1
|
Claiborne DT, Detwiler Z, Docken SS, Borland TD, Cromer D, Simkhovich A, Ophinni Y, Okawa K, Bateson T, Chen T, Hudson W, Trifonova R, Davenport MP, Ho TW, Boutwell CL, Allen TM. High frequency CCR5 editing in human hematopoietic stem progenitor cells protects xenograft mice from HIV infection. Nat Commun 2025; 16:446. [PMID: 39774003 PMCID: PMC11707138 DOI: 10.1038/s41467-025-55873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare, naturally occurring, homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here, we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human, mobilized hematopoietic stem progenitor cells (HSPC), resulting in a transplant that undergoes normal hematopoiesis, produces CCR5 null T cells, and renders xenograft mice refractory to HIV infection. Titration studies transplanting decreasing frequencies of CCR5 edited HSPCs demonstrate that <90% CCR5 editing confers decreasing protective benefit that becomes negligible between 54% and 26%. Our study demonstrates the feasibility of using CRISPR/Cas9/RNP to produce an HSPC transplant with high frequency CCR5 editing that is refractory to HIV replication. These results raise the potential of using CRISPR/Cas9 to produce a curative autologous HSCT and bring us closer to the development of a cure for HIV infection.
Collapse
Affiliation(s)
- Daniel T Claiborne
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Steffen S Docken
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | | | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | | | | | - Ken Okawa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Tao Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Wesley Hudson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Tony W Ho
- CRISPR Therapeutics, Boston, MA, USA
| | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
Yukselten Y, Wishah H, Li JA, Sutton RE. Targeting CCR5: A central approach to HIV treatment and cure strategies. Virology 2024; 603:110375. [PMID: 39729963 DOI: 10.1016/j.virol.2024.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
CCR5, a co-receptor critical for R5-tropic HIV entry into host cells, remains a key target for therapeutic interventions. HIV utilizes CCR5, expressed on T cells and macrophages, to facilitate viral entry. Genetic variants, such as the CCR5Δ32 homozygous mutation that confers protection to HIV infection, have made CCR5 a main target for gene-editing technologies, small-molecule inhibitors, and monoclonal antibody-based therapies. Recent studies emphasize the importance of regulating CCR5 expression at transcriptional and post-transcriptional levels and integrating this approach with traditional therapies. Particularly, the role of heterozygous CCR5Δ32 carriers who are HIV seropositive highlights the potential for targeting CCR5 in combination with other immune-regulatory mechanisms. This may lead to more effective treatment strategies and, ultimately, a functional cure for HIV. This minireview discusses the role of CCR5 in HIV pathogenesis and explores the potential of genetic and therapeutic interventions targeting CCR5 as an innovative strategy in the continued battle against HIV.
Collapse
Affiliation(s)
- Yunus Yukselten
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Hanan Wishah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
3
|
Moar P, Premeaux TA, Atkins A, Ndhlovu LC. The latent HIV reservoir: current advances in genetic sequencing approaches. mBio 2023; 14:e0134423. [PMID: 37811964 PMCID: PMC10653892 DOI: 10.1128/mbio.01344-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.
Collapse
Affiliation(s)
- Preeti Moar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Atkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
4
|
Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. Eur J Pharmacol 2022; 931:175173. [DOI: 10.1016/j.ejphar.2022.175173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
5
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
6
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
7
|
Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study. Int J Mol Sci 2022; 23:ijms23042331. [PMID: 35216446 PMCID: PMC8875109 DOI: 10.3390/ijms23042331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022] Open
Abstract
Human hematopoietic stem/progenitor cell (HSPC)-based gene therapy is a promising direction for curing HIV-1-infected individuals. The zinc finger protein (2LTRZFP) designed to target the 2-LTR-circle junction of HIV-1 cDNA was previously reported as an intracellular antiviral molecular scaffold that prevents HIV integration. Here, we elucidate the efficacy and safety of using 2LTRZFP in human CD34+ HSPCs. We transduced 2LTRZFP which has the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs using a lentiviral vector. The 2LTRZFPmCherry-transduced HSPCs were subsequently differentiated into macrophages. The expression levels of pro-apoptotic proteins of the 2LTRZFPmCherry-transduced HSPCs showed no significant difference from those of the non-transduced control. Furthermore, the 2LTRZFPmCherry-transduced HSPCs were successfully differentiated into mature macrophages, which had normal phagocytic function. The cytokine secretion assay demonstrated that 2LTRZFPmCherry-transduced CD34+ derived macrophages promoted the polarization towards classically activated (M1) subtypes. More importantly, the 2LTRZFPmCherry transduced cells significantly exhibited resistance to HIV-1 integration in vitro. Our findings demonstrate that the 2LTRZFPmCherry-transduced macrophages were found to be functionally and phenotypically normal, with no adverse effects of the anti-HIV-1 scaffold. Our data suggest that the anti-HIV-1 integrase scaffold is a promising antiviral molecule that could be applied to human CD34+ HSPC-based gene therapy for AIDS patients.
