1
|
Liao Y, Wu N, Guo L, Yang D. CLEC14A facilitates angiogenesis and alleviates inflammation in diabetic wound healing. Life Sci 2024; 358:123176. [PMID: 39454994 DOI: 10.1016/j.lfs.2024.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Delayed wound healing is a serious complication of diabetic wounds, posing a significant challenge to the treatment of patients with diabetes. Diabetic wound healing is a complex dynamic process involving angiogenesis and inflammatory responses. Currently, there are limited targeted therapies to promote diabetic wound healing. This study aimed to reveal the role of CLEC14A in the process of diabetic wound healing, with the hope of identifying new therapeutic targets to accelerate the healing of diabetic wounds. METHODS In vivo, diabetic mice were generated by combined streptozotocin (STZ) and high-fat diet treatment. The wound healing model was established in wild-type and Clec14a-/- diabetic mice. The degree of wound healing, as well as angiogenesis and inflammation during the healing process, were evaluated through Hematoxylin and Eosin (H&E) staining, immunohistochemical staining, and immunofluorescence staining. In vitro, the angiogenic activities of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed following treatment with high glucose and adenoviruses overexpressing CLEC14A, using scratch assays and tube formation assays. Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α) were utilized to evaluate the levels of inflammation in HUVECs. RESULTS CLEC14A expression was suppressed in diabetic wounds. Deletion of the Clec14a inhibited angiogenesis and activated inflammatory responses in vivo. High-glucose treatment led to decreased CLEC14A expression, impaired angiogenic capacity, and elevated inflammatory levels in vitro. However, adenoviral-mediated overexpression of CLEC14A reversed the response induced by high glucose. CONCLUSION CLEC14A accelerates diabetic wound healing by promoting angiogenesis and reducing wound inflammation.
Collapse
Affiliation(s)
- Yan Liao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Na Wu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China.
| | - Li Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Deqin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China; Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200002, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200002, China.
| |
Collapse
|
2
|
Yee EJ, Vigil I, Sun Y, Torphy RJ, Schulick RD, Zhu Y. Group XIV C-type lectins: emerging targets in tumor angiogenesis. Angiogenesis 2024; 27:173-192. [PMID: 38468017 PMCID: PMC11021320 DOI: 10.1007/s10456-024-09907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.
Collapse
Affiliation(s)
- Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Isaac Vigil
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Vemuri K, de Alves Pereira B, Fuenzalida P, Subashi Y, Barbera S, van Hooren L, Hedlund M, Pontén F, Lindskog C, Olsson AK, Lugano R, Dimberg A. CD93 maintains endothelial barrier function and limits metastatic dissemination. JCI Insight 2024; 9:e169830. [PMID: 38441970 PMCID: PMC11128212 DOI: 10.1172/jci.insight.169830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.
Collapse
Affiliation(s)
- Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Patricia Fuenzalida
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Yelin Subashi
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| |
Collapse
|
4
|
Park S, Lee YW, Oh J, Kim SJ, Lee S, Lee H. Pharmacokinetic evaluation of radiolabeled intraocular anti-CLEC14a antibody in preclinical animal species and application in humans. Clin Transl Sci 2022; 15:2938-2946. [PMID: 36129122 PMCID: PMC9747121 DOI: 10.1111/cts.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 01/26/2023] Open
Abstract
Anti-angiogenic antibodies are widely used in the treatment of neovascular macular degeneration. Human antibody targeting C-type lectin domain family 14 member A (CLEC14a) is potential therapeutic agents owing to its antiangiogenic activity. In the present study, we aimed to predict the human intraocular pharmacokinetic (PK) properties of an anti-CLEC14a antibody. I-125 labeled aflibercept and anti-CLEC14a antibody were intravitreally injected into mice, rats, and rabbits. Single photon emission computed tomography/computed tomography imaging was performed, and the intraocular radioactivity concentration (%ID/ml) was obtained. The PK parameters in those three animal species were obtained by compartmental analysis. The PK parameters in humans were estimated by allometric scaling of the animal PK parameters with consideration of the hydrodynamic radius of the antibody. The mean half-life values of intraocular I-125-labeled aflibercept in mice, rats, and rabbits were 1.13 days, 1.25 days, and 4.91 days, respectively, by analysis with a one-compartment model. The predicted human half-life of intraocular aflibercept was 5.75 days based on vitreal volume by allometric scaling. The half-life values of intraocular I-125-labeled anti-CLEC14a in mice, rats and rabbits were 1.05 days, 1.84 days, and 6.37 days, respectively, by analysis with a one-compartment model. The predicted human half-life of intraocular anti-CLEC14a was 10.29 days based on vitreal volume. According to the hydrodynamic volume of the anti-CLEC14a, the predicted human half-life of intraocular anti-CLEC14a was 9.81 days. The PK characteristics of the intraocular anti-CLEC14a antibody were evaluated noninvasively in animals using I-125 labeling, and the intraocular PK characteristics in humans were predicted using these animal data. This methodology can be applied for the development of new antiangiogenic antibodies to treat macular degeneration.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Nuclear MedicineNational Cancer CenterGoyang‐siGyeonggi‐doKorea,Division of Convergence TechnologyNational Cancer CenterGoyang‐siGyeonggi‐doKorea
