1
|
Pitsillou E, Liang JJ, Kino N, Lockwood JL, Hung A, El-Osta A, AbuMaziad AS, Karagiannis TC. An In Silico Investigation of the Pathogenic G151R G Protein-Gated Inwardly Rectifying K + Channel 4 Variant to Identify Small Molecule Modulators. BIOLOGY 2024; 13:992. [PMID: 39765659 PMCID: PMC11727529 DOI: 10.3390/biology13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Primary aldosteronism is characterised by the excessive production of aldosterone, which is a key regulator of salt metabolism, and is the most common cause of secondary hypertension. Studies have investigated the association between primary aldosteronism and genetic alterations, with pathogenic mutations being identified. This includes a glycine-to-arginine substitution at position 151 (G151R) of the G protein-activated inward rectifier potassium (K+) channel 4 (GIRK4), which is encoded by the KCNJ5 gene. Mutations in GIRK4 have been found to reduce the selectivity for K+ ions, resulting in membrane depolarisation, the activation of voltage-gated Ca2+ channels, and an increase in aldosterone secretion. As a result, there is an interest in identifying and exploring the mechanisms of action of small molecule modulators of wildtype (WT) and mutant channels. In order to investigate the potential modulation of homotetrameric GIRK4WT and GIRK4G151R channels, homology models were generated. Molecular dynamics (MD) simulations were performed, followed by a cluster analysis to extract starting structures for molecular docking. The central cavity has been previously identified as a binding site for small molecules, including natural compounds. The OliveNetTM database, which consists of over 600 compounds from Olea europaea, was subsequently screened against the central cavity. The binding affinities and interactions of the docked ligands against the GIRK4WT and GIRK4G151R channels were then examined. Based on the results, luteolin-7-O-rutinoside, pheophorbide a, and corosolic acid were identified as potential lead compounds. The modulatory activity of olive-derived compounds against the WT and mutated forms of the GIRK4 channel can be evaluated further in vitro.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Noa Kino
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L. Lockwood
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 2200 Copenhagen, Denmark
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Caroccia B, Lenzini L, Ceolotto G, Gioco F, Benetti A, Giannella A, Ajjour H, Galuppini F, Pennelli G, Seccia TM, Gomez-Sanchez C, Rossi GP. Double CYP11B1/CYP11B2 Immunohistochemistry and Detection of KCNJ5 Mutations in Primary Aldosteronism. J Clin Endocrinol Metab 2024; 109:2433-2443. [PMID: 38888173 DOI: 10.1210/clinem/dgae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT The search for somatic mutations in adrenals resected from patients with primary aldosteronism (PA) is performed by Sanger sequencing, often implemented with immunohistochemistry (IHC)-guidance focused on aldosterone-producing (CYP11B2-positive) areas. OBJECTIVE To investigate the impact of double IHC for CYP11B1 and CYP11B2 on Sanger and next-generation sequencing (NGS). METHODS We investigated 127 consecutive adrenal aldosterone-producing adenomas from consenting surgically cured PA patients using double IHC for CYP11B1 and CYP11B2, by Sanger sequencing and NGS. RESULTS Double IHC for CYP11B2 and CYP11B1 revealed 3 distinct patterns: CYP11B2-positive adenoma (pattern 1), mixed CYP11B1/CYP11B2-positive adenoma (pattern 2), and adrenals with multiple small CYP11B2-positive nodules (pattern 3). Sanger sequencing allowed detection of KCNJ5 mutations in 44% of the adrenals; NGS revealed such mutations in 10% of those negative at Sanger and additional mutations in 61% of the cases. Importantly the rate of KCNJ5 mutations differed across patterns: 17.8% in pattern 1, 71.4% in pattern 2, and 10.7% in pattern 3 (χ2 = 22.492, P < .001). CONCLUSION NGS allowed detection of mutations in many adrenals that tested negative at Sanger sequencing. Moreover, the different distribution of KCNJ5 mutations across IHC patterns indicates that IHC-guided sequencing protocols selecting CYP11B2-positive areas could furnish results that might not be representative of the entire mutational status of the excised adrenal, which is important at a time when KCNJ5 mutations are suggested to drive management of patients with aldosterone-producing adenomas.
Collapse
Affiliation(s)
- Brasilina Caroccia
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
- Department of Women's and Children's Health-SBD, University of Padua, Padua 35122, Italy
| | - Livia Lenzini
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Giulio Ceolotto
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Francesca Gioco
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Andrea Benetti
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine-DIMED, University of Padua, Padua 35122, Italy
| | - Alessandra Giannella
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine-DIMED, University of Padua, Padua 35122, Italy
| | - Hala Ajjour
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua 35122, Italy
| | - Gianmaria Pennelli
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua 35122, Italy
| | - Teresa Maria Seccia
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| | - Celso Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gian Paolo Rossi
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University of Padua, Padua 35126, Italy
| |
Collapse
|
3
|
Rossi GP, Rossi FB, Guarnieri C, Rossitto G, Seccia TM. Clinical Management of Primary Aldosteronism: An Update. Hypertension 2024; 81:1845-1856. [PMID: 39045687 DOI: 10.1161/hypertensionaha.124.22642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite carrying an excess risk of cardiovascular events, primary aldosteronism (PA) is a commonly overlooked secondary form of arterial hypertension. An increased awareness of its high prevalence and broader screening strategies are urgently needed to improve its detection rate and allow early diagnosis and targeted treatment. For patients with unilateral PA, these measures can correct hyperaldosteronism and ensure cure of hypertension, even when resistant to drug treatment, thus preventing adverse cardiovascular events. Among these, atrial fibrillation is the most common, but left ventricular hypertrophy, stroke, chronic kidney disease, and myocardial infarction also occur more often than in patients with hypertension and no PA. Young patients, who have higher chances of being cured long term, and high-risk patients, such as those with stage III or resistant hypertension, are those who will benefit most from an early diagnosis of PA. Therefore, the implementation of strategies to detect PA by a simplified diagnostic algorithm is necessary. In the patients who seek for surgical cure, adrenal vein sampling is key for the identification of unilateral PA and the achievement of optimal outcomes. Unfortunately, being technically demanding and poorly available, adrenal vein sampling represents the bottleneck in the workup of PA. Considering the novel knowledge generated in the past 5 years in many studies, particularly in the AVIS-2 study (Adrenal Vein Sampling International Study-2), based on 4 decades of experience at our center and on the last guidelines, we herein provide an update on the management of PA with recommendations for drug treatment and strategies to avoid adrenal vein sampling wherever it is poorly, or not, available.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Federico Bernardo Rossi
- International PhD Program in Arterial Hypertension and Vascular Biology, University of Rome, 'La Sapienza' Rome, Italy (F.B.R.)
| | - Chiara Guarnieri
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Giacomo Rossitto
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| | - Teresa M Seccia
- Internal and Emergency Medicine, Department of Medicine, DIME University of Padua, Italy (G.P.R., C.G., G.R., T.M.S.)
