1
|
Banu S, Anusha PV, Mandal K, Idris MM. Exploration of phosphoproteomic association during epimorphic regeneration. Sci Rep 2025; 15:4854. [PMID: 39924536 PMCID: PMC11808059 DOI: 10.1038/s41598-024-84735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Unravelling the intricate patterns of site-specific protein phosphorylation during Epimorphic regeneration holds the key to unlocking the secrets of tissue complexity. Understanding these precise modifications and their impact on protein function could shed light on the remarkable regenerative capacity of tissues, with potential implications for therapeutic interventions. In this study we have systematically mapped the global phosphorylation modifications within regenerating tissue of zebrafish caudal fins, elucidating the intricate landscape of signalling pathway associate with the regeneration process. Based on mass spectrometry analysis, we identified 440 phosphorylated proteins using the immunoprecipitation method with phosphoserine, phosphothreonine, and phosphotyrosine antibodies, and 74 phosphorylated proteins using the TiO₂ column enrichment method were found differentially phosphorylated during the regeneration process from 12 hpa to 7 dpa compared to the control. Interestingly 95% of the proteins identified from TiO2 enrichment method were also found to be identified through the phosphoprotein antibody pull down method impacting the high accuracy and significance of the methods and greater association of the 70 proteins undergoing differential phosphorylation during the process of regeneration. Whole mount immunohistochemistry analysis reveals high association of phosphorylation at 1dpa, 2dpa and 3dpa regeneration time points. Network pathway analysis revealed that cancer-related diseases, organismal injuries and abnormalities as the most strongly associated canonical network pathways with the differentially expressed phosphoproteome in the mechanism of regeneration. This research enhances our comprehension on protein post-translational modification in the context of zebrafish caudal fin tissue regeneration, shedding light on its prospective application in the field of regenerative medicine.
Collapse
|
2
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025:10.1038/s41401-024-01456-9. [PMID: 39775503 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
3
|
Jiang M, Zhang C, Zhang Z, Duan Y, Qi S, Zeng Q, Wang J, Zhang J, Jiang Y, Wang Y, Chen Y, Liu J. Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 16:31. [PMID: 39858578 PMCID: PMC11765366 DOI: 10.3390/genes16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear. This study aimed to determine the expressed patterns of UFMylation components in multiple tissues of leptin-deficient ob/ob mice and high-fat diet (HFD)-fed mice, which are mimicking the conditions of MASLD. METHODS The ob/ob mice and HFD-fed mice were sacrificed to collect tissues indicated in this study. Total RNA and proteins were extracted from tissues to examine the expressed patterns of UFMylation components, including UBA5, UFC1, UFL1, DDRGK1, UFSP1, UFSP2 and UFM1, by real-time PCR and western blot analysis. RESULTS The protein levels of UBA5, UFC1 and UFL1 were down-regulated in liver, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), whereas the messenger RNA (mRNA) levels of Ufl1 and Ufsp1 were both decreased in skeletal muscle, BAT, iWAT and epididymal white adipose tissue (eWAT) of ob/ob mice. In contrast, the mRNA levels of Ufsp1 in skeletal muscle, BAT, iWAT and heart, and the protein levels of UFL1 were decreased in BAT, iWAT, heart and cerebellum of HFD-fed mice. CONCLUSIONS Our findings established the expressed profiles of UFMylaiton in multiple tissues of mice mimicking MASLD, indicating an important regulation for UFMylation in these tissues' homeostasis maintenance.
Collapse
Affiliation(s)
- Mingdi Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Chenlu Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Zhengyao Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yingying Duan
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Shuaiyong Qi
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Qingyu Zeng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiabao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiawen Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Yu Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China;
| | - Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Jiang Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| |
Collapse
|
4
|
Li S, Shao R, Li S, Zhao J, Deng Q, Li P, Wei Z, Xu S, Chen L, Li B, Zou W, Zhang Z. A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass. Bone Res 2024; 12:60. [PMID: 39414788 PMCID: PMC11484961 DOI: 10.1038/s41413-024-00364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in CCN2 have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of CCN2 (NM_001901.2: c.65 G > C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish ccn2a knockout model and osteoblast lineage-specific Ccn2-deficient mice (Ccn2fl/fl;Prx1Cre) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in Ccn2fl/fl;Prx1Cre mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in CCN2 lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Shao
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiao Zhao
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Deng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuqin Xu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Zou
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China.
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
5
|
Liang Z, Ning R, Wang Z, Kong X, Yan Y, Cai Y, He Z, Liu X, Zou Y, Zhou J. The emerging roles of UFMylation in the modulation of immune responses. Clin Transl Med 2024; 14:e70019. [PMID: 39259506 PMCID: PMC11389534 DOI: 10.1002/ctm2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Post-translational modification is a rite of passage for cellular functional proteins and ultimately regulate almost all aspects of life. Ubiquitin-fold modifier 1 (UFM1) system represents a newly identified ubiquitin-like modification system with indispensable biological functions, and the underlying biological mechanisms remain largely undiscovered. The field has recently experienced a rapid growth of research revealing that UFMylation directly or indirectly regulates multiple immune processes. Here, we summarised important advances that how UFMylation system responds to intrinsic and extrinsic stresses under certain physiological or pathological conditions and safeguards immune homeostasis, providing novel perspectives into the regulatory framework and functions of UFMylation system, and its therapeutic applications in human diseases.