| | - Youn Woo Lee
- Department of Nuclear MedicineSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doKorea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
| | - Su Jin Kim
- Department of Nuclear MedicineSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doKorea
| | - Sukmook Lee
- Department of Biopharmaceutical ChemistryKookmin UniversitySeoulKorea
| | - Ho‐Young Lee
- Department of Nuclear MedicineSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doKorea,Office of eHealth Research and BusinessSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doKorea
| |
Collapse
|
5
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
6
|
Regulation of VEGFR Signalling in Lymphatic Vascular Development and Disease: An Update. Int J Mol Sci 2021; 22:ijms22147760. [PMID: 34299378 PMCID: PMC8306507 DOI: 10.3390/ijms22147760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The importance of lymphatic vessels in a myriad of human diseases is rapidly gaining recognition; lymphatic vessel dysfunction is a feature of disorders including congenital lymphatic anomalies, primary lymphoedema and obesity, while improved lymphatic vessel function increases the efficacy of immunotherapy for cancer and neurological disease and promotes cardiac repair following myocardial infarction. Understanding how the growth and function of lymphatic vessels is precisely regulated therefore stands to inform the development of novel therapeutics applicable to a wide range of human diseases. Lymphatic vascular development is initiated during embryogenesis following establishment of the major blood vessels and the onset of blood flow. Lymphatic endothelial progenitor cells arise from a combination of venous and non-venous sources to generate the initial lymphatic vascular structures in the vertebrate embryo, which are then further ramified and remodelled to elaborate an extensive lymphatic vascular network. Signalling mediated via vascular endothelial growth factor (VEGF) family members and vascular endothelial growth factor receptor (VEGFR) tyrosine kinases is crucial for development of both the blood and lymphatic vascular networks, though distinct components are utilised to different degrees in each vascular compartment. Although much is known about the regulation of VEGFA/VEGFR2 signalling in the blood vasculature, less is understood regarding the mechanisms by which VEGFC/VEGFD/VEGFR3 signalling is regulated during lymphatic vascular development. This review will focus on recent advances in our understanding of the cellular and molecular mechanisms regulating VEGFA-, VEGFC- and VEGFD-mediated signalling via VEGFRs which are important for driving the construction of lymphatic vessels during development and disease.
Collapse
|
7
|
Su Z, Li Y, Lv H, Cui X, Liu M, Wang Z, Zhang Y, Zhen J, Tang W, Wang X, Yi F. CLEC14A protects against podocyte injury in mice with adriamycin nephropathy. FASEB J 2021; 35:e21711. [PMID: 34107098 DOI: 10.1096/fj.202100283r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Podocyte injury is a major determinant of focal segmental glomerular sclerosis (FSGS) and the identification of potential therapeutic targets for preventing podocyte injury has clinical importance for the treatment of FSGS. CLEC14A is a single-pass transmembrane glycoprotein belonging to the vascular expressed C-type lectin family. CLEC14A is found to be expressed in vascular endothelial cells during embryogenesis and is also implicated in tumor angiogenesis. However, the current understanding of the biological functions of CLEC14A in podocyte is very limited. In this study, we found that CLEC14A was expressed in podocyte and protected against podocyte injury in mice with Adriamycin (ADR)-induced FSGS. First, we observed that CLEC14A was downregulated in mice with ADR nephropathy and renal biopsies from individuals with FSGS and other forms of podocytopathies. Moreover, CLEC14A deficiency exacerbated podocyte injury and proteinuria in mice with ADR nephropathy accompanied by enhanced inflammatory cell infiltration and inflammatory responses. In vitro, overexpression of CLEC14A in podocyte had pleiotropic protective actions, including anti-inflammatory and anti-apoptosis effects. Mechanistically, CLEC14A inhibited high-mobility group box 1 protein (HMGB1) release, at least in part by directly binding HMGB1, and suppressed HMGB1-mediated signaling, including NF-κB signaling and early growth response protein 1 (EGR1) signaling. Taken together, our findings provide new insights into the pivotal role of CLEC14A in maintaining podocyte function, indicating that CLEC14A may be an innovative therapeutic target in FSGS.