| |
Collapse
|
4
|
Mullen N, Curneen J, Donlon PT, Prakash P, Bancos I, Gurnell M, Dennedy MC. Treating Primary Aldosteronism-Induced Hypertension: Novel Approaches and Future Outlooks. Endocr Rev 2024; 45:125-170. [PMID: 37556722 PMCID: PMC10765166 DOI: 10.1210/endrev/bnad026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and is associated with increased morbidity and mortality when compared with blood pressure-matched cases of primary hypertension. Current limitations in patient care stem from delayed recognition of the condition, limited access to key diagnostic procedures, and lack of a definitive therapy option for nonsurgical candidates. However, several recent advances have the potential to address these barriers to optimal care. From a diagnostic perspective, machine-learning algorithms have shown promise in the prediction of PA subtypes, while the development of noninvasive alternatives to adrenal vein sampling (including molecular positron emission tomography imaging) has made accurate localization of functioning adrenal nodules possible. In parallel, more selective approaches to targeting the causative aldosterone-producing adrenal adenoma/nodule (APA/APN) have emerged with the advent of partial adrenalectomy or precision ablation. Additionally, the development of novel pharmacological agents may help to mitigate off-target effects of aldosterone and improve clinical efficacy and outcomes. Here, we consider how each of these innovations might change our approach to the patient with PA, to allow more tailored investigation and treatment plans, with corresponding improvement in clinical outcomes and resource utilization, for this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan Mullen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - James Curneen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Padraig T Donlon
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark Gurnell
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael C Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| |
Collapse
|
5
|
Pitsillou E, Logothetis ANO, Liang JJ, El-Osta A, Hung A, AbuMaziad AS, Karagiannis TC. Identification of Potential Modulators of a Pathogenic G Protein-Gated Inwardly Rectifying K + Channel 4 Mutant: In Silico Investigation in the Context of Drug Discovery for Hypertension. Molecules 2023; 28:7946. [PMID: 38138436 PMCID: PMC10745636 DOI: 10.3390/molecules28247946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Genetic abnormalities have been associated with primary aldosteronism, a major cause of secondary hypertension. This includes mutations in the KCNJ5 gene, which encodes G protein-gated inwardly rectifying K+ channel 4 (GIRK4). For example, the substitution of glycine with glutamic acid gives rise to the pathogenic GIRK4G151E mutation, which alters channel selectivity, making it more permeable to Na+ and Ca2+. While tertiapin and tertiapin-Q are well-known peptide inhibitors of the GIRK4WT channel, clinically, there is a need for the development of selective modulators of mutated channels, including GIRK4G151E. Using in silico methods, including homology modeling, protein-peptide docking, ligand-binding site prediction, and molecular docking, we aimed to explore potential modulators of GIRK4WT and GIRK4G151E. Firstly, protein-peptide docking was performed to characterize the binding site of tertiapin and its derivative to the GIRK4 channels. In accordance with previous studies, the peptide inhibitors preferentially bind to the GIRK4WT channel selectivity filter compared to GIRK4G151E. A ligand-binding site analysis was subsequently performed, resulting in the identification of two potential regions of interest: the central cavity and G-loop gate. Utilizing curated chemical libraries, we screened over 700 small molecules against the central cavity of the GIRK4 channels. Flavonoids, including luteolin-7-O-rutinoside and rutin, and the macrolides rapamycin and troleandomycin bound strongly to the GIRK4 channels. Similarly, xanthophylls, particularly luteoxanthin, bound to the central cavity with a strong preference towards the mutated GIRK4G151E channel compared to GIRK4WT. Overall, our findings suggest potential lead compounds for further investigation, particularly luteoxanthin, that may selectively modulate GIRK4 channels.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Alexander N. O. Logothetis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 1799 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Azizan EAB, Drake WM, Brown MJ. Primary aldosteronism: molecular medicine meets public health. Nat Rev Nephrol 2023; 19:788-806. [PMID: 37612380 PMCID: PMC7615304 DOI: 10.1038/s41581-023-00753-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
Collapse
Affiliation(s)
- Elena A B Azizan
- Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM), Kuala Lumpur, Malaysia
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - William M Drake
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
7
|
Yang S, Liu L, Liu X, Li X, Zheng Y, Ren Z, Wang R, Wang Y, Li Q. The mitochondrial energy metabolism pathway-related signature predicts prognosis and indicates immune microenvironment infiltration in osteosarcoma. Medicine (Baltimore) 2023; 102:e36046. [PMID: 37986397 PMCID: PMC10659617 DOI: 10.1097/md.0000000000036046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Abnormalities in the mitochondrial energy metabolism pathways are closely related to the occurrence and development of many cancers. Furthermore, abnormal genes in mitochondrial energy metabolism pathways may be novel targets and biomarkers for the diagnosis and treatment of osteosarcoma. In this study, we aimed to establish a mitochondrial energy metabolism-related gene signature for osteosarcoma prognosis. METHODS We first obtained differentially expressed genes based on the metastatic status of 84 patients with osteosarcoma from the TARGET database. After Venn analysis of differentially expressed genes and mitochondrial energy metabolism pathway-related genes (MMRGs), 2 key genes were obtained using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis. Next, we used these 2 genes to establish a prognostic signature. Subsequent analyses elucidated the correlation between these 2 key genes with clinical features and 28 types of immune cells. Pathway changes in osteosarcoma pathogenesis under different metastatic states were clarified using gene set enrichment analysis (GSEA) of differentially expressed genes. RESULTS A gene signature composed of 2 key prognosis-related genes (KCNJ5 and PFKFB2) was identified. A risk score was calculated based on the gene signature, which divided osteosarcoma patients into low- or high-risk groups that showed good and poor prognosis, respectively. High expression of these 2 key genes is associated with low-risk group in patients with osteosarcoma. We constructed an accurate nomogram to help clinicians assess the survival time of patients with osteosarcoma. The results of immune cell infiltration level showed that the high-risk group had lower levels of immune cell infiltration. GSEA revealed changes in immune regulation and hypoxia stress pathways in osteosarcoma under different metastatic states. CONCLUSION Our study identified an excellent gene signature that could be helpful in improving the prognosis of patients with osteosarcoma.
Collapse
Affiliation(s)
- Sen Yang
- Department of Orthopedics, The Peace Hospital of Changzhi City, The First Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Liyun Liu
- Department of Orthopedics, The Peace Hospital of Changzhi City, The First Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Xiaoyun Liu
- Department of General Medical, The People’s Hospital of Changzhi City, The Third Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Xinghua Li
- Department of General Medical, The People’s Hospital of Changzhi City, The Third Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Yuyu Zheng
- Department of General Medical, The People’s Hospital of Changzhi City, The Third Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Zeen Ren
- Department of Orthopedics, The Second People’s Hospital of Changzhi City, The Fourth Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Ruijiang Wang
- Department of Orthopedics, The Peace Hospital of Changzhi City, The First Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Yun Wang
- Department of Orthopedics, The Second People’s Hospital of Changzhi City, The Fourth Clinical Hospital of Changzhi Medical University, Changzhi, Shanxi Province, China
| | - Qian Li
- School of Basic Medicine, Medical College of Baicheng City, Baicheng, Jilin Province, China
| |
Collapse
|
8
|
Fernandes-Rosa FL, Boulkroun S, Fedlaoui B, Hureaux M, Travers-Allard S, Drossart T, Favier J, Zennaro MC. New advances in endocrine hypertension: from genes to biomarkers. Kidney Int 2023; 103:485-500. [PMID: 36646167 DOI: 10.1016/j.kint.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Hypertension (HT) is a major cardiovascular risk factor that affects 10% to 40% of the general population in an age-dependent manner. Detection of secondary forms of HT is particularly important because it allows the targeted management of the underlying disease. Among hypertensive patients, the prevalence of endocrine HT reaches up to 10%. Adrenal diseases are the most frequent cause of endocrine HT and are associated with excess production of mineralocorticoids (mainly primary aldosteronism), glucocorticoids (Cushing syndrome), and catecholamines (pheochromocytoma). In addition, a few rare diseases directly affecting the action of mineralocorticoids and glucocorticoids in the kidney also lead to endocrine HT. Over the past years, genomic and genetic studies have allowed improving our knowledge on the molecular mechanisms of endocrine HT. Those discoveries have opened new opportunities to transfer knowledge to clinical practice for better diagnosis and specific treatment of affected subjects. In this review, we describe the physiology of adrenal hormone biosynthesis and action, the clinical and biochemical characteristics of different forms of endocrine HT, and their underlying genetic defects. We discuss the impact of these discoveries on diagnosis and management of patients, as well as new perspectives related to the use of new biomarkers for improved patient care.