Collapse
Affiliation(s)
- Zhengyan Liang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Rongxuan Ning
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Zhaoxiang Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Xia Kong
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yubin Yan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yafei Cai
- Key Laboratory for Epigenetics of Dongguan City, China‐America Cancer Research InstituteGuangdong Medical UniversityDongguanChina
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| | - Xin‐guang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yongkang Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Junzhi Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
6
|
Ran J, Guo G, Zhang S, Zhang Y, Zhang L, Li D, Wu S, Cong Y, Wang X, Xie S, Zhao H, Liu H, Ou G, Zhu X, Zhou J, Liu M. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400569. [PMID: 38666385 PMCID: PMC11220646 DOI: 10.1002/advs.202400569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 07/04/2024]
Abstract
The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Guizhi Guo
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yufei Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Shian Wu
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou310036China
| | - Xiaohong Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammation BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Songbo Xie
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Huijie Zhao
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Hongbin Liu
- Center for Reproductive MedicineCheeloo College of MedicineKey Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinan250014China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesMinistry of Education Key Laboratory for Protein ScienceSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
7
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
8
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
9
|
Sun Q, Bai R, Chen S, Zhuang Z, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine demethylase 3A promotes chondrogenic differentiation of aged human dental pulp stem cells. J Dent Sci 2024; 19:86-91. [PMID: 38303882 PMCID: PMC10829671 DOI: 10.1016/j.jds.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Aging severely impairs the beneficial effects of human dental pulp stem cells (hDPSCs) on cartilage regeneration. Lysine demethylase 3A (KDM3A) is involved in regulating mesenchymal stem cells (MSCs) senescence and bone aging. In this study, we investigated the role of KDM3A in hDPSCs aging and whether KDM3A could rejuvenate aged hDPSCs to enhance their chondrogenic differentiation capacity. Materials and methods The cellular aging of hDPSCs was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Protein levels were determined using Western blot analysis. KDM3A was overexpressed in aged hDPSCs by lentivirus infection. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to determine the mRNA levels of stemness markers. Toluidine blue staining was used to evaluate the effect of KDM3A overexpression on the chondrogenic differentiation of aged hDPSCs. Results hDPSCs at passage 12 or treated with etoposide exhibited augmented cellular senescence as evidenced by increased SA-β-gal activity. KDM3A was significantly increased during senescence of hDPSCs. Overexpression of KDM3A did not affect the stemness properties but significantly promoted the chondrogenic differentiation of aged hDPSCs. Conclusion Our findings indicate that KDM3A plays an important role in the maintenance of the chondrogenic differentiation capacity of aged hDPSCs and suggest that therapies targeting KDM3A may be a novel strategy to rejuvenate aged hDPSCs.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
10
|
Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci 2024; 49:52-67. [PMID: 37945409 DOI: 10.1016/j.tibs.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.
Collapse
Affiliation(s)
- Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sayyed J Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
11
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
12
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
13
|
Yang X, Zhou T, Wang X, Xia Y, Cao X, Cheng X, Cao Y, Ma P, Ma H, Qin A, Zhao J. Loss of DDRGK1 impairs IRE1α UFMylation in spondyloepiphyseal dysplasia. Int J Biol Sci 2023; 19:4709-4725. [PMID: 37781516 PMCID: PMC10539710 DOI: 10.7150/ijbs.82765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Spondyloepiphyseal dysplasia (SEMD) is a rare disease in which cartilage growth is disrupted, and the DDRGK1 mutation is one of the causative genes. In our study, we established Ddrgk1fl/fl, Col2a1-ERT Cre mice, which showed a thickened hypertrophic zone (HZ) in the growth plate, simulating the previous reported SEMD pathology in vivo. Instead of the classical modulation mechanism towards SOX9, our further mechanism study found that DDRGK1 stabilizes the stress sensor endoplasmic reticulum-to-nucleus signaling 1 (IRE1α) to maintain endoplasmic reticulum (ER) homoeostasis. The loss of DDRGK1 decreased the UFMylation and subsequently led to increased ubiquitylation-mediated IRE1α degradation, causing ER dysfunction and activating the PERK/CHOP/Caspase3 apoptosis pathway. Further DDRGK1 K268R-mutant mice revealed the importance of K268 UFMylation site in IRE1α degradation and subsequent ER dysfunction. In conclusion, DDRGK1 stabilizes IRE1α to ameliorate ER stress and following apoptosis in chondrocytes, which finally promote the normal chondrogenesis.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Mao Z, Ma X, Jing Y, Shen M, Ma X, Zhu J, Liu H, Zhang G, Chen F. Ufmylation on UFBP1 alleviates non-alcoholic fatty liver disease by modulating hepatic endoplasmic reticulum stress. Cell Death Dis 2023; 14:584. [PMID: 37660122 PMCID: PMC10475044 DOI: 10.1038/s41419-023-06095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease characterized by lipid accumulation and endoplasmic reticulum (ER) stress, while effective therapies targeting the specific characteristics of NAFLD are limited. Ufmylation is a newly found post-translational modification process that involves the attachment of the Ubiquitin-fold modifier 1 (UFM1) protein to its substrates via ufmylation modification system. Ufmylation regulates ER stress via modifying UFM1 binding protein 1 (UFBP1), suggesting a potential role for ufmylation in NAFLD pathogenesis. However, the precise role of ufmylation in NAFLD remains unclear. Herein, we aim to elucidate the impact of ufmylation on UFBP1 in NAFLD and explore the underlying mechanisms involved. We observed increased expression of UFM1-conjugated proteins and ufmylation modification system components in livers with steatosis derived from NAFLD patients and NAFLD models. Upregulation of ufmylation on hepatic proteins appeared to be an adaptive response to hepatic ER stress in NAFLD. In vitro, knocking down UFBP1 resulted in increased lipid accumulation and lipogenesis in hepatocytes treated with free fatty acids (FFA), which could be rescued by wild-type UFBP1 (WT UFBP1) but not by a mutant form of UFBP1 lacking the main ufmylation site lys267 (UFBP1 K267R). In vivo, ufmylation on UFBP1 ameliorated obesity, hepatic steatosis, hepatic lipogenesis, dyslipidemia, insulin resistance and liver damage in mice with NAFLD induced by a high fat diet (HFD). We also demonstrated that the downregulation of UFBP1 induced ER stress, whereas the reintroduction or overexpression of UFBP1 alleviated ER stress in a manner dependent on ufmylation in NAFLD. This mechanism could be responsible for the amelioration of aberrant hepatic lipogenesis and insulin resistance in NAFLD. Our data reveal a protective role of ufmylation on UFBP1 against NAFLD and offer a specific target for NAFLD treatment.
