postoperative day, the alerting networks of both groups recovered to the baseline level. Patients in the propofol group still showed impairment of the orienting network, while patients in the sevoflurane group recovered to baseline. For the executive control network, patients in the sevoflurane group still exhibited more severe impairment than those in the propofol group. CONCLUSION In middle-aged women, propofol impaired orienting and alerting networks more than sevoflurane, while sevoflurane showed more residual impairment of the executive control network.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxue Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Rao
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weixiang Tang
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Wu
- Department of Anaesthesiology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhai Li
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghong Xu
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Zhong
- Department of Anaesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
37
|
Miranda A, Bertoglio D, Stroobants S, Staelens S, Verhaeghe J. Translation of Preclinical PET Imaging Findings: Challenges and Motion Correction to Overcome the Confounding Effect of Anesthetics. Front Med (Lausanne) 2021; 8:753977. [PMID: 34746189 PMCID: PMC8569248 DOI: 10.3389/fmed.2021.753977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Preclinical brain positron emission tomography (PET) in animals is performed using anesthesia to avoid movement during the PET scan. In contrast, brain PET scans in humans are typically performed in the awake subject. Anesthesia is therefore one of the principal limitations in the translation of preclinical brain PET to the clinic. This review summarizes the available literature supporting the confounding effect of anesthesia on several PET tracers for neuroscience in preclinical small animal scans. In a second part, we present the state-of-the-art methodologies to circumvent this limitation to increase the translational significance of preclinical research, with an emphasis on motion correction methods. Several motion tracking systems compatible with preclinical scanners have been developed, each one with its advantages and limitations. These systems and the novel experimental setups they can bring to preclinical brain PET research are reviewed here. While technical advances have been made in this field, and practical implementations have been demonstrated, the technique should become more readily available to research centers to allow for a wider adoption of the motion correction technique for brain research.
Collapse
Affiliation(s)
- Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- University Hospital Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
The Effects of General Anaesthesia and Light on Behavioural Rhythms and GABA A Receptor Subunit Expression in the Mouse SCN. Clocks Sleep 2021; 3:482-494. [PMID: 34563056 PMCID: PMC8482144 DOI: 10.3390/clockssleep3030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
General anaesthesia (GA) is known to affect the circadian clock. However, the mechanisms that underlie GA-induced shifting of the clock are less well understood. Activation of γ-aminobutyric acid (GABA)-type A receptors (GABAAR) in the suprachiasmatic nucleus (SCN) can phase shift the clock and thus GABA and its receptors represent a putative pathway via which GA exerts its effect on the clock. Here, we investigated the concurrent effects of the inhalational anaesthetic, isoflurane, and light, on mouse behavioural locomotor rhythms and on α1, β3, and γ2 GABAAR subunit expression in the SCN of the mouse brain. Behavioural phase shifts elicited by exposure of mice to four hours of GA (2% isoflurane) and light (400 lux) (n = 60) were determined by recording running wheel activity rhythms in constant conditions (DD). Full phase response curves for the effects of GA + light on behavioural rhythms show that phase shifts persist in anaesthetized mice exposed to light. Daily variation was detected in all three GABAAR subunits in LD 12:12. The γ2 subunit expression was significantly increased following GA in DD (compared to light alone) at times of large behavioural phase delays. We conclude that the phase shifting effect of light on the mouse clock is not blocked by GA administration, and that γ2 may potentially be involved in the phase shifting effect of GA on the clock. Further analysis of GABAAR subunit expression in the SCN will be necessary to confirm its role.