Collapse
|
8
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
9
|
Garg K, Khan AR, Taneja P. Recent developments in CCR5 regulation for HIV cure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:123-149. [PMID: 34090613 DOI: 10.1016/bs.apcsb.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) has affected millions of people worldwide. The human immunodeficiency virus (HIV) which infects T cells by using CD4 as its main receptor. Currently different treatments are available against HIV infection which can improve life expectancy of the patient but still it remains incurable. CCR5, which is also required as a co-receptor by majority of HIV strains for entry into the target cells, is now being targeted for gene therapy to develop HIV resistance in patients. In this review, we discuss different strategies that are being adapted for CCR5-gene disruption in CD4+ T cells and in hematopoietic stem cells (HSCs) to generate a HIV-resistant immune system in infected individuals. If CCR5 gene that can shape HIV-resistant T cells, it will aim in new approaches in clinical trials. But these techniques have certain weaknesses and disadvantages, and will need to be paired with other strategies to form a full HIV remedy. There is also a need to establish methods to help deter HIV re-emergence following targeted CCR5 therapy. But ultimately, this brought us a better knowledge of the road to HIV treatment.
Collapse
Affiliation(s)
- Krati Garg
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amir Riyaz Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Mashoko V, Mackinnon D, Vaughan J. Acute myeloid leukaemia with myelodysplasia-related change in a child living with human immunodeficiency virus infection, a transformation from underlying juvenile myelomonocytic leukaemia. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.4102/sajo.v4i0.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Affiliation(s)
- Nir Eyal
- Rutgers School of Public Health, Piscataway, NJ, USA.
- Center for Population-Level Bioethics and Department of Philosophy, Rutgers University, New Brunswick, NJ, USA.
| | - Perry N Halkitis
- Rutgers School of Public Health, Piscataway, NJ, USA
- Center for Health, Identity, Behavior & Prevention Studies, Newark, NJ, USA
| |
Collapse
|
12
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
13
|
Ambinder RF, Capoferri AA, Durand CM. Haemopoietic cell transplantation in patients living with HIV. Lancet HIV 2020; 7:e652-e660. [PMID: 32791046 PMCID: PMC8276629 DOI: 10.1016/s2352-3018(20)30117-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Haemopoietic cell transplantation is established as a standard treatment approach for people living with HIV who have haematological malignancies with poor prognosis. Studies with autologous and allogeneic haemopoietic cell transplantation suggest that HIV status does not adversely affect outcomes, provided that there is adequate infection prophylaxis. Attention to possible drug-drug interactions is important. Allogeneic haemopoietic cell transplantation substantially reduces the long-term HIV reservoir when complete donor chimerism is established. When transplants from CCR5Δ32 homozygous donors are used, HIV cure is possible.
Collapse
Affiliation(s)
| | - Adam A Capoferri
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
14
|
Powell AB, Ren Y, Korom M, Saunders D, Hanley PJ, Goldstein H, Nixon DF, Bollard CM, Lynch RM, Jones RB, Cruz CRY. Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:78-88. [PMID: 33005704 PMCID: PMC7508916 DOI: 10.1016/j.omtm.2020.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023]
Abstract
While antiretroviral therapy (ART) can completely suppress viremia, it is not a cure for HIV. HIV persists as a latent reservoir of infected cells, able to evade host immunity and re-seed infection following cessation of ART. Two promising immunotherapeutic strategies to eliminate both productively infected cells and reactivated cells of the reservoir are the adoptive transfer of potent HIV-specific T cells and the passive administration of HIV-specific broadly neutralizing antibodies also capable of mediating antibody-dependent cellular cytotoxicity (ADCC). The simultaneous use of both as the basis of a single therapeutic has never been explored. We therefore sought to modify HIV-specific T cells from HIV-naive donors (to allow their use in the context of allotransplant, a promising platform for sterilizing cures) so they are able to secrete a broadly neutralizing antibody (bNAb) directed against the HIV envelope to elicit ADCC. We designed an antibody construct comprising bNAb 10-1074 heavy and light chains, fused to IgG3 Fc to elicit ADCC, with truncated cluster of differentiation 19 (CD19) as a selectable marker. HIV-specific T cells were expanded from HIV-naive donors by priming with antigen-presenting cells expressing overlapping HIV antigens in the presence of cytokines. T cells retained specificity against Gag, Nef, and Pol peptides (218.55 ± 300.14 interferon γ [IFNγ] spot-forming cells [SFC]/1 × 105) following transduction (38.92 ± 25.30) with the 10-1074 antibody constructs. These cells secreted 10-1074 antibodies (139.04 ± 114.42 ng/mL). The HIV-specific T cells maintained T cell function following transduction, and the secreted 10-1074 antibody bound HIV envelope (28.13% ± 19.42%) and displayed ADCC activity (10.47% ± 4.11%). Most critically, the 10-1074 antibody-secreting HIV-specific T cells displayed superior in vitro suppression of HIV replication. In summary, HIV-specific T cells can be engineered to produce antibodies mediating ADCC against HIV envelope-expressing cells. This combined innate/adaptive approach allows for synergy between the two immune arms, broadens the target range of the immune therapy, and provides further insight into what defines an effective anti-HIV response.