Collapse
Affiliation(s)
- Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Minyan Shen
- School of Graduate, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200233, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
15
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
16
|
Tandra V, Anderson T, Ayala JD, Weintraub NL, Singh N, Li H, Li J. Ufmylation of UFBP1 Is Dispensable for Endoplasmic Reticulum Stress Response, Embryonic Development, and Cardiac and Intestinal Homeostasis. Cells 2023; 12:1923. [PMID: 37566002 PMCID: PMC10416869 DOI: 10.3390/cells12151923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Protein modification by ubiquitin fold modifier 1 (UFM1), termed ufmylation, regulates various physiological and pathological processes. Among emerging UFM1 targets, UFM1 binding protein 1 (UFBP1) is the first identified ufmylation substrate. Recent clinical and animal studies have demonstrated the pivotal roles of UFBP1 in development, hematopoiesis, intestinal homeostasis, chondrogenesis, and neuronal development, which has been linked to its function in maintaining endoplasmic reticulum (ER) homeostasis. However, the importance of UFBP1 ufmylation in these cellular and physiological processes has yet to be determined. It has been proposed that ufmylation of lysine 268 (267 in humans) in UFBP1 plays a critical role in mediating the effects of the ufmylation pathway. In this study, we for the first time probe the pathophysiological significance of UFBP1 ufmylation in vivo by creating and characterizing a mouse UFBP1 knockin (KI) model in which the lysine 268 of UFBP1, the amino acid accepting UFM1, was mutated to arginine. Our results showed that the K268R mutation reduced the total ufmylated proteins without altering the expression levels of individual ufmylation enzymes in mouse embryonic fibroblasts. The K268R mutation did not alter ER stress-stimuli-induced ER stress signaling or cell death in mouse embryonic fibroblasts. The homozygous KI mice were viable and morphologically indistinguishable from their littermate wild-type controls up to one year of age. Serial echocardiography revealed no cardiac functional impairment of the homozygous KI mice. Furthermore, the homozygous KI mice exhibited the same susceptibility to dextran sulfate sodium (DSS) -induced colitis as wild-type mice. Taken together, these results suggest that UFBP1 K268 is dispensable for ER stress response, embryonic development, cardiac homeostasis under physiological conditions, and intestinal homeostasis under pathological conditions. Our studies call for future investigations to understand the biological function of UFBP1 ufmylation and offer a new mouse model to determine the roles of UFBP1 ufmylation in different tissues under stress conditions.
Collapse
Affiliation(s)
- Varsha Tandra
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Travis Anderson
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan D. Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Chen F, Sheng L, Zhou T, Yan L, Loveless R, Li H, Teng Y, Cai Y. Loss of Ufl1/Ufbp1 in hepatocytes promotes liver pathological damage and carcinogenesis through activating mTOR signaling. J Exp Clin Cancer Res 2023; 42:110. [PMID: 37131258 PMCID: PMC10155312 DOI: 10.1186/s13046-023-02681-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Ufm1-specific ligase 1 (Ufl1) and Ufm1-binding protein 1 (Ufbp1), as putative targets of ubiquitin-fold modifier 1 (Ufm1), have been implicated in several pathogenesis-related signaling pathways. However, little is known about their functional roles in liver disease. METHODS Hepatocyte-specific Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were used to study their role in liver injury. Fatty liver disease and liver cancer were induced by high-fat diet (HFD) and diethylnitrosamine (DEN) administration, respectively. iTRAQ analysis was employed to screen for downstream targets affected by Ufbp1 deletion. Co-immunoprecipitation was used to determine the interactions between the Ufl1/Ufbp1 complex and the mTOR/GβL complex. RESULTS Ufl1Δ/Δhep or Ufbp1Δ/Δhep mice exhibited hepatocyte apoptosis and mild steatosis at 2 months of age and hepatocellular ballooning, extensive fibrosis, and steatohepatitis at 6-8 months of age. More than 50% of Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice developed spontaneous hepatocellular carcinoma (HCC) by 14 months of age. Moreover, Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were more susceptible to HFD-induced fatty liver and DEN-induced HCC. Mechanistically, the Ufl1/Ufbp1 complex directly interacts with the mTOR/GβL complex and attenuates mTORC1 activity. Ablation of Ufl1 or Ufbp1 in hepatocytes dissociates them from the mTOR/GβL complex and activates oncogenic mTOR signaling to drive HCC development. CONCLUSIONS These findings reveal the potential role of Ufl1 and Ufbp1 as gatekeepers to prevent liver fibrosis and subsequent steatohepatitis and HCC development by inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianci Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, 276000, China
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Wang X, Zhou T, Yang X, Cao X, Jin G, Zhang P, Guo J, Rong K, Li B, Hu Y, Liu K, Ma P, Qin A, Zhao J. DDRGK1 Enhances Osteosarcoma Chemoresistance via Inhibiting KEAP1-Mediated NRF2 Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204438. [PMID: 36965071 DOI: 10.1002/advs.202204438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/14/2023] [Indexed: 05/18/2023]
Abstract
Chemoresistance is the main obstacle in osteosarcoma (OS) treatment; however, the underlying mechanism remains unclear. In this study, it is discovered that DDRGK domain-containing protein 1 (DDRGK1) plays a fundamental role in chemoresistance induced in OS. Bioinformatic and tissue analyses indicate that higher expression of DDRGK1 correlates with advanced tumor stage and poor clinical prognosis of OS. Quantitative proteomic analyses suggest that DDRGK1 plays a critical role in mitochondrial oxidative phosphorylation. DDRGK1 knockout trigger the accumulation of reactive oxygen species (ROS) and attenuate the stability of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element. Furthermore, DDRGK1 inhibits ubiquitin-proteasome-mediated degradation of NRF2 via competitive binding to the Kelch-like ECH-associated protein 1 (KEAP1) protein, which recruits NRF2 to CULLIN(CUL3). DDRGK1 knockout attenuates NRF2 stability, contributing to ROS accumulation, which promotes apoptosis and enhanced chemosensitivity to doxorubicin (DOX) and etoposide in cancer cells. Indeed, DDRGK1 knockout significantly enhances osteosarcoma chemosensitivity to DOX in vivo. The combination of DDRGK1 knockdown and DOX treatment provides a promising new avenue for the effective treatment of OS.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Gu Jin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, P. R. China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Jiadong Guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Yibin Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Kexin Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhaizaoju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