Collapse
Affiliation(s)
| | | | | | - Marguerite Hureaux
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Simon Travers-Allard
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Tom Drossart
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
9
|
Chang YY, Lee BC, Chen ZW, Tsai CH, Chang CC, Liao CW, Pan CT, Peng KY, Chou CH, Lu CC, Wu VC, Hung CS, Lin YH. Cardiovascular and metabolic characters of KCNJ5 somatic mutations in primary aldosteronism. Front Endocrinol (Lausanne) 2023; 14:1061704. [PMID: 36950676 PMCID: PMC10025475 DOI: 10.3389/fendo.2023.1061704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Primary aldosteronism (PA) is the leading cause of curable endocrine hypertension, which is associated with a higher risk of cardiovascular and metabolic insults compared to essential hypertension. Aldosterone-producing adenoma (APA) is a major cause of PA, which can be treated with adrenalectomy. Somatic mutations are the main pathogenesis of aldosterone overproduction in APA, of which KCNJ5 somatic mutations are most common, especially in Asian countries. This article aimed to review the literature on the impacts of KCNJ5 somatic mutations on systemic organ damage. EVIDENCE ACQUISITION PubMed literature research using keywords combination, including "aldosterone-producing adenoma," "somatic mutations," "KCNJ5," "organ damage," "cardiovascular," "diastolic function," "metabolic syndrome," "autonomous cortisol secretion," etc. RESULTS APA patients with KCNJ5 somatic mutations are generally younger, female, have higher aldosterone levels, lower potassium levels, larger tumor size, and higher hypertension cure rate after adrenalectomy. This review focuses on the cardiovascular and metabolic aspects of KCNJ5 somatic mutations in APA patients, including left ventricular remodeling and diastolic function, abdominal aortic thickness and calcification, arterial stiffness, metabolic syndrome, abdominal adipose tissue, and correlation with autonomous cortisol secretion. Furthermore, we discuss modalities to differentiate the types of mutations before surgery. CONCLUSION KCNJ5 somatic mutations in patients with APA had higher left ventricular mass (LVM), more impaired diastolic function, thicker aortic wall, lower incidence of metabolic syndrome, and possibly a lower incidence of concurrent autonomous cortisol secretion, but better improvement in LVM, diastolic function, arterial stiffness, and aortic wall thickness after adrenalectomy compared to patients without KCNJ5 mutations.
Collapse
Affiliation(s)
- Yi-Yao Chang
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Che-Wei Liao
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Kang-Yung Peng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Yen-Hung Lin,
| | | |
Collapse
|
10
|
Shimada H, Hata S, Yamazaki Y, Otsubo Y, Sato I, Ise K, Yokoyama A, Suzuki T, Sasano H, Sugawara A, Nakamura Y. YM750, an ACAT Inhibitor, Acts on Adrenocortical Cells to Inhibit Aldosterone Secretion Due to Depolarization. Int J Mol Sci 2022; 23:12803. [PMID: 36361592 PMCID: PMC9655524 DOI: 10.3390/ijms232112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2024] Open
Abstract
Primary aldosteronism (PA) is considered the most common form of secondary hypertension, which is associated with excessive aldosterone secretion in the adrenal cortex. The cause of excessive aldosterone secretion is the induction of aldosterone synthase gene (CYP11B2) expression by depolarization of adrenocortical cells. In this study, we found that YM750, an Acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor, acts on adrenocortical cells to suppress CYP11B2 gene expression and aldosterone secretion. YM750 inhibited the induction of CYP11B2 gene expression by KCl stimulation, but not by angiotensin II and forskolin stimulation. Interestingly, YM750 did not inhibit KCl-stimulated depolarization via an increase in intracellular calcium ion concentration. Moreover, ACAT1 expression was relatively abundant in the zona glomerulosa (ZG) including these CYP11B2-positive cells. Thus, YM750 suppresses CYP11B2 gene expression by suppressing intracellular signaling activated by depolarization. In addition, ACAT1 was suggested to play an important role in steroidogenesis in the ZG. YM750 suppresses CYP11B2 gene expression and aldosterone secretion in the adrenal cortex, suggesting that it may be a potential therapeutic agent for PA.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Shuko Hata
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yuri Otsubo
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazue Ise
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan
| |
Collapse
|
11
|
Clinical Translationality of KCNJ5 Mutation in Aldosterone Producing Adenoma. Int J Mol Sci 2022; 23:ijms23169042. [PMID: 36012306 PMCID: PMC9409469 DOI: 10.3390/ijms23169042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension due to primary aldosteronism poses a risk of severe cardiovascular complications compared to essential hypertension. The discovery of the KCNJ5 somatic mutation in aldosteroene producing adenoma (APA) in 2011 and the development of specific CYP11B2 antibodies in 2012 have greatly advanced our understanding of the pathophysiology of primary aldosteronism. In particular, the presence of CYP11B2-positive aldosterone-producing micronodules (APMs) in the adrenal glands of normotensive individuals and the presence of renin-independent aldosterone excess in normotensive subjects demonstrated the continuum of the pathogenesis of PA. Furthermore, among the aldosterone driver mutations which incur excessive aldosterone secretion, KCNJ5 was a major somatic mutation in APA, while CACNA1D is a leading somatic mutation in APMs and idiopathic hyperaldosteronism (IHA), suggesting a distinctive pathogenesis between APA and IHA. Although the functional detail of APMs has not been still uncovered, its impact on the pathogenesis of PA is gradually being revealed. In this review, we summarize the integrated findings regarding APA, APM or diffuse hyperplasia defined by novel CYP11B2, and aldosterone driver mutations. Following this, we discuss the clinical implications of KCNJ5 mutations to support better cardiovascular outcomes of primary aldosteronism.
Collapse
|
12
|
Santana LS, Guimaraes AG, Almeida MQ. Pathogenesis of Primary Aldosteronism: Impact on Clinical Outcome. Front Endocrinol (Lausanne) 2022; 13:927669. [PMID: 35813615 PMCID: PMC9261097 DOI: 10.3389/fendo.2022.927669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary arterial hypertension, with a prevalence of approximately 20% in patients with resistant hypertension. In the last decade, somatic pathogenic variants in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 genes, which are involved in maintaining intracellular ionic homeostasis and cell membrane potential, were described in aldosterone-producing adenomas (aldosteronomas). All variants in these genes lead to the activation of calcium signaling, the major trigger for aldosterone production. Genetic causes of familial hyperaldosteronism have been expanded through the report of germline pathogenic variants in KCNJ5, CACNA1H and CLCN2 genes. Moreover, PDE2A and PDE3B variants were associated with bilateral PA and increased the spectrum of genetic etiologies of PA. Of great importance, the genetic investigation of adrenal lesions guided by the CYP11B2 staining strongly changed the landscape of somatic genetic findings of PA. Furthermore, CYP11B2 staining allowed the better characterization of the aldosterone-producing adrenal lesions in unilateral PA. Aldosterone production may occur from multiple sources, such as solitary aldosteronoma or aldosterone-producing nodule (classical histopathology) or clusters of autonomous aldosterone-producing cells without apparent neoplasia denominated aldosterone-producing micronodules (non-classical histopathology). Interestingly, KCNJ5 mutational status and classical histopathology of unilateral PA (aldosteronoma) have emerged as relevant predictors of clinical and biochemical outcome, respectively. In this review, we summarize the most recent advances in the pathogenesis of PA and discuss their impact on clinical outcome.
Collapse
Affiliation(s)
- Lucas S. Santana
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Augusto G. Guimaraes
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Madson Q. Almeida
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Renin-independent aldosterone production from one or both affected adrenal(s), a condition known as primary aldosteronism (PA), is a common cause of secondary hypertension. In this review, we aimed to summarize recent findings regarding pathophysiology of bilateral forms of PA, including sporadic bilateral hyperaldosteronism (BHA) and rare familial hyperaldosteronism. RECENT FINDINGS The presence of subcapsular aldosterone synthase (CYP11B2)-expressing aldosterone-producing micronodules, also called aldosterone-producing cell clusters, appears to be a common histologic feature of adrenals with sporadic BHA. Aldosterone-producing micronodules frequently harbor aldosterone-driver somatic mutations. Other potential factors leading to sporadic BHA include rare disease-predisposing germline variants, circulating angiotensin II type 1 receptor autoantibodies, and paracrine activation of aldosterone production by adrenal mast cells. The application of whole exome sequencing has also identified new genes that cause inherited familial forms of PA. SUMMARY Research over the past 10 years has significantly improved our understanding of the molecular pathogenesis of bilateral PA. Based on the improved understanding of BHA, future studies should have the ability to develop more personalized treatment options and advanced diagnostic tools for patients with PA.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Abstract
Primary aldosteronism is considered the commonest cause of secondary hypertension. In affected individuals, aldosterone is produced in an at least partially autonomous fashion in adrenal lesions (adenomas, [micro]nodules or diffuse hyperplasia). Over the past decade, next-generation sequencing studies have led to the insight that primary aldosteronism is largely a genetic disorder. Sporadic cases are due to somatic mutations, mostly in ion channels and pumps, and rare cases of familial hyperaldosteronism are caused by germline mutations in an overlapping set of genes. More than 90% of aldosterone-producing adenomas carry somatic mutations in K+ channel Kir3.4 (KCNJ5), Ca2+ channel CaV1.3 (CACNA1D), alpha-1 subunit of the Na+/K+ ATPase (ATP1A1), plasma membrane Ca2+ transporting ATPase 3 (ATP2B3), Ca2+ channel CaV3.2 (CACNA1H), Cl− channel ClC-2 (CLCN2), β-catenin (CTNNB1), and/or G-protein subunits alpha q/11 (GNAQ/11). Mutations in some of these genes have also been identified in aldosterone-producing (micro)nodules, suggesting a disease continuum from a single cell, acquiring a somatic mutation, via a nodule to adenoma formation, and from a healthy state to subclinical to overt primary aldosteronism. Individual glands can have multiple such lesions, and they can occur on both glands in bilateral disease. Familial hyperaldosteronism, typically with early onset, is caused by germline mutations in steroid 11-beta hydroxylase/ aldosterone synthase (CYP11B1/2), CLCN2, KCNJ5, CACNA1H, and CACNA1D.