Collapse
Affiliation(s)
- Allison B. Powell
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Yanqin Ren
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Maria Korom
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Patrick J. Hanley
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Harris Goldstein
- Department of Pediatrics and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Catherine M. Bollard
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Conrad Russell Y. Cruz
- George Washington University Cancer Center, George Washington University, Washington, DC, USA
- Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC, USA
- Corresponding author: Conrad Russell Y. Cruz, 111 Michigan Ave NW, Washington, DC 20010, USA.
| |
Collapse
|
15
|
Almeida MJ, Matos A. Designer Nucleases: Gene-Editing Therapies using CCR5 as an Emerging Target in HIV. Curr HIV Res 2020; 17:306-323. [PMID: 31652113 DOI: 10.2174/1570162x17666191025112918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS), caused by the Human Immunodeficiency Virus (HIV), is a life-threatening disorder that persists worldwide as a severe health problem. Since it was linked with the HIV attachment process, the Chemokine receptor, CCR5, has been at the development leading edge of several gene-based therapies. Given the shortcomings of the current antiretroviral treatment procedure and the non-availability of a licensed vaccine, the aptitude to modify complex genomes with Designer Nucleases has had a noteworthy impact on biotechnology. Over the last years, ZFN, TALEN and CRISPR/Cas9 gene-editing technology have appeared as a promising solution that mimics the naturally occurring CCR5/Δ32 mutation and permanently guarantees the absence of CCR5-expression on the surface of HIV target-cells, leading to a continuous resistance to the virus entry and, ultimately, proving that cellular immunization from infection could be, in fact, a conceivable therapeutic approach to finally achieve the long-awaited functional cure of HIV.
Collapse
Affiliation(s)
- Maria João Almeida
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Matos
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Research Centre on Chemical Processes Engineering and Forest Products (CIEPQF), Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
An RNA-Directed Gene Editing Strategy for Attenuating the Infectious Potential of Feline Immunodeficiency Virus-Infected Cells: A Proof of Concept. Viruses 2020; 12:v12050511. [PMID: 32380756 PMCID: PMC7291242 DOI: 10.3390/v12050511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022] Open
Abstract
Modern antiretroviral therapy for immunodeficiency viruses, although remarkably effective in controlling viral transcription, and overt virus-associated morbidity, has failed to absolutely eradicate retroviruses from their infected hosts as a result of proviral integration in long-lived reservoir cells. Immunodeficiency virus-infected patients are therefore consigned to lifelong antiviral therapy as a means to control viremia, viral transmission, and infection-associated morbidity. Unfortunately, lifelong antiviral therapies can be difficult for patients to continuously maintain and may be associated with therapy-specific morbidities. Patient advocates have argued for new methods to achieve retroviral eradication. As a proof-of-concept study, a lentivirus-delivered RNA-directed gene editing strategy was utilized in a series of in vitro experiments in an attempt to attenuate the feline immunodeficiency virus (FIV) proviral load, viral transcription, and production of infectious virions. We found that a feline T lymphocyte cell line (MCH5-4) treated with an FIV-specific clustered regularly interspersed short palindromic repeats (CRISPR)-associated protein 9 (Cas9) gene editing tool resulted in a reduction of cell-free viral RNA relative to control cells. Decreased infectious potential was demonstrated in a two-step FIV infection study-naïve MCH5-4 cells infected with cell-free FIV harvested from FIV-infected and CRISPR lentivirus-treated cells had less integrated proviral DNA than control cells. This study represents the initial steps towards the development of an effective method of proviral eradication in an immunodeficiency virus-infected host.