19
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
20
|
Otaify GA, Al Baluki W, Al-Rashdi S, Al-Maawali A. Shohat type-spondyloepimetaphyseal dysplasia: Further phenotypic delineation. Eur J Med Genet 2022; 65:104640. [DOI: 10.1016/j.ejmg.2022.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
21
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
22
|
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 2022; 31:2820-2830. [PMID: 35377455 PMCID: PMC9402238 DOI: 10.1093/hmg/ddac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adetutu T Egunsula
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhiyin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y, Li H. Deficiency of Murine UFM1-Specific E3 Ligase Causes Microcephaly and Inflammation. Mol Neurobiol 2022; 59:6363-6372. [PMID: 35931931 DOI: 10.1007/s12035-022-02979-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The UFM1 conjugation system is a Ubiquitin (Ub)-like modification system that is essential for animal development and normal physiology of multiple tissues and organs. It consists of UFM1, a Ub-like modifier, and the UFM1-specific enzymes (namely E1 enzyme UBA5, E2 enzyme UFC1 E2, and E3 ligases) that catalyze conjugation of UFM1 to its specific protein targets. Clinical studies have identified rare genetic variants in human UFM1, UBA5 and UFC1 genes that were linked to early-onset encephalopathy and defective brain development, strongly suggesting the critical role of the UFM1 system in the nervous system. Yet, the physiological function of this system in adult brain remains not defined. In this study, we investigated the role of UFM1 E3 ligase in adult mouse and found that both UFL1 and UFBP1 proteins, two components of UFM1 E3 ligase, are essential for survival of mature neurons in adult mouse. Neuron-specific deletion of either UFL1 or UFBP1 led to significant neuronal loss and elevation of inflammatory response. Interestingly, loss of one allele of UFBP1 genes caused the occurrence of seizure-like events. Our study has provided genetic evidence for the indispensable role of UFM1 E3 ligase in mature neurons and further demonstrated the importance of the UFM1 system in the nervous system.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang , Jiangxi, China
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Tianyi Zhu
- Greenbrier High School, Evans, GA, 30809, USA
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A, Kulathu Y. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep 2022; 40:111168. [PMID: 35926457 PMCID: PMC9638016 DOI: 10.1016/j.celrep.2022.111168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Cummings
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sven M Lange
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Axel Knebel
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
25
|
Zhu J, Ma X, Jing Y, Zhang G, Zhang D, Mao Z, Ma X, Liu H, Chen F. P4HB UFMylation regulates mitochondrial function and oxidative stress. Free Radic Biol Med 2022; 188:277-286. [PMID: 35753586 DOI: 10.1016/j.freeradbiomed.2022.06.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
UFMylation is a ubiquitin-like modification which attaches the ubiquitin-fold modifier 1 to target proteins. To date, only a few UFMylation targets have been identified. In the current study, we demonstrated that P4HB is a new target protein for UFMylation and it can be UFMylated at three lysine residues in the form of mono-UFMylation. P4HB has oxidoreductase, chaperone and isomerase effects. It presents in the endoplasmic reticulum, mitochondria and cytosol. Next, we generated a stable HepG2 cell line, the hepatocellular cells, with defective P4HB UFMylation. Our data show that P4HB UFMylation defect promotes P4HB protein degradation via the ubiquitin-proteasome pathway. Defective P4HB UFMylation causes mitochondrial function damage, oxidative stress, and endoplasmic reticulum stress in HepG2 cells. These effects are more obvious when treating HepG2 cells with palmitic acid, which is frequently used as one of the cell models of non-alcoholic fatty liver disease (NAFLD). Our results identify UFMylation as a key post-translational modification for the maintenance of P4HB stability and biological functions in HepG2 cells, and point to P4HB UFMylation as a potential direction in the study of NAFLD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangya Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Zhang
- Department of Endocrinology, Xi'an No. 1 Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Isorhapontigenin Modulates SOX9/TOLLIP Expression to Attenuate Cell Apoptosis and Oxidative Stress in Paraquat-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3328623. [PMID: 35720190 PMCID: PMC9203234 DOI: 10.1155/2022/3328623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.
Collapse
|
27
|
Franceschi R, Iascone M, Maitz S, Marchetti D, Mariani M, Selicorni A, Soffiati M, Maines E. A missense mutation in DDRGK1 gene associated to Shohat-type spondyloepimetaphyseal dysplasia: Two case reports and a review of literature. Am J Med Genet A 2022; 188:2434-2437. [PMID: 35670300 DOI: 10.1002/ajmg.a.62857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022]
Abstract
Spondylo-epi-metaphyseal dysplasia Shohat type (SEMDSH, OMIM # 602557) is a rare skeletal dysplasia. Until recently, only eight patients of five families have been reported. The disorder is characterized by severely disproportionate short stature with a short neck, small trunk with abdominal distension, and short lower limbs. Joint laxity and bowed legs are seen. The same homozygous splicing pathogenic variant in the DDRGK1 gene was found in four Iraqi families. Here we report a homozygous missense pathogenic variant in DDRGK1 in two children from unrelated two Moroccan families. The clinical and radiological phenotypes of the affected children were similar to those previously described.