Collapse
Affiliation(s)
- Zeyu Su
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyang Cui
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
8
|
Gao S, Dai Y, Rehman J. A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes. Genome Res 2021; 31:1296-1311. [PMID: 34193535 PMCID: PMC8256867 DOI: 10.1101/gr.265595.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/26/2021] [Indexed: 01/06/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful experimental approach to study cellular heterogeneity. One of the challenges in scRNA-seq data analysis is integrating different types of biological data to consistently recognize discrete biological functions and regulatory mechanisms of cells, such as transcription factor activities and gene regulatory networks in distinct cell populations. We have developed an approach to infer transcription factor activities from scRNA-seq data that leverages existing biological data on transcription factor binding sites. The Bayesian inference transcription factor activity model (BITFAM) integrates ChIP-seq transcription factor binding information into scRNA-seq data analysis. We show that the inferred transcription factor activities for key cell types identify regulatory transcription factors that are known to mechanistically control cell function and cell fate. The BITFAM approach not only identifies biologically meaningful transcription factor activities, but also provides valuable insights into underlying transcription factor regulatory mechanisms.
Collapse
Affiliation(s)
- Shang Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Jalees Rehman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- University of Illinois Cancer Center, Chicago, Illinois 60612, USA
| |
Collapse
|
9
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Peng L, Dong Y, Fan H, Cao M, Wu Q, Wang Y, Zhou C, Li S, Zhao C, Wang Y. Traditional Chinese Medicine Regulating Lymphangiogenesis: A Literature Review. Front Pharmacol 2020; 11:1259. [PMID: 33013360 PMCID: PMC7495091 DOI: 10.3389/fphar.2020.01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels, as an important part of the lymphatic system, form a fine vascular system in humans and play an important role in regulating fluid homeostasis, assisting immune surveillance and transporting dietary lipids. Dysfunction of lymphatic vessels can cause many diseases, including cancer, cardiovascular diseases, lymphedema, inflammation, rheumatoid arthritis. Research on lymphangiogenesis has become increasingly important over the last few decades. Nevertheless, the explicit role of regulating lymphangiogenesis in preventing and treating diseases remains unclear owing to the lack of a deeper understanding of the cellular and molecular pathways of the specific and tissue-specific changes in lymphangiopathy. TCM, consisting of compound extracted from TCM, Injections of single TCM and formula, is an important complementary strategy for treating disease in China. Lots of valuable traditional Chinese medicines are used as substitutes or supplements in western countries. As one of the main natural resources, these TCM are widely used in new drug research and development in Asia. Moreover, as a historical and cultural heritage, TCM has been widely applied to clinical research on lymphangiogenesis leveraging new technologies recently. Available studies show that TCM has an explicit effect on the regulation of lymphatic regeneration. This review aims to clarify the function and mechanisms, especially the inhibitory effect of TCM in facilitating and inhibiting lymphatic regeneration.