Collapse
|
17
|
Kalidasan V, Theva Das K. Lessons Learned From Failures and Success Stories of HIV Breakthroughs: Are We Getting Closer to an HIV Cure? Front Microbiol 2020; 11:46. [PMID: 32082282 PMCID: PMC7005723 DOI: 10.3389/fmicb.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
Collapse
Affiliation(s)
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
18
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
19
|
Gavegnano C, Savarino A, Owanikoko T, Marconi VC. Crossroads of Cancer and HIV-1: Pathways to a Cure for HIV. Front Immunol 2019; 10:2267. [PMID: 31636630 PMCID: PMC6788429 DOI: 10.3389/fimmu.2019.02267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, a second individual (the “London patient”) with HIV-1 infection and concomitant leukemia was cured of both diseases by a conditioning myeloablative regimen followed by transplantation of stem cells bearing the homozygous CCR5 Δ32 mutation. The substantial risks and cost associated with this procedure render it unfeasible on a large scale. This strategy also indicates that a common pathway toward a cure for both HIV and cancer may exist. Successful approaches to curing both diseases should ideally possess three components, i.e., (1) direct targeting of pathological cells (neoplastic cells in cancer and the HIV-infected reservoir cells), (2) subsequent impediment to reconstitution of the pool of pathological cells and (3) sustained, immunologic control of the disease (both diseases are characterized by detrimental immune hyper-activation that hinders successful establishment of immunity). In this review, we explore medications that are either investigational or FDA-approved anticancer treatments that may be employed to achieve the goal of curing HIV-1. These include: thioredoxin reductase inhibitors (phases 1–3), immune checkpoint inhibitors (phases 1, 3), Jak inhibitors (FDA approved for arthritis and multiple cancer indications, summarized in Table 1). Of note, some of these medications such as arsenic trioxide and Jak inhibitors may also reversibly down regulate CCR5 expression on CD4+ T-cells, thus escaping the ethical issues of inducing or transferring mutations in CCR5 that are presently the subject of interest as it relates to HIV-1 cure strategies.
Collapse
Affiliation(s)
- Christina Gavegnano
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Taofeek Owanikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Vincent C Marconi
- Emory Vaccine Center, Rollins School of Public Health, Emory University School of Medicine, Atlanta, GA, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
20
|
Dobson G, Klein N, Veys P, Qasim W, Silva J, Cheng IL, Shingadia D, Tudor-Williams G, Watters SA, Lyall H, Rao A, Foster C, Bamford A. Persistence of HIV reservoir following successful haematopoietic stem cell transplant for juvenile myelomonocytic leukaemia in a child with perinatally acquired HIV. J Virus Erad 2019; 5:174-177. [PMID: 31700667 PMCID: PMC6816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This report describes a case of juvenile myelomonocytic leukaemia (JMML) on a background of both perinatally acquired HIV infection and congenital cytomegalovirus, and management of antiretroviral therapy during haematopoietic stem cell transplant. Peripheral blood HIV viral load remained below the lower limit of detection throughout and following transplant and is currently <20 RNA copies/mL. The child is currently in remission from JMML, but HIV DNA remains detectable despite myeloablative conditioning and sustained plasma HIV viral suppression.
Collapse
Affiliation(s)
- G Dobson
- Paediatric Infectious Diseases Department,
Great Ormond Street Hospital for Children NHS Foundation Trust,
London,
UK
| | - N Klein
- Paediatric Infectious Diseases Department,
Great Ormond Street Hospital for Children NHS Foundation Trust,
London,
UK,UCL Great Ormond Street Institute of Child Health,
London,
UK
| | - P Veys
- UCL Great Ormond Street Institute of Child Health,
London,
UK,Paediatric Bone Marrow Transplant Department,
Great Ormond Street Hospital NHS Foundation Trust,
London,
UK
| | - W Qasim
- UCL Great Ormond Street Institute of Child Health,
London,
UK,Paediatric Immunology Department,
Great Ormond Street Hospital NHS Foundation Trust,
London,
UK
| | - J Silva
- Paediatric Bone Marrow Transplant Department,
Great Ormond Street Hospital NHS Foundation Trust,
London,
UK
| | - IL Cheng
- Paediatric Pharmacy Department,
Great Ormond Street Hospital NHS Foundation Trust,
London,
UK
| | - D Shingadia
- Paediatric Infectious Diseases Department,
Great Ormond Street Hospital for Children NHS Foundation Trust,
London,
UK,UCL Great Ormond Street Institute of Child Health,
London,
UK
| | - G Tudor-Williams
- Paediatric Infectious Diseases Department,
St Mary's Hospital,
Imperial College Healthcare NHS Foundation Trust,
London,
UK,Division of Infectious Diseases,
Imperial College London,
London,
UK
| | - SA Watters
- UCL Great Ormond Street Institute of Child Health,
London,
UK
| | - H Lyall
- Paediatric Infectious Diseases Department,
St Mary's Hospital,
Imperial College Healthcare NHS Foundation Trust,
London,
UK
| | - A Rao
- Paediatric Haematology Department,
Great Ormond Street Hospital NHS Foundation Trust,
London,
UK
| | - C Foster
- Paediatric Infectious Diseases Department,
St Mary's Hospital,
Imperial College Healthcare NHS Foundation Trust,
London,
UK
| | - A Bamford
- Paediatric Infectious Diseases Department,