Collapse
Affiliation(s)
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Pediatric Clinic, Fondazione MBBM, S. Gerardo Hospital, Monza, Italy
| | - Daniela Marchetti
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Milena Mariani
- Pediatric Units, ASST Lariana, S.Fermo della Battaglia (CO), Italy
| | - Angelo Selicorni
- Pediatric Units, ASST Lariana, S.Fermo della Battaglia (CO), Italy
| | | | - Evelina Maines
- Pediatric Department, S. Chiara General Hospital, Trento, Italy
| |
Collapse
|
28
|
Liang Q, Jin Y, Xu S, Zhou J, Mao J, Ma X, Wang M, Cong YS. Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. J Biol Chem 2022; 298:102016. [PMID: 35525273 PMCID: PMC9168615 DOI: 10.1016/j.jbc.2022.102016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a recently identified ubiquitin-like posttranslational modification with important biological functions. However, the regulatory mechanisms governing UFM1 modification of target proteins (UFMylation) and the cellular processes controlled by UFMylation remain largely unknown. It has been previously shown that a UFM1-specific protease (UFSP2) mediates the maturation of the UFM1 precursor and drives the de-UFMylation reaction. Furthermore, it has long been thought that UFSP1, an ortholog of UFSP2, is inactive in many organisms, including human, because it lacks an apparent protease domain when translated from the canonical start codon (445AUG). Here, we demonstrate using the combination of site-directed mutagenesis, CRISPR/Cas9–mediated genome editing, and mass spectrometry approaches that translation of human UFSP1 initiates from an upstream near-cognate codon, 217CUG, via eukaryotic translation initiation factor eIF2A-mediated translational initiation rather than from the annotated 445AUG, revealing the presence of a catalytic protease domain containing a Cys active site. Moreover, we show that both UFSP1 and UFSP2 mediate maturation of UFM1 and de-UFMylation of target proteins. This study demonstrates that human UFSP1 functions as an active UFM1-specific protease, thus contributing to our understanding of the UFMylation/de-UFMylation process.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaqi Jin
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shiwen Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaohe Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
29
|
Liu L, Sun L, Chen Y, Wang M, Yu C, Huang Y, Zhao S, Du H, Chen S, Fan X, Tian W, Wu Z, Qiu G, Zhang TJ, Wu N. Delineation of dual molecular diagnosis in patients with skeletal deformity. Orphanet J Rare Dis 2022; 17:139. [PMID: 35346302 PMCID: PMC8962553 DOI: 10.1186/s13023-022-02293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal deformity is characterized by an abnormal anatomical structure of bone and cartilage. In our previous studies, we have found that a substantial proportion of patients with skeletal deformity could be explained by monogenic disorders. More recently, complex phenotypes caused by more than one genetic defect (i.e., dual molecular diagnosis) have also been reported in skeletal deformities and may complicate the diagnostic odyssey of patients. In this study, we report the molecular and phenotypic characteristics of patients with dual molecular diagnosis and variable skeletal deformities. Results From 1108 patients who underwent exome sequencing, we identified eight probands with dual molecular diagnosis and variable skeletal deformities. All eight patients had dual diagnosis consisting of two autosomal dominant diseases. A total of 16 variants in 12 genes were identified, 5 of which were of de novo origin. Patients with dual molecular diagnosis presented blended phenotypes of two genetic diseases. Mendelian disorders occurred more than once include Osteogenesis Imperfecta Type I (COL1A1, MIM:166200), Neurofibromatosis, Type I (NF1, MIM:162200) and Marfan Syndrome (FBN1, MIM:154700). Conclusions This study demonstrated the complicated skeletal phenotypes associated with dual molecular diagnosis. Exome sequencing represents a powerful tool to detect such complex conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02293-x.
Collapse
Affiliation(s)
- Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yujun Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Muchuan Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated To Shandong First Medical University, Shandong, 250021, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shaoke Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xin Fan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
30
|
Luo D, Yu C, Yu J, Su C, Li S, Liang P. p53-mediated G1 arrest requires the induction of both p21 and Killin in human colon cancer cells. Cell Cycle 2021; 21:140-151. [PMID: 34878965 DOI: 10.1080/15384101.2021.2014249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The main biological function of the tumor suppressor p53 is to control cell cycle arrest and apoptosis. Among the p53 target genes, p21 has been identified as a key player in p53-mediated G1 arrest, while Killin, via its high DNA binding affinity, has been implicated in S and G2/M arrest. However, whether Killin is involved in G1 arrest remains unclear. This research aimed to explore the role of Killin in p53-mediated G1 arrest. Knockout of killin in human colorectal cells led to a dramatic decrease in p53-mediated G1 arrest upon DNA damage. Moreover, double knockout of killin and p21 completely abolished G1 arrest, similar to that of p53 knockout cells. We further showed that Killin could upregulate p21 protein expression independent of p53 via ubiquitination pathways. Immunoprecipitation studies indicated that Killin may directly bind to proteasome subunits, thereby disrupting proteasomal degradation of p21. Together, these results demonstrate that Killin is involved in multiple cell cycle checkpoint controls, including p53-mediated G1 arrest.