Collapse
|
39
|
Zuo W, Zhao J, Zhang J, Fang Z, Deng J, Fan Z, Guo Y, Han J, Hou W, Dong H, Xu F, Xiong L. MD2 contributes to the pathogenesis of perioperative neurocognitive disorder via the regulation of α5GABA A receptors in aged mice. J Neuroinflammation 2021; 18:204. [PMID: 34530841 PMCID: PMC8444589 DOI: 10.1186/s12974-021-02246-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a long-term postoperative complication in elderly surgical patients. The underlying mechanism of PND is unclear, and no effective therapies are currently available. It is believed that neuroinflammation plays an important role in triggering PND. The secreted glycoprotein myeloid differentiation factor 2 (MD2) functions as an activator of the Toll-like receptor 4 (TLR4) inflammatory pathway, and α5GABAA receptors (α5GABAARs) are known to play a key role in regulating inflammation-induced cognitive deficits. Thus, in this study, we aimed to investigate the role of MD2 in PND and determine whether α5GABAARs are involved in the function of MD2. METHODS Eighteen-month-old C57BL/6J mice were subjected to laparotomy under isoflurane anesthesia to induce PND. The Barnes maze was used to assess spatial reference learning and memory, and the expression of hippocampal MD2 was assayed by western blotting. MD2 expression was downregulated by bilateral injection of AAV-shMD2 into the hippocampus or tail vein injection of the synthetic MD2 degrading peptide Tat-CIRP-CMA (TCM) to evaluate the effect of MD2. Primary cultured neurons from brain tissue block containing cortices and hippocampus were treated with Tat-CIRP-CMA to investigate whether downregulating MD2 expression affected the expression of α5GABAARs. Electrophysiology was employed to measure tonic currents. For α5GABAARs intervention experiments, L-655,708 and L-838,417 were used to inhibit or activate α5GABAARs, respectively. RESULTS Surgery under inhaled isoflurane anesthesia induced cognitive impairments and elevated the expression of MD2 in the hippocampus. Downregulation of MD2 expression by AAV-shMD2 or Tat-CIRP-CMA improved the spatial reference learning and memory in animals subjected to anesthesia and surgery. Furthermore, Tat-CIRP-CMA treatment decreased the expression of membrane α5GABAARs and tonic currents in CA1 pyramidal neurons in the hippocampus. Inhibition of α5GABAARs by L-655,708 alleviated cognitive impairments after anesthesia and surgery. More importantly, activation of α5GABAARs by L-838,417 abrogated the protective effects of Tat-CIRP-CMA against anesthesia and surgery-induced spatial reference learning and memory deficits. CONCLUSIONS MD2 contributes to the occurrence of PND by regulating α5GABAARs in aged mice, and Tat-CIRP-CMA is a promising neuroprotectant against PND.
Collapse
Affiliation(s)
- Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ze Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China. .,Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| |
Collapse
|
40
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
41
|
Albaiceta GM, Brochard L, Dos Santos CC, Fernández R, Georgopoulos D, Girard T, Jubran A, López-Aguilar J, Mancebo J, Pelosi P, Skrobik Y, Thille AW, Wilcox ME, Blanch L. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth 2021; 127:648-659. [PMID: 34340836 DOI: 10.1016/j.bja.2021.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Rafael Fernández
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, Althaia Xarxa Assistencial Universitaria de Manresa, Universitat Internacional de Catalunya, Manresa, Spain
| | - Dimitris Georgopoulos
- Intensive Care Medicine Department, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Timothy Girard
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines VA Hospital, Hines, IL, USA; Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Mancebo
- Servei Medicina Intensiva, University Hospital Sant Pau, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Yoanna Skrobik
- Department of Medicine, McGill University, Regroupement de Soins Critiques Respiratoires, Réseau de Soins Respiratoires FRQS, Montreal, QC, Canada
| | - Arnaud W Thille
- CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France; INSERM CIC 1402 ALIVE, Université de Poitiers, Poitiers, France
| | - Mary E Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology (Critical Care Medicine), University Health Network, Toronto, ON, Canada
| | - Lluis Blanch
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
42
|
Zhang W, Xiong BR, Zhang LQ, Huang X, Yuan X, Tian YK, Tian XB. The Role of the GABAergic System in Diseases of the Central Nervous System. Neuroscience 2021; 470:88-99. [PMID: 34242730 DOI: 10.1016/j.neuroscience.2021.06.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
It is well known that the central nervous system (CNS) is a complex neuronal network and its function depends on the balance between excitatory and inhibitory neurons. Disruption of the excitatory/inhibitory (E/I) balance is the main cause for the majority of the CNS diseases. In this review, we will discuss roles of the inhibitory system in the CNS diseases. The GABAergic system as the main inhibitory system, is essential for the appropriate functioning of the CNS, especially as it is engaged in the formation of learning and memory. Many researchers have reported that the GABAergic system is involved in regulating synaptic plasticity, cognition and long-term potentiation. Some clinical manifestations (such as cognitive dysfunctions, attention deficits, etc.) have also been shown to emerge after abnormalities in the GABAergic system accompanied with concomitant diseases, that include Alzheimer's disease (AD), Parkinson's disease (PD), Autism spectrum disorder (ASD), Schizophrenia, etc. The GABAergic system consists of GABA, GABA transporters, GABAergic receptors and GABAergic neurons. Changes in any of these components may contribute to the dysfunctions of the CNS. In this review, we will synthesize studies which demonstrate how the GABAergic system participates in the pathogenesis of the CNS disorders, which may provide a new idea that might be used to treat the CNS diseases.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, 430071 Wuhan, Hubei, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
| |
Collapse
|
43
|
Orser BA. Anesthesiology: Resetting Our Sights on Long-term Outcomes: The 2020 John W. Severinghaus Lecture on Translational Science. Anesthesiology 2021; 135:18-30. [PMID: 33901279 DOI: 10.1097/aln.0000000000003798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anesthesiologists have worked relentlessly to improve intraoperative anesthesia care. They are now well positioned to expand their horizons and address many of the longer-term adverse consequences of anesthesia and surgery. Perioperative neurocognitive disorders, chronic postoperative pain, and opioid misuse are not inevitable adverse outcomes; rather, they are preventable and treatable conditions that deserve attention. The author's research team has investigated why patients experience new cognitive deficits after anesthesia and surgery. Their animal studies have shown that anesthetic drugs trigger overactivity of "memory-blocking receptors" that persists after the drugs are eliminated, and they have discovered new strategies to preserve brain function by repurposing available drugs and developing novel therapeutics that inhibit these receptors. Clinical trials are in progress to examine the cognitive outcomes of such strategies. This work is just one example of how anesthesiologists are advancing science with the goal of improving the lives of patients.