Collapse
Affiliation(s)
- Ute I Scholl
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Germany
| |
Collapse
|
15
|
Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol Metab 2022; 33:36-49. [PMID: 34743804 DOI: 10.1016/j.tem.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
Primary aldosteronism (PA) can be sporadic or familial and classified into unilateral and bilateral forms. Sporadic PA predominates with excessive aldosterone production usually arising from a unilateral aldosterone-producing adenoma (APA) or bilateral adrenocortical hyperplasia. Familial PA is rare and caused by germline variants, that partly correspond to somatic alterations in APAs. Classification into unilateral and bilateral PA determines the treatment approach but does not accurately mirror disease pathology. Some evidence indicates a disease continuum ranging from balanced aldosterone production from each adrenal to extreme asymmetrical bilateral aldosterone production. Nonetheless, surgical removal of the overactive adrenal in unilateral PA achieves highly successful outcomes and almost all patients are biochemically cured of their aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| |
Collapse
|
16
|
Chen IS, Eldstrom J, Fedida D, Kubo Y. A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K + channel. J Physiol 2021; 600:603-622. [PMID: 34881429 DOI: 10.1113/jp282430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important physiological roles in various organs. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited GIRK mutants. By the two-electrode voltage-clamp analysis of GIRK mutants heterologously expressed in Xenopus oocytes, we observed that Kir3.2 G156S permeates Li+ better than Rb+ , while T154del or L173R of Kir3.2 and T158A of Kir3.4 permeate Rb+ better than Li+ , suggesting a unique conformational change in the G156S mutant. Applications of blockers of the selectivity filter (SF) pathway, Ba2+ or Tertiapin-Q (TPN-Q), remarkably increased the Li+ -selectivity of Kir3.2 G156S but did not alter those of the other mutants. In single-channel recordings of Kir3.2 G156S expressed in mouse fibroblasts, two types of events were observed, one attributable to a TPN-Q-sensitive K+ current and the second a TPN-Q-resistant Li+ current. The results show that a novel Li+ -permeable and blocker-resistant pathway exists in G156S in addition to the SF pathway. Mutations in the pore helix, S148F and T151A also induced high Li+ permeation. Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations. KEY POINTS: G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important roles in controlling excitation of cells in various organs, such as the brain and the heart. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited mutants of Kir3.2 and Kir3.4. Here we show that a novel Na+ , Li+ -permeable and blocker-resistant pathway exists in an inherited mutant, Kir3.2 G156S, in addition to the conventional ion conducting pathway formed by the selectivity filter (SF). Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Department of Pharmacology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
17
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|
18
|
Peng KY, Liao HW, Chueh JS, Pan CY, Lin YH, Chen YM, Chen PY, Huang CL, Wu VC. Pathophysiological and Pharmacological Characteristics of KCNJ5 157-159delITE Somatic Mutation in Aldosterone-Producing Adenomas. Biomedicines 2021; 9:biomedicines9081026. [PMID: 34440230 PMCID: PMC8391641 DOI: 10.3390/biomedicines9081026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of aldosterone synthase (CYP11B2) and aldosterone secretion in HAC15 cells to evaluate electrophysiological and functional properties of this mutated KCNJ5. Immunohistochemistry was conducted to identify expressions of several steroidogenic enzymes. Macrolide antibiotics and a calcium channel blocker were administrated to evaluate the functional attenuation of mutated KCNJ5 channel in transfected HAC15 cells. The interaction between macrolides and KCNJ5 protein was evaluated via molecular docking and molecular dynamics simulation analysis. The immunohistochemistry analysis showed strong CYP11B2 immunoreactivity in the APA harboring KCNJ5 157-159delITE mutation. Whole-cell patch-clamp data revealed that mutated KCNJ5 157-159delITE channel exhibited loss of potassium ion selectivity. The mutant-transfected HAC15 cells increased the expression of CYP11B2 and aldosterone secretion, which was partially suppressed by clarithromycin and nifedipine but not roxithromycin treatment. The docking analysis and molecular dynamics simulation disclosed that roxithromycin had strong interaction with KCNJ5 L168R mutant channel but not with this KCNJ5 157-159delITE mutant channel. We showed comprehensive evaluations of the KCNJ5 157-159delITE mutation which revealed that it disrupted potassium channel selectivity and aggravated autonomous aldosterone production. We further demonstrated that macrolide antibiotics, roxithromycin, could not interfere the aberrant electrophysiological properties and gain-of-function aldosterone secretion induced by KCNJ5 157-159delITE mutation.
Collapse
Affiliation(s)
- Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | | | - Jeff S. Chueh
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei 110, Taiwan;
| | - Chien-Yuan Pan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan;
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Peng-Ying Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Chun-Lin Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (K.-Y.P.); (Y.-H.L.); (Y.-M.C.); (P.-Y.C.); (C.-L.H.)
- Correspondence: ; Tel.: +886-2-23562082
| |
Collapse
|
19
|
Shimada H, Yamazaki Y, Sugawara A, Sasano H, Nakamura Y. Molecular Mechanisms of Functional Adrenocortical Adenoma and Carcinoma: Genetic Characterization and Intracellular Signaling Pathway. Biomedicines 2021; 9:biomedicines9080892. [PMID: 34440096 PMCID: PMC8389593 DOI: 10.3390/biomedicines9080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
- Correspondence: ; Tel.: +81-22-290-8731
| |
Collapse
|
20
|
Nanba K, Rainey WE. GENETICS IN ENDOCRINOLOGY: Impact of race and sex on genetic causes of aldosterone-producing adenomas. Eur J Endocrinol 2021; 185:R1-R11. [PMID: 33900205 PMCID: PMC8480207 DOI: 10.1530/eje-21-0031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Primary aldosteronism (PA) is a common cause of secondary hypertension. Recent technological advances in genetic analysis have provided a better understanding of the molecular pathogenesis of this disease. The application of next-generation sequencing has resulted in the identification of somatic mutations in aldosterone-producing adenoma (APA), a major subtype of PA. Based on the recent findings using a sequencing method that selectively targets the tumor region where aldosterone synthase (CYP11B2) is expressed, the vast majority of APAs appear to harbor a somatic mutation in one of the aldosterone-driver genes, including KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. Mutations in these genes alter intracellular ion homeostasis and enhance aldosterone production. In a small subset of APAs, somatic activating mutations in the CTNNB1 gene, which encodes β-catenin, have also been detected. Accumulating evidence suggests that race and sex impact the somatic mutation spectrum of APA. Specifically, somatic mutations in the KCNJ5 gene, encoding an inwardly rectifying K+ channel, are common in APAs from Asian populations as well as women regardless of race. Associations between APA histology, genotype, and patient clinical characteristics have also been proposed, suggesting a potential need to consider race and sex for the management of PA patients. Herein, we review recent findings regarding somatic mutations in APA and discuss potential roles of race and sex on the pathophysiology of APA as well as possible clinical implications.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
21
|
Lu CC, Yen RF, Peng KY, Huang JY, Wu KD, Chueh JS, Lin WY. NP-59 Adrenal Scintigraphy as an Imaging Biomarker to Predict KCNJ5 Mutation in Primary Aldosteronism Patients. Front Endocrinol (Lausanne) 2021; 12:644927. [PMID: 33995277 PMCID: PMC8113947 DOI: 10.3389/fendo.2021.644927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Somatic KCNJ5 mutation occurs in half of unilateral primary aldosteronism (PA) and is associated with more severe phenotype. Mutation status can only be identified by tissue sample from adrenalectomy. NP-59 adrenal scintigraphy is a noninvasive functional study for disease activity assessment. This study aimed to evaluate the predictive value of NP-59 adrenal scintigraphy in somatic KCNJ5 mutation among PA patients who received adrenalectomy. METHODS Sixty-two PA patients who had NP-59 adrenal scintigraphy before adrenalectomy with available KCNJ5 mutation status were included. Two semiquantitative parameters, adrenal to liver ratio (ALR) and lesion to contralateral ratio of bilateral adrenal glands (CON) derived from NP-59 adrenal scintigraphy, of mutated and wild-type patients were compared. Cutoff values calculated by receiver-operating characteristic (ROC) analysis were used as a predictor of KCNJ5 mutation. RESULTS Twenty patients had KCNJ5 mutation and 42 patients were wild type. Patients harboring KCNJ5 mutation had both higher ALR and CON (p = 0.0031 and 0.0833, respectively) than wild-type patients. With ALR and CON cutoff of 2.10 and 1.95, the sensitivity and specificity to predict KCNJ5 mutation were 85%, 57% and 45%, 93%, respectively. Among 20 patients with KCNJ5 mutation, 16 showed G151R point mutation (KCNJ5- G151R) and 4 showed L168R point mutation (KCNJ5-L168R), which former one had significantly lower ALR (p=0.0471). CONCLUSION PA patients harboring somatic KCNJ5 mutation had significantly higher NP-59 uptake regarding to ALR and CON than those without mutation. APAs with KCNJ5-L168R point mutation showed significantly higher ALR than those with KCNJ5-G151R point mutation.