Collapse
Affiliation(s)
- Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Su
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Liang
- Clover Biopharmaceuticals, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Shao F, Liu Q, Zhu Y, Fan Z, Chen W, Liu S, Li X, Guo W, Feng GS, Yu H, Xu Q, Sun Y. Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis. Nat Commun 2021; 12:6540. [PMID: 34764263 PMCID: PMC8585952 DOI: 10.1038/s41467-021-26750-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Bony fusion caused by pathological new bone formation manifests the clinical feature of ankylosing spondylitis (AS). However, the underlying mechanism remains elusive. Here we discovered spontaneous kyphosis, arthritis and bony fusion in mature CD4-Cre;Ptpn11f/f mice, which present the pathophysiological features of AS. A population of CD4-Cre-expressing proliferating chondrocytes was SHP2 deficient, which could differentiate into pre-hypertrophic and hypertrophic chondrocytes. Functionally, SHP2 deficiency in chondrocytes impeded the fusion of epiphyseal plate and promoted chondrogenesis in joint cavity and enthesis. Mechanistically, aberrant chondrocytes promoted ectopic new bone formation through BMP6/pSmad1/5 signaling. It is worth emphasizing that such pathological thickness of growth plates was evident in adolescent humans with enthesitis-related arthritis, which could progress to AS in adulthood. Targeting dysfunctional chondrogenesis with Smo inhibitor sonidegib significantly alleviated the AS-like bone disease in mice. These findings suggest that blockade of chondrogenesis by sonidegib would be a drug repurposing strategy for AS treatment.
Collapse
Affiliation(s)
- Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Wenjun Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China
| | - Xiaohui Li
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
32
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
33
|
Enzymatic Machinery of Ubiquitin and Ubiquitin-Like Modification Systems in Chondrocyte Homeostasis and Osteoarthritis. Curr Rheumatol Rep 2021; 23:62. [PMID: 34216299 DOI: 10.1007/s11926-021-01022-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW To date, a vast amount of information regarding ubiquitination (Ub) and ubiquitylation-like (Ubl) modification-related mechanisms has been reported in the context of skeletal cell homeostasis and diseases. In this review, we mainly focus on recent findings regarding the contribution of enzymatic machinery that directly adds or removes Ub and Ubl modifications from protein targets in chondrocyte homeostasis and osteoarthritis (OA) development. RECENT FINDINGS Mechanisms that promote homeostasis of articular chondrocytes are crucial for maintaining the integrity of articular joints to prevent osteoarthritis development. Articular chondrocytes are postmitotic cells that continuously produce and remodel cartilage matrix. In addition, the long lifespan of chondrocytes makes them susceptible to accumulating cellular damage. Ub and the evolutionarily conserved Ubl modifications, such as SUMOylation, ATGylation, and UFMylation, play important roles in promoting chondrocyte homeostasis, including regulating cell signaling and protein stability, resolving cellular stresses and inflammation, and maintaining differentiation and survival of chondrocytes. Uncovering new components/functions of Ub/Ubl modification machinery may provide novel drug targets to treat OA.
Collapse
|
34
|
Cao Y, Li R, Shen M, Li C, Zou Y, Jiang Q, Liu S, Lu C, Li H, Liu H, Cai Y. DDRGK1, a crucial player of ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function. Cell Death Dis 2021; 12:416. [PMID: 33879777 PMCID: PMC8058061 DOI: 10.1038/s41419-021-03694-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
DDRGK domain-containing protein 1 (DDRGK1) is an important component of the newly discovered ufmylation system and its absence has been reported to induce extensive endoplasmic reticulum (ER) stress. Recently, emerging evidence indicates that the ufmylation system is correlated with autophagy, although the exact mechanism remains largely unknown. To explore the regulation mechanism of DDRGK1 on autophagy, in this study, we established an immortalized mouse embryonic fibroblast (MEF) cell lines harvested from the DDRGK1F/F:ROSA26-CreERT2 mice, in which DDRGK1 depletion can be induced by 4-hydroxytamoxifen (4-OHT) treatment. Here, we show that DDRGK1 deficiency in MEFs has a dual effect on autophagy, which leads to a significant accumulation of autophagosomes. On one hand, it promotes autophagy induction by impairing mTOR signaling; on the other hand, it blocks autophagy degradation by inhibiting autophagosome-lysosome fusion. This dual effect of DDRGK1 depletion on autophagy ultimately aggravates apoptosis in MEFs. Further studies reveal that DDRGK1 loss is correlated with suppressed lysosomal function, including impaired Cathepsin D (CTSD) expression, aberrant lysosomal pH, and v-ATPase accumulation, which might be a potential trigger for impairment in autophagy process. Hence, this study confirms a crucial role of DDRGK1 as an autophagy regulator by controlling lysosomal function. It may provide a theoretical basis for the treatment strategies of various physiological diseases caused by DDRGK1 deficiency.