Collapse
|
44
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane. Biol Reprod 2021; 105:735-746. [PMID: 34192761 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
45
|
Wyroślak M, Lebida K, Mozrzymas JW. Induction of Inhibitory Synaptic Plasticity Enhances Tonic Current by Increasing the Content of α5-Subunit Containing GABA A Receptors in Hippocampal Pyramidal Neurons. Neuroscience 2021; 467:39-46. [PMID: 34033868 DOI: 10.1016/j.neuroscience.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
It is known that besides synaptic inhibition, there is a persistent component of inhibitory drive mediated by tonic currents which is believed to mediate majority of the total inhibitory charge in hippocampal neurons. Tonic currents, depending on cell types, can be mediated by a variety of GABAA receptor (GABAAR) subtypes but in pyramidal neurons, α5-subunit containing receptors were found to be predominant. Importantly, α5-GABAARs were implicated in both inhibitory and excitatory synaptic plasticity as well as in a variety of cognitive tasks. In the present study, we asked whether the protocol that evokes NMDAR-dependent GABAergic inhibitory long-term potentiation (iLTP) also induces the plasticity of tonic inhibition in hippocampal pyramidal neurons. Our whole-cell patch-clamp recordings revealed that the induction of this type of iLTP is associated with a marked increase in tonic current. By using the specific inverse agonist of α5-containing GABAARs (L-655,709) we provide evidence that this plastic change in tonic current is correlated with an increased proportion of this type of GABAARs. On the contrary, the iLTP induction did not affect the tonic current potentiated by THIP, indicating that the pool of δ subunit-containing GABAARs receptors remains unaffected. We conclude that the α5-GABAARs-dependent plasticity of tonic inhibition is a novel dimension of the neuroplasticity of the inhibitory drive in the hippocampal principal neurons. Overall, α5-containing GABAARs emerge as key players in a variety of plasticity mechanisms operating over a large span of time and spatial scales.
Collapse
Affiliation(s)
- Marcin Wyroślak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland.
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
46
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Mashour GA, Palanca BJA, Basner M, Li D, Wang W, Blain-Moraes S, Lin N, Maier K, Muench M, Tarnal V, Vanini G, Ochroch EA, Hogg R, Schwartz M, Maybrier H, Hardie R, Janke E, Golmirzaie G, Picton P, McKinstry-Wu AR, Avidan MS, Kelz MB. Recovery of consciousness and cognition after general anesthesia in humans. eLife 2021; 10:59525. [PMID: 33970101 PMCID: PMC8163502 DOI: 10.7554/elife.59525] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for 3 hr and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ben JA Palanca
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Mathias Basner
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wei Wang
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Stefanie Blain-Moraes
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Nan Lin
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Kaitlyn Maier
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maxwell Muench
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Vijay Tarnal
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Giancarlo Vanini
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - E Andrew Ochroch
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Rosemary Hogg
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marlon Schwartz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hannah Maybrier
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Randall Hardie
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ellen Janke
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Goodarz Golmirzaie
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Paul Picton
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
48
|
Scientific and Clinical Abstracts From WOCNext® 2021: An Online Event ♦ June 24-26, 2021. J Wound Ostomy Continence Nurs 2021; 48:S1-S49. [PMID: 37632236 DOI: 10.1097/won.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Choi S, Jerath A, Jones P, Avramescu S, Djaiani G, Syed S, Saha T, Kaustov L, Kiss A, D'Aragon F, Hedlin P, Rajamohan R, Couture EJ, Singh A, Mapplebeck JC, Wong S, Orser BA. Cognitive Outcomes after DEXmedetomidine sedation in cardiac surgery: CODEX randomised controlled trial protocol. BMJ Open 2021; 11:e046851. [PMID: 33849856 PMCID: PMC8051371 DOI: 10.1136/bmjopen-2020-046851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Older patients undergoing cardiac surgery carry the highest risk for developing major postoperative neurocognitive disorder (postoperative NCD or P-NCD) with up to 25% incidence 3 months after surgery. P-NCD is associated with significant morbidity, mortality, loss of independence, premature retirement and increased healthcare costs. This multicentre randomised trial is investigating the efficacy of postoperative dexmedetomidine sedation in reducing the