Collapse
Affiliation(s)
- Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeff S. Chueh
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- *Correspondence: Wan-Yu Lin,
| |
Collapse
|
22
|
Stavropoulos K, Imprialos K, Papademetriou V, Faselis C, Tsioufis K, Dimitriadis K, Doumas M. Primary Aldosteronism: Novel Insights. Curr Hypertens Rev 2020; 16:19-23. [PMID: 30987572 DOI: 10.2174/1573402115666190415155512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Primary aldosteronism is one of the most common causes of secondary hypertension. Patients with this endocrine syndrome are at increased cardiovascular risk, higher than hypertensive individuals with equal blood pressure levels. OBJECTIVES The study aimed to thoroughly present and critically discuss the novel insights into the field of primary aldosteronism, focusing on the clinically meaningful aspects. METHOD We meticulously evaluated existing data in the field of primary aldosteronism in order to summarize future perspectives in this narrative review. RESULTS Novel data suggests that a subclinical form of primary aldosteronism might exist. Interesting findings might simplify the diagnostic procedure of the disease, especially for the localization of primary aldosteronism. The most promising progress has been noted in the field of the molecular basis of the disease, suggesting new potential therapeutic targets. CONCLUSION Several significant aspects are at early stages of evaluation. Future research is essential to investigate these well-promising perspectives.
Collapse
Affiliation(s)
| | - Konstantinos Imprialos
- 2nd Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | - Charles Faselis
- VAMC and George Washington University, Washington, DC, United States
| | - Kostas Tsioufis
- 1st Cardiology Department, Kapodestrian University of Athens, Athens, Greece
| | | | - Michael Doumas
- 2nd Propedeutic Department of Internal Medicine, Aristotle University, Thessaloniki, Greece.,VAMC and George Washington University, Washington, DC, United States
| |
Collapse
|
23
|
Lattanzio MR, Weir MR. Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm. KIDNEY360 2020; 1:1148-1156. [PMID: 35368778 PMCID: PMC8815485 DOI: 10.34067/kid.0000922020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/16/2020] [Indexed: 06/14/2023]
Abstract
Nearly seven decades have elapsed since the clinical and biochemical features of primary hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly because an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm. These new concepts have emerged in all areas of this clinical condition, including identification, diagnosis, and treatment. Here, we review the recent advances in this field and summarize the effect these advances have on both diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Michael R. Lattanzio
- Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Matthew R. Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Zennaro MC, Boulkroun S, Fernandes-Rosa FL. Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol 2020; 16:578-589. [PMID: 32724183 DOI: 10.1038/s41574-020-0382-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Early diagnosis and appropriate treatment of primary aldosteronism, the most frequent cause of secondary hypertension, are crucial to prevent deleterious cardiovascular outcomes. In the past decade, the discovery of genetic abnormalities responsible for sporadic and familial forms of primary aldosteronism has improved the knowledge of the pathogenesis of this disorder. Mutations in genes encoding ion channels and pumps lead to increased cytosolic concentrations of calcium in zona glomerulosa cells, which triggers CYP11B2 expression and autonomous aldosterone production. Improved understanding of the mechanisms underlying the disease is key to improving diagnostics and to developing and implementing targeted treatments. This Review provides an update on the genetic abnormalities associated with sporadic and familial forms of primary aldosteronism, their frequency among different populations and the mechanisms explaining excessive aldosterone production and adrenal nodule development. The possible effects and uses of these findings for improving the diagnostics for primary aldosteronism are discussed. Furthermore, current treatment options of primary aldosteronism are reviewed, with particular attention to the latest studies on blood pressure and cardiovascular outcomes following medical or surgical treatment. The new perspectives regarding the use of targeted drug therapy for aldosterone-producing adenomas with specific somatic mutations are also addressed.
Collapse
Affiliation(s)
- Maria-Christina Zennaro
- INSERM, PARCC, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | | | | |
Collapse
|
25
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
26
|
Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Genetic and Genomic Mechanisms of Primary Aldosteronism. Trends Mol Med 2020; 26:819-832. [PMID: 32563556 DOI: 10.1016/j.molmed.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the main cause of primary aldosteronism (PA), the most frequent form of secondary hypertension. Mutations in ion channels and ATPases have been identified in APA and inherited forms of PA, highlighting the central role of calcium signaling in PA development. Different somatic mutations are also found in aldosterone-producing cell clusters in adrenal glands from healthy individuals and from patients with unilateral and bilateral PA, suggesting additional pathogenic mechanisms. Recent mouse models have also contributed to a better understanding of PA. Application of genetic screening in familial PA, development of surrogate biomarkers for somatic mutations in APA, and use of targeted treatment directed at mutated proteins may allow improved management of patients.