Great Ormond Street Hospital for Children NHS Foundation Trust,
London,
UK,UCL Great Ormond Street Institute of Child Health,
London,
UK,Corresponding author: Alasdair Bamford
Paediatric Infectious Diseases Department,
Great Ormond Street Hospital,
Great Ormond Street,
LondonWC1N 3JH,
UK
| |
Collapse
|
21
|
Dobson G, Klein N, Veys P, Qasim W, Silva J, Cheng I, Shingadia D, Tudor-Williams G, Watters S, Lyall H, Rao A, Foster C, Bamford A. Persistence of HIV reservoir following successful haematopoietic stem cell transplant for juvenile myelomonocytic leukaemia in a child with perinatally acquired HIV. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Small RNAs to treat human immunodeficiency virus type 1 infection by gene therapy. Curr Opin Virol 2019; 38:10-20. [PMID: 31112858 DOI: 10.1016/j.coviro.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Current drug therapies for human immunodeficiency virus type 1 (HIV) infection are effective in preventing progression to acquired immune deficiency syndrome but do not eliminate the infection and are associated with unwanted side effects. A potential alternative is to modify the genome of patient cells via gene therapy to confer HIV resistance to these cells. Small RNAs are the largest and most diverse group of anti-HIV genes that have been developed for engineering HIV resistant cells. In this review, we summarize progress on the three major classes of anti-HIV RNAs including short hairpin RNAs that use the RNA interference pathway, RNA decoys and aptamers that bind specifically to a protein or RNA as well as ribozymes that mediate cleavage of specific targets. We also review methods used for the delivery of these genes into the genome of patient cells and provide some perspectives on the future of small RNAs in HIV therapy.
Collapse
|
23
|
Spagnuolo V, Uberti-Foppa C, Castagna A. Pharmacotherapeutic management of HIV in transplant patients. Expert Opin Pharmacother 2019; 20:1235-1250. [PMID: 31081726 DOI: 10.1080/14656566.2019.1612364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In the last two decades, an increasing number of people living with HIV (PLWH) have undergone solid-organ and hematopoietic cell transplantation as a treatment of end-stage organ and hematological diseases, respectively. Although transplant outcomes are more than satisfactory, transplantation in PLWH is still challenging for clinicians because of concerns regarding potentially higher rates of infective complications, higher risks of allograft rejection, and drug-drug interactions between antiretroviral drugs and immunosuppressive agents. AREAS COVERED This review provides an overview of transplantation in PLWH, with focus on the management of combination antiretroviral therapy in this population. EXPERT OPINION Solid-organ and hematopoietic cell transplantations should be proposed without any reservation to all PLWH who may benefit from them. Particular attention should be paid to possible drug-drug interactions between antiretrovirals and immunosuppressive agents; moreover, when feasible, integrase strand transfer inhibitor-based antiretroviral regimens should be preferred to protease and non-nucleoside reverse transcriptase inhibitors. Considering the worse prognosis in HIV/hepatitis C virus (HCV) transplant recipients, treatment of HCV with new direct-acting antivirals (DAAs) represents a key issue in the management of this population. However, the timing of treatment (before or early after transplant) should be individualized by considering short-term prognosis, access to transplant, and comorbidities.
Collapse
Affiliation(s)
- Vincenzo Spagnuolo
- a Faculty of Medicine and Surgery , Vita-Salute San Raffaele University , Milan , Italy.,b Clinic of Infectious Diseases , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute , Milan , Italy
| | - Caterina Uberti-Foppa
- a Faculty of Medicine and Surgery , Vita-Salute San Raffaele University , Milan , Italy.,b Clinic of Infectious Diseases , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute , Milan , Italy
| | - Antonella Castagna
- a Faculty of Medicine and Surgery , Vita-Salute San Raffaele University , Milan , Italy.,b Clinic of Infectious Diseases , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
24
|
Zhang HX, Zhang Y, Yin H. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Mol Ther 2019; 27:735-746. [PMID: 30803822 PMCID: PMC6453514 DOI: 10.1016/j.ymthe.2019.01.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022] Open
Abstract
Genome-editing technologies based on programmable nucleases have significantly broadened our ability to make precise and direct changes in the genomic DNA of various species, including human cells. Delivery of programmable nucleases into the target tissue or cell is one of the pressing challenges in transforming the technology into medicine. In vitro-transcribed (IVT) mRNA-mediated delivery of nucleases has several advantages, such as transient expression with efficient in vivo and in vitro delivery, no genomic integration, a potentially low off-target rate, and high editing efficiency. This review focuses on key barriers related to IVT mRNA delivery, on developed modes of delivery, and on the application and future prospects of mRNA encoding nuclease-mediated genome editing in research and clinical trials.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Medical Research Institute, Wuhan University, 430071 Wuhan, China
| | - Ying Zhang
- Medical Research Institute, Wuhan University, 430071 Wuhan, China.