Collapse
Affiliation(s)
- Longping Peng
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Fan
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuchun Li
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Vascular Disease Department, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youhua Wang
- Cardiovascular Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhuang X, Maione F, Robinson J, Bentley M, Kaul B, Whitworth K, Jumbu N, Jinks E, Bystrom J, Gabriele P, Garibaldi E, Delmastro E, Nagy Z, Gilham D, Giraudo E, Bicknell R, Lee SP. CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight 2020; 5:138808. [PMID: 33004686 PMCID: PMC7566713 DOI: 10.1172/jci.insight.138808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 01/11/2023] Open
Abstract
Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer. T cells expressing a chimeric antigen receptor specific for the tumor vascular marker CLEC14A inhibited tumor growth in three mouse cancer models.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Federica Maione
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy, and Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Joseph Robinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Michael Bentley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Baksho Kaul
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Katharine Whitworth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Neeraj Jumbu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jonas Bystrom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pietro Gabriele
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elisabetta Garibaldi
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elena Delmastro
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Zsuzsanna Nagy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David Gilham
- Clinical and Experimental Immunotherapy Group, University of Manchester, Manchester, United Kingdom
| | - Enrico Giraudo
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy, and Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Roy Bicknell
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Steven P Lee
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
13
|
Kim Y, Lee S, Zhang H, Lee S, Kim H, Kim Y, Won MH, Kim YM, Kwon YG. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation 2020; 17:48. [PMID: 32019570 PMCID: PMC7001304 DOI: 10.1186/s12974-020-1727-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ischemic stroke is a main cause of mortality. Blood-brain barrier (BBB) breakdown appears to play a critical role in inflammation in patients with ischemic stroke and acceleration of brain injury. The BBB has a protective function and is composed of endothelial cells, pericytes, and astrocytes. In ischemic stroke treatments, regulation of vascular endothelial growth factor (VEGF)-A and vascular endothelial growth factor receptor (VEGFR)-2 is a crucial target despite adverse effects. Our previous study found that loss of C-type lectin family 14 member A (CLEC14A) activated VEGF-A/VEGFR-2 signaling in developmental and tumoral angiogenesis. Here, we evaluate the effects of BBB impairment caused by CLEC14A deficiency in ischemia-reperfusion injury. Methods In vitro fluorescein isothiocyanate (FITC)-dextran permeability, transendothelial electrical resistance (TEER) assay, and immunostaining were used to evaluate endothelial integrity. BBB permeability was assessed using Evans blue dye and FITC-dextran injection in Clec14a−/− (CLEC14A-KO) mice and wild-type mice. Middle cerebral artery occlusion surgery and behavioral assessments were performed to evaluate the neurologic damage. The change of tight junctional proteins, adhesion molecules, pro-inflammatory cytokines, and microglial were confirmed by immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction of brain samples. Results In endothelial cells, knockdown of CLEC14A increased FITC-dextran permeability and decreased transendothelial electrical resistance; the severity of this effect increased with VEGF treatment. Immunofluorescence staining revealed that tight junctional proteins were attenuated in the CLEC14A knockdown endothelial cells. Consistent with the in vitro results, CLEC14A-KO mice that were injected with Evans blue dye had cerebral vascular leakage at postnatal day 8; wild-type mice had no leakage. We used a middle cerebral artery occlusion model and found that CLEC14A-KO mice had severe infarcted brain and neurological deficits with upregulated VEGFR-2 expression. FITC-dextran leakage was present in CLEC14A-KO mice after ischemia-reperfusion, and the numbers of tight junctional molecules were significantly decreased. Loss of CLEC14A increased the pro-inflammatory response through adhesion molecule expression, and glial cells were activated. Conclusions These results suggest that activation of VEGFR-2 in CLEC14A-KO mice aggravates ischemic stroke by exacerbating cerebral vascular leakage and increasing neuronal inflammation after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sungwoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Haiying Zhang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sunghye Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Yeaji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
14
|
Sandoval DR, Gomez Toledo A, Painter CD, Tota EM, Sheikh MO, West AMV, Frank MM, Wells L, Xu D, Bicknell R, Corbett KD, Esko JD. Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. J Biol Chem 2020; 295:2804-2821. [PMID: 31964714 DOI: 10.1074/jbc.ra119.011639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate-protein interactions. The identification of membrane heparan sulfate-binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.
Collapse
Affiliation(s)
- Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Alejandro Gomez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chelsea D Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Ember M Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - M Osman Sheikh
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Alan M V West
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | | | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York 14214
| | - Roy Bicknell
- College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
15
|
Marg A, Escobar H, Karaiskos N, Grunwald SA, Metzler E, Kieshauer J, Sauer S, Pasemann D, Malfatti E, Mompoint D, Quijano-Roy S, Boltengagen A, Schneider J, Schülke M, Kunz S, Carlier R, Birchmeier C, Amthor H, Spuler A, Kocks C, Rajewsky N, Spuler S. Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7. Nat Commun 2019; 10:5776. [PMID: 31852888 PMCID: PMC6920394 DOI: 10.1038/s41467-019-13650-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle stem cells, called satellite cells and defined by the transcription factor PAX7, are responsible for postnatal muscle growth, homeostasis and regeneration. Attempts to utilize the regenerative potential of muscle stem cells for therapeutic purposes so far failed. We previously established the existence of human PAX7-positive cell colonies with high regenerative potential. We now identified PAX7-negative human muscle-derived cell colonies also positive for the myogenic markers desmin and MYF5. These include cells from a patient with a homozygous PAX7 c.86-1G > A mutation (PAX7null). Single cell and bulk transcriptome analysis show high intra- and inter-donor heterogeneity and reveal the endothelial cell marker CLEC14A to be highly expressed in PAX7null cells. All PAX7-negative cell populations, including PAX7null, form myofibers after transplantation into mice, and regenerate muscle after reinjury. Transplanted PAX7neg cells repopulate the satellite cell niche where they re-express PAX7, or, strikingly, CLEC14A. In conclusion, transplanted human cells do not depend on PAX7 for muscle regeneration. Skeletal muscle stem cells express the transcription factor Pax7. Here, the authors isolate, from human muscle, cells that are positive for the endothelial marker CLEC14A and show that despite not expressing pax7, these cells regenerate muscle and contribute to the muscle stem cell niche when transplanted into mice.