Collapse
Affiliation(s)
| | | | - Maria-Christina Zennaro
- Inserm, PARCC, Université de Paris, F-75015 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
27
|
Rossi GP. Primary Aldosteronism: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:2799-2811. [PMID: 31779795 DOI: 10.1016/j.jacc.2019.09.057] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Primary aldosteronism (PA) is a common, but frequently overlooked, cause of arterial hypertension and excess cardiovascular events, particularly atrial fibrillation. As timely diagnosis and treatment can provide a cure of hyperaldosteronism and hypertension, even when the latter is resistant to drug treatment, strategies to screen patients for PA early with a simplified diagnostic algorithm are justified. They can be particularly beneficial in some subgroups of hypertensive patients, as those who are at highest cardiovascular risk. However, identification of the surgically curable cases of PA and achievement of optimal results require subtyping with adrenal vein sampling, which, as it is technically challenging and currently performed only in tertiary referral centers, represents the bottleneck in the work-up of PA. Measures aimed at improving the clinical use of adrenal vein sampling and at developing alternative techniques for subtyping, alongside recommendations for drug treatment, including new development in the field, and for follow-up are discussed.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Hypertension Unit, Department of Medicine, DIMED, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Wang Y, Jiang XY, Yu XY. BRD9 controls the oxytocin signaling pathway in gastric cancer via CANA2D4, CALML6, GNAO1, and KCNJ5. Transl Cancer Res 2020; 9:3354-3366. [PMID: 35117701 PMCID: PMC8798819 DOI: 10.21037/tcr.2020.03.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Background First-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers. Methods We used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells and AGS cells for global gene expression analysis in inhibiting BRD9 conditions. Results Our studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin. Conclusions Our study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 overexpression.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
29
|
Rossi GP, Bisogni V, Bacca AV, Belfiore A, Cesari M, Concistrè A, Del Pinto R, Fabris B, Fallo F, Fava C, Ferri C, Giacchetti G, Grassi G, Letizia C, Maccario M, Mallamaci F, Maiolino G, Manfellotto D, Minuz P, Monticone S, Morganti A, Muiesan ML, Mulatero P, Negro A, Parati G, Pengo MF, Petramala L, Pizzolo F, Rizzoni D, Rossitto G, Veglio F, Seccia TM. The 2020 Italian Society of Arterial Hypertension (SIIA) practical guidelines for the management of primary aldosteronism. INTERNATIONAL JOURNAL CARDIOLOGY HYPERTENSION 2020; 5:100029. [PMID: 33447758 PMCID: PMC7803025 DOI: 10.1016/j.ijchy.2020.100029] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Background and aim Considering the amount of novel knowledge generated in the last five years, a team of experienced hypertensionlogists was assembled to furnish updated clinical practice guidelines for the management of primary aldosteronism. Methods To identify the most relevant studies, the authors utilized a systematic literature review in international databases by applying the PICO strategy, and then they were required to make use of only those meeting predefined quality criteria. For studies of diagnostic tests, only those that fulfilled the Standards for Reporting of Diagnostic Accuracy recommendations were considered. Results Each section was jointly prepared by at least two co-authors, who provided Class of Recommendation and Level of Evidence following the American Heart Association methodology. The guidelines were sponsored by the Italian Society of Arterial Hypertension and underwent two rounds of revision, eventually reexamined by an External Committee. They were presented and thoroughly discussed in two face-to-face meetings with all co-authors and then presented on occasion of the 36th Italian Society of Arterial Hypertension meeting in order to gather further feedbacks by all members. The text amended according to these feedbacks was subjected to a further peer review. Conclusions After this process, substantial updated information was generated, which could simplify the diagnosis of primary aldosteronism and assist practicing physicians in optimizing treatment and follow-up of patients with one of the most common curable causes of arterial hypertension.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
- Corresponding author. DIMED –Clinica dell’Ipertensione Arteriosa, University Hospital, via Giustiniani, 2; 35126, Padova, Italy.
| | - Valeria Bisogni
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
| | | | - Anna Belfiore
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Maurizio Cesari
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
| | - Antonio Concistrè
- Department of Translational and Precision Medicine, Unit of Secondary Arterial Hypertension, "Sapienza" University of Rome, Italy
| | - Rita Del Pinto
- University of L'Aquila, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | - Bruno Fabris
- Department of Medical Sciences, Università degli Studi di Trieste, Cattinara Teaching Hospital, Trieste, Italy
| | - Francesco Fallo
- Department of Medicine, DIMED, Internal Medicine 3, University of Padua, Italy
| | - Cristiano Fava
- Department of Medicine, University of Verona, Policlinico "G.B. Rossi", Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health and Environmental Sciences, San Salvatore Hospital, L'Aquila, Italy
| | | | | | - Claudio Letizia
- Department of Translational and Precision Medicine, Unit of Secondary Arterial Hypertension, "Sapienza" University of Rome, Italy
| | - Mauro Maccario
- Endocrinology, Diabetology, and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Giuseppe Maiolino
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
| | - Dario Manfellotto
- UO Medicina Interna, Ospedale Fatebenefratelli Isola Tiberina, Rome, Italy
| | - Pietro Minuz
- Department of Medicine, University of Verona, Policlinico "G.B. Rossi", Italy
| | - Silvia Monticone
- Hypertension Unit, Division of Internal Medicine, Department of Medical Sciences, University of Turin, Italy
| | - Alberto Morganti
- Centro Fisiologia Clinica e Ipertensione, Ospedale Policlinico, Università Milano, Milan, Italy
| | - Maria Lorenza Muiesan
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Paolo Mulatero
- Hypertension Unit, Division of Internal Medicine, Department of Medical Sciences, University of Turin, Italy
| | - Aurelio Negro
- Department of Medicine, Center for Hypertension, IRCCS Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca and Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Martino F. Pengo
- Department of Medicine and Surgery, University of Milano-Bicocca and Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, Unit of Secondary Arterial Hypertension, "Sapienza" University of Rome, Italy
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, Policlinico "G.B. Rossi", Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Giacomo Rossitto
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, UK
| | - Franco Veglio
- Hypertension Unit, Division of Internal Medicine, Department of Medical Sciences, University of Turin, Italy
| | - Teresa Maria Seccia
- Clinica dell'Ipertensione Arteriosa, Department of Medicine - DIMED, University of Padua, Italy
| |
Collapse
|
30
|
Rege J, Turcu AF, Rainey WE. Primary aldosteronism diagnostics: KCNJ5 mutations and hybrid steroid synthesis in aldosterone-producing adenomas. Gland Surg 2020; 9:3-13. [PMID: 32206594 DOI: 10.21037/gs.2019.10.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary aldosteronism (PA) is characterized by autonomous aldosterone production by renin-independent mechanisms and is most commonly sporadic. While 60-70% of sporadic PA can be attributed to bilateral hyperaldosteronism, the remaining 30-40% is caused by a unilateral aldosterone-producing adenoma (APA). Somatic mutations in or near the selectivity filter the KCNJ5 gene (encoding the potassium channel GIRK4) have been implicated in the pathogenesis of both sporadic and familial PA. Several studies using tumor tissue, peripheral and adrenal vein samples from PA patients have demonstrated that along with aldosterone, the hybrid steroids 18-hydroxycortisol (18OHF) and 18-oxocortisol (18oxoF) are a hallmark of APA harboring KCNJ5 mutations. Herein, we review the recent advances with respect to the molecular mechanisms underlying the pathogenesis of PA and the steroidogenic fingerprints of KCNJ5 mutations. In addition, we present an outlook toward the future of PA subtyping and diagnostic work-up utilizing steroid profiling.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension affecting 5%-10% of patients with arterial hypertension. In PA, high blood pressure is associated with high aldosterone and low renin levels, and often hypokalemia. In a majority of cases, autonomous aldosterone production by the adrenal gland is caused by an aldosterone producing adenoma (APA) or bilateral adrenal hyperplasia (BAH). During the last ten years, a better knowledge of the pathophysiology of PA came from the discovery of somatic and germline mutations in different genes in both sporadic and familial forms of the disease. Those genes code for ion channels and pumps, as well as proteins involved in adrenal cortex development and function. Targeted next generation sequencing following immunohistochemistry guided detection of aldosterone synthase expression allows detection of somatic mutations in up to 90% of APA, while whole exome sequencing has discovered the genetic causes of four different familial forms of PA. The identification, in BAH, of somatic mutations in aldosterone producing cell clusters open new perspectives in our understanding of the bilateral form of the disease and the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, INSERM, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| |
Collapse
|
32
|
Yang Y, Reincke M, Williams TA. Prevalence, diagnosis and outcomes of treatment for primary aldosteronism. Best Pract Res Clin Endocrinol Metab 2020; 34:101365. [PMID: 31837980 DOI: 10.1016/j.beem.2019.101365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary aldosteronism (PA) is the most common potentially curable form of hypertension. The overproduction of aldosterone leads to an increased risk of cardiovascular and cerebrovascular events as well as adverse effects to the heart and kidney and psychological disorders. PA is mainly caused by unilateral aldosterone excess due to an aldosterone-producing adenoma or bilateral excess due to bilateral adrenocortical hyperplasia. The diagnostic work-up of PA comprises three steps: screening, confirmatory testing and differentiation of unilateral surgically-correctable forms from medically treated bilateral PA. These specific treatments can mitigate or reverse the increased risks associated with PA. Herein we summarise the prevalence, outcomes and current and future clinical approaches for the diagnosis of primary aldosteronism.
Collapse
Affiliation(s)
- Yuhong Yang
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
33
|
Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51:1-12. [PMID: 31695023 PMCID: PMC6834635 DOI: 10.1038/s12276-019-0337-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.