| | - Hao Yin
- Department of Urology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Medical Research Institute, Wuhan University, 430071 Wuhan, China.
| |
Collapse
|
25
|
Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 2018; 9:4438. [PMID: 30361514 PMCID: PMC6202377 DOI: 10.1038/s41467-018-06736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART. Transplant results in ~100% myeloid donor chimerism, and up to 100% T-cell chimerism. Between 9 and 47 days post-transplant, terminal analysis shows that while cell-associated SHIV DNA levels are reduced in the blood and in lymphoid organs post-transplant, the SHIV reservoir persists in multiple organs, including the brain. Sorting of donor-vs.-recipient cells reveals that this reservoir resides in recipient cells. Moreover, tetramer analysis indicates a lack of virus-specific donor immunity post-transplant during continuous cART. These results suggest that early post-transplant, allo-HCT is insufficient for recipient reservoir eradication despite high-level donor chimerism and GVHD. Allogeneic hematopoietic cell transplantation (allo-HCT) has led to the cure of HIV in one individual, but the underlying mechanisms are unclear. Here, the authors present a model of allo-HCT in SHIV-infected nonhuman primates and show that the SHIV reservoir persists in multiple tissues early after transplantation.
Collapse
|
26
|
Graft-versus-leukaemia effect post fludarabine, melphalan and alemtuzumab reduced intensity allogeneic stem cell transplantat in HIV-infected patient with acute myeloid leukaemia. Bone Marrow Transplant 2018; 53:1518-1521. [PMID: 30116019 DOI: 10.1038/s41409-018-0297-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 06/05/2018] [Accepted: 07/21/2018] [Indexed: 02/01/2023]
Abstract
Allogeneic stem cell transplantation (Allo-HSCT) is sine qua non to cure high-risk acute myeloid leukaemia (AML). In spite the advent of highly active antiretroviral treatment, HIV-infected patients display a remarkable risk for haematological neoplasms such as non-Hodgkin lymphomas, Hodgkin lymphoma and acute leukaemia. Several case series have confirmed the efficacy of the autologous stem cell transplantation for the treatment of non-Hodgkin lymphomas in the HIV setting. Nonetheless, there is a paucity of data for the role of the Allo-HSCT in HIV-infected individuals with haematological malignancies. Herein, we presented the successful long-term outcome of a HIV-infected patient who received reduced intensity conditioned, matched unrelated donor transplant with alemtuzumab as graft-versus-host disease prophylaxis for therapy-related acute myeloid leukaemia. We propose that Allo-HSCT in HIV patients is safe and that alemtuzumab-based conditioning could further work to eradicate HIV in those whose donor is not CCR5 homozygous.
Collapse
|
27
|
Loucif H, Gouard S, Dagenais-Lussier X, Murira A, Stäger S, Tremblay C, Van Grevenynghe J. Deciphering natural control of HIV-1: A valuable strategy to achieve antiretroviral therapy termination. Cytokine Growth Factor Rev 2018; 40:90-98. [PMID: 29778137 DOI: 10.1016/j.cytogfr.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Antiretroviral therapy (ART) has dramatically reduced HIV-1-associated morbidity and mortality, and has transformed HIV-1 infection into a manageable chronic condition by suppressing viral replication. However, despite recent patient care improvements, ART still fails to cure HIV-1 infection due to the inability to counteract immune defects and metabolic disturbances that are associated with residual inflammation alongside viral persistence. Life-long drug administration also results in multiple side-effects in patients including lipodystrophy and insulin resistance. Thus, it is critical to find new ways to reduce the length of treatment and facilitate the termination of ART, for example by boosting protective immunity. The rare ability of some individuals to naturally control HIV-1 infection despite residual inflammation could be exploited to identify molecular mechanisms involved in host protection that may function as potential therapeutic targets. In this review, we highlight evidence illustrating the molecular and metabolic advantages of HIV-1 controllers over ART treated patients that contribute to the maintenance of effective antiviral immunity.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Steven Gouard
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Armstrong Murira
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche de l'Université de Montréal, Montréal, QC, Canada
| | - Julien Van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada.
| |
Collapse
|
28
|
Peterson CW, Wang J, Deleage C, Reddy S, Kaur J, Polacino P, Reik A, Huang ML, Jerome KR, Hu SL, Holmes MC, Estes JD, Kiem HP. Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy. PLoS Pathog 2018; 14:e1006956. [PMID: 29672640 PMCID: PMC5908070 DOI: 10.1371/journal.ppat.1006956] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP) model of latent infection using simian/human immunodeficiency virus (SHIV) and combination antiretroviral therapy (cART) in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs) persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05), relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.