Collapse
Affiliation(s)
- Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Zou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuo Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chunwan Lu
- School of life sciences, Tianjin University, 300072, Tianjin, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
35
|
Liu W, Ge X, Zhou Z, Jiang D, Rong Y, Wang J, Ji C, Fan J, Yin G, Cai W. Deubiquitinase USP18 regulates reactive astrogliosis by stabilizing SOX9. Glia 2021; 69:1782-1798. [PMID: 33694203 DOI: 10.1002/glia.23992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Reactive astrogliosis is a pathological feature of spinal cord injury (SCI). The ubiquitin-proteasome system plays a crucial role in maintaining protein homeostasis and has been widely studied in neuroscience. Little, however, is known about the underlying function of deubiquitinating enzymes in reactive astrogliosis following SCI. Here, we found that ubiquitin-specific protease 18 (USP18) was significantly upregulated in astrocytes following scratch injury, and in the injured spinal cord in mice. Knockdown of USP18 in vitro and conditional knockout of USP18 in astrocytes (USP18 CKO) in vivo significantly attenuated reactive astrogliosis. In mice, this led to widespread inflammation and poor functional recovery following SCI. In contrast, overexpression of USP18 in mice injected with adeno-associated virus (AAV)-USP18 had beneficial effects following SCI. We showed that USP18 binds, deubiquitinates, and thus, stabilizes SRY-box transcription factor 9 (SOX9), thereby regulating reactive astrogliosis. We also showed that the Hedgehog (Hh) signaling pathway induces expression of USP18 through Gli2-mediated transcriptional activation after SCI. Administration of the Hh pathway activator SAG significantly increased reactive astrogliosis, reduced lesion area and promoted functional recovery in mice following SCI. Our results demonstrate that USP18 positively regulates reactive astrogliosis by stabilizing SOX9 and identify USP18 as a promising target for the treatment of SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene 2020; 40:647-662. [PMID: 33219317 DOI: 10.1038/s41388-020-01551-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
The key component in the UFM1 conjugation system, UFM1-binding and PCI domain-containing protein 1 (UFBP1), regulates many biological processes. Recently it has been shown that low UFBP1 protein level is associated with the worse outcome of gastric cancer patients. However, how it responses to the sensitivity of gastric cancer to chemotherapy drugs and the underlying molecular mechanism remain elusive. Here, we discovered that high UFBP1 expression increases the progression-free survival of advanced gastric cancer patients treated with platinum-based chemotherapy. Cell-line based studies unveiled that UFBP1 expression enhances while UFBP1 knockdown attenuates the sensitivity of gastric cancer cells to cisplatin. High-throughput SILAC-based quantitative proteomic analysis revealed that the protein level of aldo-keto reductase 1Cs (AKR1Cs) is significantly downregulated by UFBP1. Flow cytometry analysis showed that UFBP1 expression increases while UFBP1 knockdown reduces reactive oxygen species upon cisplatin treatment. We further disclosed that UFBP1 attenuates the gene expression of AKR1Cs and the transcription activity of the master oxidative stress-response transcription factor Nrf2 (nuclear factor erythroid-2-related factor 2). Detailed mechanistic studies manifested that UFBP1 promotes the formation of K48-linked polyubiquitin chains on Nrf2 and thus augments its proteasome-mediated degradation. Experiments using genetic depletion and pharmacological activation in vitro and in vivo demonstrated that UFBP1 enhances the sensitivity of gastric cancer cells to cisplatin through the Nrf2/AKR1C axis. Overall, this work discovered a novel prognostic biomarker for gastric cancer patients treated with platinum-based chemotherapy and elucidated the underlying molecular mechanism, which may benefit to future personalized chemotherapy.
Collapse
|
37
|
Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, Song L, Xu L, Bai J, Liu C, Mao J, Zhang Q, Zhou J, Wu X, Wang M, Cong YS. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol 2020; 22:1056-1063. [PMID: 32807901 DOI: 10.1038/s41556-020-0559-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022]
Abstract
p53 is the most intensively studied tumour suppressor1. The regulation of p53 homeostasis is essential for its tumour-suppressive function2,3. Although p53 is regulated by an array of post-translational modifications, both during normal homeostasis and in stress-induced responses2-4, how p53 maintains its homeostasis remains unclear. UFMylation is a recently identified ubiquitin-like modification with essential biological functions5-7. Deficiency in this modification leads to embryonic lethality in mice and disease in humans8-12. Here, we report that p53 can be covalently modified by UFM1 and that this modification stabilizes p53 by antagonizing its ubiquitination and proteasome degradation. Mechanistically, UFL1, the UFM1 ligase6, competes with MDM2 to bind to p53 for its stabilization. Depletion of UFL1 or DDRGK1, the critical regulator of UFMylation6,13, decreases p53 stability and in turn promotes cell growth and tumour formation in vivo. Clinically, UFL1 and DDRGK1 expression are downregulated and positively correlated with levels of p53 in a high percentage of renal cell carcinomas. Our results identify UFMylation as a crucial post-translational modification for maintenance of p53 stability and tumour-suppressive function, and point to UFMylation as a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Maogong Dong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jingjing Yang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Haibin Wei
- Institute of Cancer and Basic Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lizhi Song
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Junjie Bai
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Cui Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
38
|
Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA, Corn JE. A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell 2020; 180:1160-1177.e20. [PMID: 32160526 DOI: 10.1016/j.cell.2020.02.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.
Collapse
Affiliation(s)
- Jin Rui Liang
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Emily Lingeman
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thao Luong
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Saba Ahmed
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthias Muhar
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Truc Nguyen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
39
|
Gerakis Y, Quintero M, Li H, Hetz C. The UFMylation System in Proteostasis and Beyond. Trends Cell Biol 2019; 29:974-986. [PMID: 31703843 PMCID: PMC6917045 DOI: 10.1016/j.tcb.2019.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications are at the apex of cellular communication and eventually regulate every aspect of life. The identification of new post-translational modifiers is opening alternative avenues in understanding fundamental cell biology processes and may ultimately provide novel therapeutic opportunities. The ubiquitin-fold modifier 1 (UFM1) is a post-translational modifier discovered a decade ago but its biological significance has remained mostly unknown. The field has recently witnessed an explosion of research uncovering the implications of the pathway to cellular homeostasis in living organisms. We overview recent advances in the function and regulation of the UFM1 pathway, and its implications for cell physiology and disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
40
|
SOX9 in cartilage development and disease. Curr Opin Cell Biol 2019; 61:39-47. [PMID: 31382142 DOI: 10.1016/j.ceb.2019.07.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
SOX9 is a pivotal transcription factor in chondrocytes, a lineage essential in skeletogenesis. Its mandatory role in transactivating many cartilage-specific genes is well established, whereas its pioneer role in lineage specification, which along with transactivation defines master transcription factors, remains to be better defined. Abundant, but yet incomplete evidence exists that intricate molecular networks control SOX9 activity during the multi-step chondrogenesis pathway. They include a highly modular genetic regulation, post-transcriptional and post-translational modifications, and varying sets of functional partners. Fully uncovering SOX9 actions and regulation is fundamental to explain mechanisms underlying many diseases that directly or indirectly affect SOX9 activities and to design effective disease treatments. We here review current knowledge, highlight recent discoveries, and propose new research directions to answer remaining questions.