Collapse
Affiliation(s)
- Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikos Karaiskos
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie A Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janine Kieshauer
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sascha Sauer
- Berlin Institute of Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Diana Pasemann
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Edoardo Malfatti
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France.,Hôpital Universitaire Raymond Poincare, Garches, France
| | - Dominique Mompoint
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Susanna Quijano-Roy
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France.,Hôpital Universitaire Raymond Poincare, Garches, France
| | - Anastasiya Boltengagen
- Berlin Institute of Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joanna Schneider
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Markus Schülke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Séverine Kunz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Robert Carlier
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France.,Hôpital Universitaire Raymond Poincare, Garches, France
| | - Carmen Birchmeier
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helge Amthor
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France.,Hôpital Universitaire Raymond Poincare, Garches, France
| | - Andreas Spuler
- Department of Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Christine Kocks
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
16
|
Borah S, Vasudevan D, Swain RK. C-type lectin family XIV members and angiogenesis. Oncol Lett 2019; 18:3954-3962. [PMID: 31579078 DOI: 10.3892/ol.2019.10760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
The growth and metastasis of tumors is dependent on angiogenesis. C-type lectins are carbohydrate-binding proteins with a diverse range of functions. The C-type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated. They interact with extracellular matrix proteins and mediate cell-cell adhesion by their lectin-like domain. The aim of the present study was to summarize the available information on the function and mechanism of C-type lectin family XIV in angiogenesis and discuss their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Supriya Borah
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Rajeeb K Swain
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
17
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
18
|
Pociute K, Schumacher JA, Sumanas S. Clec14a genetically interacts with Etv2 and Vegf signaling during vasculogenesis and angiogenesis in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2019; 19:6. [PMID: 30953479 PMCID: PMC6451255 DOI: 10.1186/s12861-019-0188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND C-lectin family 14 Member A (Clec14a) is a transmembrane protein specifically expressed in vascular endothelial cells during embryogenesis. Previous in vitro and in vivo studies have provided conflicting data regarding Clec14a role in promoting or inhibiting angiogenesis, therefore its functional role in vascular development remains poorly understood. RESULTS Here we have generated a novel clec14a mutant allele in zebrafish embryos using TALEN genome editing. clec14a mutant embryos exhibit partial defects and delay in the sprouting of intersegmental vessels. These defects in angiogenesis are greatly increased upon the knockdown of a structurally related C1qr protein. Furthermore, a partial knockdown of an ETS transcription factor Etv2 results in a synergistic effect with the clec14a mutation and inhibits expression of early vascular markers in endothelial progenitor cells, arguing that clec14a is involved in promoting vasculogenesis. In addition, Clec14a genetically interacts with Vegfa signaling. A partial knockdown of Vegfaa function in the clec14a mutant background resulted in a synergistic inhibition of intersegmental vessel sprouting. CONCLUSIONS These results argue that clec14a is involved in both vasculogenesis and angiogenesis, and suggest that Clec14a genetically interacts with Etv2 and Vegf signaling during vascular development in zebrafish embryos.