Collapse
Affiliation(s)
- Christopher W. Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jianbin Wang
- Sangamo Therapeutics, Richmond, CA, United States of America
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Sowmya Reddy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jasbir Kaur
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Patricia Polacino
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Andreas Reik
- Sangamo Therapeutics, Richmond, CA, United States of America
| | - Meei-Li Huang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Shiu-Lok Hu
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
| | | | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
29
|
Brooks RW, Robbins PD. Treating Age-Related Diseases with Somatic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:29-45. [DOI: 10.1007/978-3-319-74470-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Abstract
Research over the past decade has resulted in a much-improved understanding of how and where HIV persists in patients on otherwise suppressive antiretroviral therapy (ART). It has become clear that the establishment of a latent infection in long-lived cells is the key barrier to curing HIV or allowing for sustained ART-free remission. Informed by in vitro and ex vivo studies, several therapeutic approaches aimed at depleting the pool of latently infected cells have been tested in small-scale experimental clinical trials including studies of ART intensification, genome editing, ART during acute/early infection and latency reversal. Many studies have focused on the use of latency-reversing agents (LRAs) to induce immune- or virus-mediated elimination of virus-producing cells. These trials have been instrumental in establishing safety and have shown that it is possible to impact the state HIV latency in patients on suppressive ART. However, administration of LRAs alone has thus far not demonstrated an effect on the frequency of latently infected cells or the time to virus rebound during analytical interruption of ART. More recently, there has been an enhanced focus on immune-based therapies in the onwards search for an HIV cure including therapeutic vaccines, toll-like receptor agonists, broadly neutralising antibodies, immune checkpoint inhibitors, interferon-α and interleukin therapy. In ongoing studies immunotherapy interventions are also tested in combination with latency reversal. In this chapter, the overall results of these clinical interventions ultimately aimed at a cure for HIV are presented and discussed.
Collapse
|
31
|
Peterson CW, Benne C, Polacino P, Kaur J, McAllister CE, Filali-Mouhim A, Obenza W, Pecor TA, Huang ML, Baldessari A, Murnane RD, Woolfrey AE, Jerome KR, Hu SL, Klatt NR, DeRosa S, Sékaly RP, Kiem HP. Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight 2017; 2:e91230. [PMID: 28239658 DOI: 10.1172/jci.insight.91230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The conditioning regimen used as part of the Berlin patient's hematopoietic cell transplant likely contributed to his eradication of HIV infection. We studied the impact of conditioning in simian-human immunodeficiency virus-infected (SHIV-infected) macaques suppressed by combination antiretroviral therapy (cART). The conditioning regimen resulted in a dramatic, but incomplete depletion of CD4+ and CD8+ T cells and CD20+ B cells, increased T cell activation and exhaustion, and a significant loss of SHIV-specific Abs. The disrupted T cell homeostasis and markers of microbial translocation positively correlated with an increased viral rebound after cART interruption. Quantitative viral outgrowth and Tat/rev-induced limiting dilution assays showed that the size of the latent SHIV reservoir did not correlate with viral rebound. These findings identify perturbations of the immune system as a mechanism for the failure of autologous transplantation to eradicate HIV. Thus, transplantation strategies may be improved by incorporating immune modulators to prevent disrupted homeostasis, and gene therapy to protect transplanted cells.
Collapse
Affiliation(s)
- Christopher W Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Clarisse Benne
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Patricia Polacino
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Jasbir Kaur
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cristina E McAllister
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Willi Obenza
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tiffany A Pecor
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Robert D Murnane
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Ann E Woolfrey
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Laboratory Medicine
| | - Shiu-Lok Hu
- Washington National Primate Research Center, Seattle, Washington, USA.,Department of Pharmaceutics and
| | - Nichole R Klatt
- Washington National Primate Research Center, Seattle, Washington, USA.,Department of Pharmaceutics and
| | - Stephen DeRosa
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rafick P Sékaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hans-Peter Kiem
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Abstract
Combination antiretroviral therapy (cART) is highly effective at preventing morbidity and mortality due to infection with human immunodeficiency virus (HIV), but does not eradicate the virus. Consequently, cART must be administered life-long. Recent progress has stimulated research towards a cure of HIV infection. Approaches under investigation include hematopoietic stem cell transplantation, latency reactivating agents, immune based therapies, and cell-based therapies. Each of these approaches carries potential risks that must be weighed against the availability of safe and effective cART. Balancing the risks and benefits of this research poses unique challenges to potential study participants, clinicians and investigators.