Collapse
|
34
|
Li WC, Xiong ZY, Huang PZ, Liao YJ, Li QX, Yao ZC, Liao YD, Xu SL, Zhou H, Wang QL, Huang H, Zhang P, Lin JZ, Liu B, Ren J, Hu KP. KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma. Aging (Albany NY) 2019; 11:8169-8182. [PMID: 31581133 PMCID: PMC6814606 DOI: 10.18632/aging.102311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Two-pore-domain (KCNK, K2P) K+ channels are transmembrane protein complexes that control the flow of ions across biofilms, which underlie many essential cellular functions. Because KCNK family members are known to contribute to tumorigenesis in various types of cancer, we hypothesized that they might be differentially expressed in hepatocellular carcinoma (HCC) cells as compared to healthy tissue and serve as diagnostic or prognostic biomarkers. We tested this hypothesis through bioinformatic analyses of publicly available data for the expression of various KCNK subunits in HCC. We observed reduced expression of KCNK2, KCNK15, and KCNK17 in liver cancer, as well as overexpression of KCNK9, all of which correlated with a better prognosis for HCC patients per survival analyses. Moreover, ROC curves indicated that KCNK2, KCNK9, KCNK15, and KCNK17 levels could be used as a diagnostic biomarker for HCC. Finally, our western blot and qRT-PCR results were consistent with those obtained from bioinformatic analyses. Taken together, these results suggest that KCNK2, KCNK9, KCNK15, and KCNK17 could serve as potential diagnostic and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Wen-Chao Li
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Yong Xiong
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Zhu Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang-Jing Liao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan-Xi Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Cheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Di Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Lei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Liang Wang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - He Huang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ji-Zong Lin
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Ren
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun-Peng Hu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Trinh B, Hepprich M, Betz MJ, Burkard T, Cavelti-Weder C, Seelig E, Meienberg F, Kratschmar DV, Beuschlein F, Reincke M, Odermatt A, Hall MN, Donath MY, Swierczynska MM. Treatment of Primary Aldosteronism With mTORC1 Inhibitors. J Clin Endocrinol Metab 2019; 104:4703-4714. [PMID: 31087053 DOI: 10.1210/jc.2019-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
CONTEXT Mammalian target of rapamycin complex 1 (mTORC1) activity is often increased in the adrenal cortex of patients with primary aldosteronism (PA), and mTORC1 inhibition decreases aldosterone production in adrenocortical cells, suggesting the mTORC1 pathway as a target for treatment of PA. OBJECTIVE To investigate the effect of mTORC1 inhibition on adrenal steroid hormones and hemodynamic parameters in mice and in patients with PA. DESIGN (i) Plasma aldosterone, corticosterone, and angiotensin II (Ang II) were measured in mice treated for 24 hours with vehicle or rapamycin. (ii) Plasma aldosterone levels after a saline infusion test, plasma renin, and 24-hour urine steroid hormone metabolome and hemodynamic parameters were measured during an open-label study in 12 patients with PA, before and after 2 weeks of treatment with everolimus and after a 2-week washout. MAIN OUTCOME MEASURES (i) Change in plasma aldosterone levels. (ii) Change in other steroid hormones, renin, Ang II, and hemodynamic parameters. RESULTS Treatment of mice with rapamycin significantly decreased plasma aldosterone levels (P = 0.007). Overall, treatment of PA patients with everolimus significantly decreased blood pressure (P < 0.05) and increased renin levels (P = 0.001) but did not decrease aldosterone levels significantly. However, prominent reduction of aldosterone levels upon everolimus treatment was observed in four patients. CONCLUSION In mice, mTORC1 inhibition was associated with reduced plasma aldosterone levels. In patients with PA, mTORC1 inhibition was associated with improved blood pressure and renin suppression. In addition, mTORC1 inhibition appeared to reduce plasma aldosterone in a subset of patients.
Collapse
Affiliation(s)
- Beckey Trinh
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthias Hepprich
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thilo Burkard
- European Society of Hypertension Centre of Excellence, Medical Outpatient Department, and Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eleonora Seelig
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Meienberg
- Clinic of Endocrinology and Diabetology, Kantonsspital Baselland, Liestal, Switzerland
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Marc Y Donath
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, and Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
36
|
Yang Y, Gomez-Sanchez CE, Jaquin D, Aristizabal Prada ET, Meyer LS, Knösel T, Schneider H, Beuschlein F, Reincke M, Williams TA. Primary Aldosteronism: KCNJ5 Mutations and Adrenocortical Cell Growth. Hypertension 2019; 74:809-816. [PMID: 31446799 DOI: 10.1161/hypertensionaha.119.13476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone-producing adenomas with somatic mutations in the KCNJ5 G-protein-coupled inwardly rectifying potassium channel are a cause of primary aldosteronism. These mutations drive aldosterone excess, but their role in cell growth is undefined. Our objective was to determine the role of KCNJ5 mutations in adrenal cell proliferation and apoptosis. The Ki67 proliferative index was positively correlated with adenoma diameter in aldosterone-producing adenomas with a KCNJ5 mutation (r=0.435, P=0.007), a negative correlation was noted in adenomas with no mutation detected (r=-0.548, P=0.023). Human adrenocortical cell lines were established with stable expression of cumate-inducible wild-type or mutated KCNJ5. Increased cell proliferation was induced by low-level induction of KCNJ5-T158A expression compared with control cells (P=0.009), but increased induction ablated this difference. KCNJ5-G151R displayed no apparent proliferative effect, but KCNJ5-G151E and L168R mutations each resulted in decreased cell proliferation (difference P<0.0001 from control cells, both comparisons). Under conditions tested, T158A had no effect on apoptosis, but apoptosis increased with expression of G151R (P<0.0001), G151E (P=0.008), and L168R (P<0.0001). We generated a specific KCNJ5 monoclonal antibody which was used in immunohistochemistry to demonstrate strong KCNJ5 expression in adenomas without a KCNJ5 mutation and in the zona glomerulosa adjacent to adenomas irrespective of genotype as well as in aldosterone-producing cell clusters. Double immunofluorescence staining for KCNJ5 and CYP11B2 (aldosterone synthase) showed markedly decreased KCNJ5 immunostaining in CYP11B2-positive cells compared with CYP11B2-negative cells in aldosterone-producing adenomas with a KCNJ5 mutation. Together, these findings support the concept that cell growth effects of KCNJ5 mutations are determined by the expression level of the mutated channel.
Collapse
Affiliation(s)
- Yuhong Yang
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Celso E Gomez-Sanchez
- Endocrine Division, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Diana Jaquin
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Elke Tatjana Aristizabal Prada
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Lucie S Meyer
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität München, Germany (T.K.)
| | - Holger Schneider
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Felix Beuschlein
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.).,Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Switzerland (F.B.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.)
| | - Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., D.J., E.T.A.P., L.S.M., H.S., F.B., M.R., T.A.W.).,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W.)
| |
Collapse
|
37
|
Yang Y, Burrello J, Burrello A, Eisenhofer G, Peitzsch M, Tetti M, Knösel T, Beuschlein F, Lenders JWM, Mulatero P, Reincke M, Williams TA. Classification of microadenomas in patients with primary aldosteronism by steroid profiling. J Steroid Biochem Mol Biol 2019; 189:274-282. [PMID: 30654107 PMCID: PMC6876277 DOI: 10.1016/j.jsbmb.2019.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/16/2018] [Accepted: 01/13/2019] [Indexed: 11/07/2022]
Abstract
In primary aldosteronism (PA) the differentiation of unilateral aldosterone-producing adenomas (APA) from bilateral adrenal hyperplasia (BAH) is usually performed by adrenal venous sampling (AVS) and/or computed tomography (CT). CT alone often lacks the sensitivity to identify micro-APAs. Our objectives were to establish if steroid profiling could be useful for the identification of patients with micro-APAs and for the development of an online tool to differentiate micro-APAs, macro-APAs and BAH. The study included patients with PA (n = 197) from Munich (n = 124) and Torino (n = 73) and comprised 33 patients with micro-APAs, 95 with macro-APAs, and 69 with BAH. Subtype differentiation was by AVS, and micro- and macro-APAs were selected according to pathology reports. Steroid concentrations in peripheral venous plasma were measured by liquid chromatography-tandem mass spectrometry. An online tool using a random forest model was built for the classification of micro-APA, macro-APA and BAH. Micro-APA were classified with low specificity (33%) but macro-APA and BAH were correctly classified with high specificity (93%). Improved classification of micro-APAs was achieved using a diagnostic algorithm integrating steroid profiling, CT scanning and AVS procedures limited to patients with discordant steroid and CT results. This would have increased the correct classification of micro-APAs to 68% and improved the overall classification to 92%. Such an approach could be useful to select patients with CT-undetectable micro-APAs in whom AVS should be considered mandatory.