Collapse
|
41
|
Wu N, Liu B, Du H, Zhao S, Li Y, Cheng X, Wang S, Lin J, Zhou J, Qiu G, Wu Z, Zhang J. The Progress of CRISPR/Cas9-Mediated Gene Editing in Generating Mouse/Zebrafish Models of Human Skeletal Diseases. Comput Struct Biotechnol J 2019; 17:954-962. [PMID: 31360334 PMCID: PMC6639410 DOI: 10.1016/j.csbj.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Genetic factors play a substantial role in the etiology of skeletal diseases, which involve 1) defects in skeletal development, including intramembranous ossification and endochondral ossification; 2) defects in skeletal metabolism, including late bone growth and bone remodeling; 3) defects in early developmental processes related to skeletal diseases, such as neural crest cell (NCC) and cilia functions; 4) disturbance of the cellular signaling pathways which potentially affect bone growth. Efficient and high-throughput genetic methods have enabled the exploration and verification of disease-causing genes and variants. Animal models including mouse and zebrafish have been extensively used in functional mechanism studies of causal genes and variants. The conventional approaches of generating mutant animal models include spontaneous mutagenesis, random integration, and targeted integration via mouse embryonic stem cells. These approaches are costly and time-consuming. Recent development and application of gene-editing tools, especially the CRISPR/Cas9 system, has significantly accelerated the process of gene-editing in diverse organisms. Here we review both mice and zebrafish models of human skeletal diseases generated by CRISPR/Cas9 system, and their contributions to deciphering the underpins of disease mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bowen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yaqi Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Junde Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
- Central Laboratory & Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Central Laboratory & Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
42
|
Zhu H, Bhatt B, Sivaprakasam S, Cai Y, Liu S, Kodeboyina SK, Patel N, Savage NM, Sharma A, Kaufman RJ, Li H, Singh N. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat Commun 2019; 10:1084. [PMID: 30842412 PMCID: PMC6403283 DOI: 10.1038/s41467-019-08908-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 02/03/2023] Open
Abstract
The IRE1α/XBP1 branch of unfolded protein response (UPR) pathway has a critical function in endoplasmic reticulum (ER) expansion in plasma cells via unknown mechanisms; interestingly, another UPR branch, PERK, is suppressed during plasma cell development. Here we show that Ufbp1, a target and cofactor of the ufmylation pathway, promotes plasma cell development by suppressing the activation of PERK. By contrast, the IRE1α/XBP1 axis upregulates the expression of Ufbp1 and ufmylation pathway genes in plasma cells, while Ufbp1 deficiency impairs ER expansion in plasma cells and retards immunoglobulin production. Structure and function analysis suggests that lysine 267 of Ufbp1, the main lysine in Ufbp1 that undergoes ufmylation, is dispensable for the development of plasmablasts, but is required for immunoglobulin production and stimulation of ER expansion in IRE1α-deficient plasmablasts. Thus, Ufbp1 distinctly regulates different branches of UPR pathway to promote plasma cell development and function.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Sathish Sivaprakasam
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu Province, China
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA, 30912, USA
| | - Natasha M Savage
- Department of Pathology, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92307, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
44
|
Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov 2019; 5:7. [PMID: 30701081 PMCID: PMC6349939 DOI: 10.1038/s41421-018-0070-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Intestinal exocrine secretory cells, including Paneth and goblet cells, have a pivotal role in intestinal barrier function and mucosal immunity. Dysfunction of these cells may lead to the pathogenesis of human diseases such as inflammatory bowel disease (IBD). Therefore, identification and elucidation of key molecular mechanisms that regulate the development and function of these exocrine cells would be crucial for understanding of disease pathogenesis and discovery of new therapeutic targets. The Ufm1 conjugation system is a novel ubiquitin-like modification system that consists of Ufm1 (Ubiquitin modifier 1), Uba5 (Ufm1-activating enzyme, E1), Ufc1 (Ufm1-conjugating enzyme, E2) and poorly characterized Ufm1 E3 ligase(s). Recent mouse genetic studies have demonstrated its indispensable role in embryonic development and hematopoiesis. Yet its role in other tissues and organs remains poorly defined. In this study, we found that both Ufl1 and Ufbp1, two key components of the Ufm1 E3 ligase, were highly expressed in the intestinal exocrine cells. Ablation of either Ufl1 and Ufbp1 led to significant loss of both Paneth and goblet cells, which in turn resulted in dysbiotic microbiota and increased susceptibility to experimentally induced colitis. At the cellular and molecular levels, Ufbp1 deficiency caused elevation of endoplasmic reticulum stress and activation of the Unfolded Protein Response (UPR) and cell death program. Administration of small molecular chaperone partially prevented loss of Paneth cells caused by acute Ufbp1 deletion. Taken together, our results have provided unambiguous evidence for the crucial role of the Ufm1 E3 ligase in maintenance of intestinal homeostasis and protection from inflammatory diseases.
Collapse
|
45
|
Abstract
Ubiquitin fold modifier 1 (UFM1) is a small, metazoan-specific, ubiquitin-like protein modifier that is essential for embryonic development. Although loss-of-function mutations in UFM1 conjugation are linked to endoplasmic reticulum (ER) stress, neither the biological function nor the relevant cellular targets of this protein modifier are known. Here, we show that a largely uncharacterized ribosomal protein, RPL26, is the principal target of UFM1 conjugation. RPL26 UFMylation and de-UFMylation is catalyzed by enzyme complexes tethered to the cytoplasmic surface of the ER and UFMylated RPL26 is highly enriched on ER membrane-bound ribosomes and polysomes. Biochemical analysis and structural modeling establish that UFMylated RPL26 and the UFMylation machinery are in close proximity to the SEC61 translocon, suggesting that this modification plays a direct role in cotranslational protein translocation into the ER. These data suggest that UFMylation is a ribosomal modification specialized to facilitate metazoan-specific protein biogenesis at the ER.
Collapse
|
46
|
Inhibition of microRNA-384-5p alleviates osteoarthritis through
its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway
by targeting SOX9. Cancer Gene Ther 2018; 25:326-338. [DOI: 10.1038/s41417-018-0029-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 01/15/2023]
|