Collapse
Affiliation(s)
- Karolina Pociute
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Present Address: Vilnius University Life Sciences Center, Sauletekio 7, 10223, Vilnius, Lithuania
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Bocci M, Sjölund J, Kurzejamska E, Lindgren D, Marzouka NAD, Bartoschek M, Höglund M, Pietras K. Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis 2018; 22:117-131. [PMID: 30132150 PMCID: PMC6510886 DOI: 10.1007/s10456-018-9642-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells sustain their metabolic needs through nutrients and oxygen supplied by the bloodstream. The requirement for tumor angiogenesis has been therapeutically exploited in the clinical setting mainly by means of inhibition of the vascular endothelial growth factor family of ligands and receptors. Despite promising results in preclinical models, the benefits for patients proved to be limited. Inadequate efficacy similarly halted the development of agents impinging on the activity of the activin receptor-like kinase (ALK)1, a member of the transforming growth factor-β superfamily. Notwithstanding its characterization as an endothelial cell marker, the full spectrum of biological processes associated with ALK1 is essentially unexplored. Here, we present data revealing the genetic network associated with ACVRL1 (the gene encoding for ALK1) expression in human cancer tissues. Computational analysis unveiled a hitherto unknown role for ACVRL1 in relation to genes modulating the functionality of the immune cell compartment. Moreover, we generated a signature of 8 genes co-expressed with ACVRL1 across different tumor types and characterized the c-type lectin domain containing protein (CLEC)14A as a potential downstream target of ACVRL1. Considering the lack of reagents for ALK1 detection that has hampered the field to date, our work provides the opportunity to validate the 8-gene signature and CLEC14A as biomarkers for ALK1 activity. Ultimately, this may help revisit the clinical development of already existing ALK1-blocking compounds as precision medicines for cancer.
Collapse
Affiliation(s)
- Matteo Bocci
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Ewa Kurzejamska
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Nour-Al-Dain Marzouka
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Mattias Höglund
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
20
|
Pedicini L, Miteva KT, Hawley V, Gaunt HJ, Appleby HL, Cubbon RM, Marszalek K, Kearney MT, Beech DJ, McKeown L. Homotypic endothelial nanotubes induced by wheat germ agglutinin and thrombin. Sci Rep 2018; 8:7569. [PMID: 29765077 PMCID: PMC5953990 DOI: 10.1038/s41598-018-25853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial barrier formation is maintained by intercellular communication through junctional proteins. The mechanisms involved in maintaining endothelial communication subsequent to barrier disruption remain unclear. It is known that low numbers of endothelial cells can be interconnected by homotypic actin-driven tunneling nanotubes (TNTs) which could be important for intercellular transfer of information in vascular physiology. Here we sought insight into the triggers for TNT formation. Wheat germ agglutinin, a C-type lectin and known label for TNTs, unexpectedly caused striking induction of TNTs. A succinylated derivative was by contrast inactive, suggesting mediation by a sialylated protein. Through siRNA-mediated knockdown we identified that this protein was likely to be CD31, an important sialylated membrane protein normally at endothelial cell junctions. We subsequently considered thrombin as a physiological inducer of endothelial TNTs because it reduces junctional contact. Thrombin reduced junctional contact, redistributed CD31 and induced TNTs, but its effect on TNTs was CD31-independent. Thrombin-induced TNTs nevertheless required PKCα, a known mediator of thrombin-dependent junctional remodelling, suggesting a necessity for junctional proteins in TNT formation. Indeed, TNT-inducing effects of wheat germ agglutinin and thrombin were both correlated with cortical actin rearrangement and similarly Ca2+-dependent, suggesting common underlying mechanisms. Once formed, Ca2+ signalling along TNTs was observed.
Collapse
Affiliation(s)
- Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Verity Hawley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hollie L Appleby
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Pan Z, Lu X, Zhao J, Gao Q, Wang J. VEGF-C is positively associated with lymphangiogenesis and lymphatic metastasis in rectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1777-1783. [PMID: 31938284 PMCID: PMC6958173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 06/10/2023]
Abstract
Rectal cancer is a common malignancywith a less than 5-year postoperative survival rate. Although it often metastasizes via the lymph and blood, the detailed mechanism of this process remains unclear. This study investigated the relationship between vascular endothelial growth factor-C (VEGF-C) expression and lymphangiogenesis, as well as its relation to lymphatic metastasis of rectal cancer. To address this question, VEGF-C expression in rectal cancer and normal tissue adjacent to tumor was assessed by immunohistochemistry. The lymphatic endothelial cell-specific marker D2-40 was used to label lymphatic endothelial cells and the lymphatic vessel density (LVD) was subsequently quantified. As expected, the expression of VEGF-C in rectal cancer (75%) was significantly higher than in normal adjacent tissue (25%), and this level correlated with differentiation, Dukes stage, and lymph node metastasis, though not with sex or age. The LVD was higher in VEGF-C positive rectal cancer than in VEGF-C negative rectal cancer, and was also higher in lymphatic metastases than in non-lymphatic metastases. These results indicate that expression of VEGF-C may impact the prognosis of rectal cancer via its effect on the formation of new lymphatic vessels. This represents a significant advance in the study of the genesis and development of rectal cancer, and may have value in clinical care.