incidence of major P-NCD after cardiac surgery compared with standard protocols. CODEX will be the largest interventional trial with major P-NCD as the primary outcome. METHODS AND ANALYSIS CODEX is recruiting patients ≥60 years old, undergoing elective cardiac surgery and without pre-existing major cognitive dysfunction or dementia. Eligible participants are randomised to receive postoperative dexmedetomidine or standard institutional sedation protocols in the intensive care unit. Baseline preoperative cognitive function is assessed with the computer-based Cogstate Brief Battery. The primary outcome, major P-NCD, 3 months after surgery is defined as a decrease in cognitive function ≥1.96 SD below age-matched, non-operative controls. Secondary outcomes include delirium, major P-NCD at 6/12 months, depressive symptoms, mild P-NCD and quality of surgical recovery at 3/6/12 months. The specific diagnostic criteria used in this protocol are consistent with the recommendations for clinical assessment and management of NCD from the Nomenclature Consensus Working Group on perioperative cognitive changes. Intention-to-treat analysis will compare major P-NCD at 3 months between study groups. ETHICS AND DISSEMINATION CODEX was approved by Sunnybrook Health Sciences Centre Research Ethics Board (REB) (Project ID 1743). This will be the first multicentre, randomised controlled trial to assess the efficacy of a pharmacological intervention to reduce the incidence of major P-NCD after cardiac surgery in patients ≥60 years old. Dissemination of the study results will include briefings of key findings and interpretation, conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT04289142.
Collapse
Affiliation(s)
- Stephen Choi
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Angela Jerath
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philip Jones
- Department of Anesthsia and Perioperative Medicine, University of Western Ontario, London, Ontario, Canada
| | - Sinziana Avramescu
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, Humber River Hospital, Toronto, Ontario, Canada
| | - George Djaiani
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Summer Syed
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Tarit Saha
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alex Kiss
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Frédérick D'Aragon
- Départment d'anesthésiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Peter Hedlin
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raja Rajamohan
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Etienne J Couture
- Department of Anesthesiology and Cardiac Surgical Intensive Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Amara Singh
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Josiane Cs Mapplebeck
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sophia Wong
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Beverley Anne Orser
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Basmisanil, a highly selective GABA A-α5 negative allosteric modulator: preclinical pharmacology and demonstration of functional target engagement in man. Sci Rep 2021; 11:7700. [PMID: 33833333 PMCID: PMC8032764 DOI: 10.1038/s41598-021-87307-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
GABAA-α5 subunit-containing receptors have been shown to play a key modulatory role in cognition and represent a promising drug target for cognitive dysfunction, as well as other disorders. Here we report on the preclinical and early clinical profile of a novel GABAA-α5 selective negative allosteric modulator (NAM), basmisanil, which progressed into Phase II trials for intellectual disability in Down syndrome and cognitive impairment associated with schizophrenia. Preclinical pharmacology studies showed that basmisanil is the most selective GABAA-α5 receptor NAM described so far. Basmisanil bound to recombinant human GABAA-α5 receptors with 5 nM affinity and more than 90-fold selectivity versus α1, α2, and α3 subunit-containing receptors. Moreover, basmisanil inhibited GABA-induced currents at GABAA-α5 yet had little or no effect at the other receptor subtypes. An in vivo occupancy study in rats showed dose-dependent target engagement and was utilized to establish the plasma exposure to receptor occupancy relationship. At estimated receptor occupancies between 30 and 65% basmisanil attenuated diazepam-induced spatial learning impairment in rats (Morris water maze), improved executive function in non-human primates (object retrieval), without showing anxiogenic or proconvulsant effects in rats. During the Phase I open-label studies, basmisanil showed good safety and tolerability in healthy volunteers at maximum GABAA-α5 receptor occupancy as confirmed by PET analysis with the tracer [11C]-Ro 15-4513. An exploratory EEG study provided evidence for functional activity of basmisanil in human brain. Therefore, these preclinical and early clinical studies show that basmisanil has an ideal profile to investigate potential clinical benefits of GABAA-α5 receptor negative modulation.
Collapse
|