Collapse
Affiliation(s)
- Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Govorovskaya I, Khromova E, Suslova T, Alexeev L, Kofiadi I. The Frequency of CCR5del32 Mutation in Populations of Russians, Tatars and Bashkirs of Chelyabinsk Region, Russia. Arch Immunol Ther Exp (Warsz) 2017; 64:109-112. [PMID: 28083604 DOI: 10.1007/s00005-016-0429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The distribution of genetic variants associated with natural resistance to viral infections can vary among human ethnic groups due to evolutionary factors, defining the different epidemiologic background of world populations. The polymorphisms, defining the natural resistance to HIV-infection and the rate of progression up to AIDS, are very important since epidemic is still on rise. We have studied the distribution of allele and genotype frequencies of CCR5delta32 mutation in major populations inhabiting Chelyabinsk region of the Russian Federation. Genetic survey included the population of 509 potential blood marrow donors: Russians (N = 300), Bashkirs (N = 118) and Tatars (N = 91). The genotyping assay was performed using real-time polymerase chain reaction (real-time PCR). The genotypes were defined by melting curve analysis. The CCR5delta32 allele and CCR5delta32/delta32 genotype are presented in population of Russians in Chelyabinsk region with the frequencies of F x = 10.83% and P x = 1.67, for the CCR5delta32 allele and its homozygosity, respectively. In populations of Bashkirs and Tatars CCR5delta32 allele and CCR5delta32/delta32 genotype are presented at lower frequencies of F x = 6.36%/P x = 0.85 and F x = 7.14%/P x = 1.10, respectively. These data are consistent with the theory of northern origin of the CCR5delta32 mutation.
Collapse
Affiliation(s)
- Irina Govorovskaya
- FSBEI HE "Chelyabinsk State University", Chelyabinsk, Russia.,SBHI "Chelyabinsk Regional Hemotransfusion Station", Chelyabinsk, Russia
| | - Elena Khromova
- FSBEI HE "Chelyabinsk State University", Chelyabinsk, Russia
| | - Tatiana Suslova
- FSBEI HE "Chelyabinsk State University", Chelyabinsk, Russia. .,SBHI "Chelyabinsk Regional Hemotransfusion Station", Chelyabinsk, Russia.
| | - Leonid Alexeev
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Ilya Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| |
Collapse
|
34
|
LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun 2016; 7:12719. [PMID: 27596364 PMCID: PMC5025878 DOI: 10.1038/ncomms12719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Haematopoietic stem cells (HSCs) can differentiate into cells of all lineages in the blood. However, the mechanisms by which cytokines in the blood affect HSC homeostasis remain largely unknown. Here we show that leukocyte cell-derived chemotaxin 2 (LECT2), a multifunctional cytokine, induces HSC expansion and mobilization. Recombinant LECT2 administration results in HSC expansion in the bone marrow and mobilization to the blood via CD209a. The effect of LECT2 on HSCs is reduced after specific depletion of macrophages or reduction of osteolineage cells. LECT2 treatment reduces the tumour necrosis factor (TNF) expression in macrophages and osteolineage cells. In TNF knockout mice, the effect of LECT2 on HSCs is reduced. Moreover, LECT2 induces HSC mobilization in irradiated mice, while granulocyte colony-stimulating factor does not. Our results illustrate that LECT2 is an extramedullar cytokine that contributes to HSC homeostasis and may be useful to induce HSC mobilization.
Collapse
|
35
|
Affiliation(s)
- Gero Hütter
- a Cellex GmbH , Dresden , Germany.,b TU Dresden , Universitätsklinikum Carl Gustav Carus , Dresden , Germany
| |
Collapse
|
36
|
Siliciano JD, Siliciano RF. Recent developments in the effort to cure HIV infection: going beyond N = 1. J Clin Invest 2016; 126:409-14. [PMID: 26829622 DOI: 10.1172/jci86047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Combination antiretroviral therapy (ART) can suppress plasma HIV to undetectable levels, allowing HIV-infected individuals who are treated early a nearly normal life span. Despite the clear ability of ART to prevent morbidity and mortality, it is not curative. Even in individuals who have full suppression of viral replication on ART, there are resting memory CD4+ T cells that harbor stably integrated HIV genomes, which are capable of producing infectious virus upon T cell activation. This latent viral reservoir is considered the primary obstacle to the development of an HIV cure, and recent efforts in multiple areas of HIV research have been brought to bear on the development of strategies to eradicate or develop a functional cure for HIV. Reviews in this series detail progress in our understanding of the molecular and cellular mechanisms of viral latency, efforts to accurately assess the size and composition of the latent reservoir, the characterization and development of HIV-targeted broadly neutralizing antibodies and cytolytic T lymphocytes, and animal models for the study HIV latency and therapeutic strategies.
Collapse
|