Collapse
Affiliation(s)
- Zhubin Pan
- Department of General Surgery of Anhui Provincial Children’s HospitalHefei, Anhui, China
| | - Xianying Lu
- Department of General Surgery of Anhui Provincial Children’s HospitalHefei, Anhui, China
| | - Jindu Zhao
- Department of General Surgery of Anhui Provincial Children’s HospitalHefei, Anhui, China
| | - Qun Gao
- Department of General Surgery of Anhui Provincial Children’s HospitalHefei, Anhui, China
| | - Jian Wang
- Children’s Hospital of Soochow UniversitySuzhou, China
| |
Collapse
|
22
|
Chaqour J, Lee S, Ravichandra A, Chaqour B. Abscisic acid - an anti-angiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. J Cell Sci 2018; 131:jcs.210492. [PMID: 29361545 DOI: 10.1242/jcs.210492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) has shown anti-inflammatory and immunoregulatory properties in preclinical models of diabetes and inflammation. Herein, we studied the effects of ABA on angiogenesis, a strictly controlled process that, when dysregulated, leads to severe angiogenic disorders including vascular overgrowth, exudation, cellular inflammation and organ dysfunction. By using a 3D sprouting assay, we show that ABA effectively inhibits migration, growth and expansion of endothelial tubes without affecting cell viability. Analyses of the retinal vasculature in developing normoxic and hyperoxic mice challenged by oxygen toxicity reveal that exogenously administered ABA stunts the development and regeneration of blood vessels. In these models, ABA downregulates endothelial cell (EC)-specific growth and migratory genes, interferes with tip and stalk cell specification, and hinders the function of filopodial protrusions required for precise guidance of vascular sprouts. In addition, ABA skews macrophage polarization towards the M1 phenotype characterized by anti-angiogenic marker expression. In accordance with this, ABA treatment accelerates macrophage-induced programmed regression of fetal blood vessels. These findings reveal protective functions of ABA against neovascular growth through modulation of EC and macrophage plasticity, suggesting the potential utility of ABA as a treatment in vasoproliferative diseases.
Collapse
Affiliation(s)
- Julienne Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sangmi Lee
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Aashreya Ravichandra
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Brahim Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA .,The Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
23
|
Cell surface expression of nucleolin mediates the antiangiogenic and antitumor activities of kallistatin. Oncotarget 2017; 9:2220-2235. [PMID: 29416766 PMCID: PMC5788634 DOI: 10.18632/oncotarget.23346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Kallistatin is a unique serine proteinase inhibitor and heparin-binding protein. A previous study conducted by our group indicated that kallistatin has antiangiogenic and antitumoral activities. In the present study, we report that kallistatin specifically binds to membrane surface-expressed nucleolin with high affinity. Antibody-mediated neutralization or siRNA-induced nucleolin knockdown results in loss of kallistatin suppression of endothelial cell proliferation and migration in vitro and tumor angiogenesis and growth in vivo. In addition, we show that kallistatin is internalized and transported into cell nuclei of endothelial cells via nucleolin. Within the nucleus, kallistatin inhibits the phosphorylation of nucleolin, which is a critical step required for cell proliferation. Thus, we demonstrate that nucleolin is a novel functional receptor of kallistatin that mediates its antiangiogenic and antitumor activities. These findings provide mechanistic insights into the inhibitory effects of kallistatin on endothelial cell growth, tumor cell proliferation, and tumor-related angiogenesis.
Collapse
|
24
|
Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De Paoli P, Canzonieri V, Iozzo RV, Colombatti A, Mongiat M. The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol 2017; 64:40-53. [DOI: 10.1016/j.matbio.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 2017; 31:1615-1634. [PMID: 28947496 PMCID: PMC5647933 DOI: 10.1101/gad.303776.117] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review by Vaahtomeri et al. discusses the mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges. It describes how the lymphatic vasculature network is controlled by an intricate balance of growth factors and biomechanical cues. Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sinem Karaman
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|