Collapse
Affiliation(s)
- Yuhong Yang
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessio Burrello
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin, Italy
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany; Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
| | - Jacques W M Lenders
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
38
|
Hellman P, Björklund P, Åkerström T. Aldosterone-Producing Adenomas. VITAMINS AND HORMONES 2019; 109:407-431. [PMID: 30678866 DOI: 10.1016/bs.vh.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aldosterone-producing adenomas (APA) are more common than initially anticipated. APA cause primary aldosteronism (PA), which affect 3-10% of the hypertensive population. Research during recent years has led to an increased knowledge of the background dysregulation of the increased aldosterone release, where mutation in the gene encoding the potassium channel GIRK4-KCNJ5-is the most common. Moreover, the discovery of aldosterone-producing cell clusters in apparently normal adenomas has also led to increased understanding of the development of PA, and presumably also APA. A continuum ranging from low-renin hypertension to APA and overt PA is reasoned, and the secondary effects of aldosterone on especially the cardiovascular system have also become more evident. Diagnostics of PA and APA is important in order to reduce cardiovascular morbidity and mortality, but the diagnostic methods are somewhat unspecific and insensitive, indicating the need for novel methods.
Collapse
Affiliation(s)
- Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Meyer LS, Reincke M, Williams TA. Timeline of Advances in Genetics of Primary Aldosteronism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:213-243. [PMID: 31588534 DOI: 10.1007/978-3-030-25905-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overwhelming majority of cases of primary aldosteronism (PA) occur sporadically due to a unilateral aldosterone-producing adenoma (APA) or bilateral idiopathic adrenal hyperplasia. Familial forms of PA are rare with four subtypes defined to date (familial hyperaldosteronism types I-IV). The molecular basis of familial hyperaldosteronism type I (FH type I or glucocorticoid-remediable aldosteronism) was established in 1992; two decades later the genetic variant causing FH type III was identified and germline mutations causing FH type IV and FH type II were determined soon after. Effective diagnostic protocols and methods to detect the overactive gland in unilateral PA by adrenal venous sampling followed by laparoscopic adrenalectomy have made available APAs for scientific studies. In rapid succession, following the widespread use of next-generation sequencing, recurrent somatic driver mutations in APAs were identified in genes encoding ion channels and transporters. The development of highly specific monoclonal antibodies against key enzymes in adrenal steroidogenesis has unveiled the heterogeneous features of the diseased adrenal in PA and helped reveal the high proportion of APAs with driver mutations. We discuss what is known about the genetics of PA that has led to a clearer understanding of the disease pathophysiology.
Collapse
Affiliation(s)
- Lucie S Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
40
|
Vaidya A, Mulatero P, Baudrand R, Adler GK. The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocr Rev 2018; 39:1057-1088. [PMID: 30124805 PMCID: PMC6260247 DOI: 10.1210/er.2018-00139] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is characterized by aldosterone secretion that is independent of renin and angiotensin II and sodium status. The deleterious effects of primary aldosteronism are mediated by excessive activation of the mineralocorticoid receptor that results in the well-known consequences of volume expansion, hypertension, hypokalemia, and metabolic alkalosis, but it also increases the risk for cardiovascular and kidney disease, as well as death. For decades, the approaches to defining, diagnosing, and treating primary aldosteronism have been relatively constant and generally focused on detecting and treating the more severe presentations of the disease. However, emerging evidence suggests that the prevalence of primary aldosteronism is much greater than previously recognized, and that milder and nonclassical forms of renin-independent aldosterone secretion that impart heightened cardiovascular risk may be common. Public health efforts to prevent aldosterone-mediated end-organ disease will require improved capabilities to diagnose all forms of primary aldosteronism while optimizing the treatment approaches such that the excess risk for cardiovascular and kidney disease is adequately mitigated. In this review, we present a physiologic approach to considering the diagnosis, pathogenesis, and treatment of primary aldosteronism. We review evidence suggesting that primary aldosteronism manifests across a wide spectrum of severity, ranging from mild to overt, that correlates with cardiovascular risk. Furthermore, we review emerging evidence from genetic studies that begin to provide a theoretical explanation for the pathogenesis of primary aldosteronism and a link to its phenotypic severity spectrum and prevalence. Finally, we review human studies that provide insights into the optimal approach toward the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rene Baudrand
- Program for Adrenal Disorders and Hypertension, Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gail K Adler
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Nanba K, Omata K, Else T, Beck PCC, Nanba AT, Turcu AF, Miller BS, Giordano TJ, Tomlins SA, Rainey WE. Targeted Molecular Characterization of Aldosterone-Producing Adenomas in White Americans. J Clin Endocrinol Metab 2018; 103:3869-3876. [PMID: 30085035 PMCID: PMC6179168 DOI: 10.1210/jc.2018-01004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
Abstract
CONTEXT Somatic mutations have been identified in more than half of aldosterone-producing adenomas (APAs) through mutation hotspot sequencing. The underlying pathogenesis of inappropriate aldosterone synthesis in the remaining population is still unknown. OBJECTIVE To investigate the prevalence and spectrum of somatic mutations in APAs using an aldosterone synthase (CYP11B2) immunohistochemistry (IHC)‒guided next-generation sequencing (NGS) approach. METHODS Formalin-fixed paraffin-embedded adrenal tissue from white American patients with primary aldosteronism who underwent adrenalectomy at the University of Michigan was used. Genomic DNA was isolated from 75 APAs (identified by CYP11B2 IHC). NGS was performed to identify somatic mutations by sequencing the entire coding region of a panel of genes mutated in APAs. RESULTS Somatic mutations were identified in 66 of 75 APAs (88%). Of the APAs with somatic mutations, six were smaller than coexisting CYP11B2-negative adrenocortical adenomas. The most frequently mutated gene was KCNJ5 (43%), followed by CACNA1D (21%), ATP1A1 (17%), ATP2B3 (4%), and CTNNB1 (3%). In addition to identification of previously reported mutations, we identified five previously unreported mutations (two in KCNJ5, one in ATP1A1, one in ATP2B3, and one in CACNA1D genes). KCNJ5 mutations were more frequent in women (70% vs 24% in men). CONCLUSION Comprehensive NGS of CYP11B2-expressing adrenal tumors identified somatic mutations in aldosterone-driving genes in 88% of APAs, a higher rate than in previous studies using conventional approaches.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kei Omata
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Peter C C Beck
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Aya T Nanba
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Barbra S Miller
- Division of Endocrine Surgery, Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: William E. Rainey, PhD, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
42
|
Warachit W, Atikankul T, Houngngam N, Sunthornyothin S. Prevalence of Somatic KCNJ5 Mutations in Thai Patients With Aldosterone-Producing Adrenal Adenomas. J Endocr Soc 2018; 2:1137-1146. [PMID: 30283826 PMCID: PMC6162598 DOI: 10.1210/js.2018-00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023] Open
Abstract
Somatic KCNJ5 mutations result in excess aldosterone production and are reported to be more common in Asia than elsewhere. To assess the prevalence of somatic KCNJ5 mutations in Thai patients with aldosterone-producing adrenal adenomas (APAs) in a single tertiary center, we analyzed the paraffin-embedded tissue of KCNJ5 mutations from 96 patients with sporadic APAs who underwent unilateral laparoscopic adrenalectomy at our center during 2007 to 2016. We also assessed the clinical characteristics, treatment outcomes, and biochemistry and histologic differences among patients with and without somatic KCNJ5 mutations. Of the 96 patients with APA, 67 (70%) had somatic mutations of the KCNJ5 gene: 39 patients with p.G151R, 26 patients with p.L168R, one patient with p.T158A, and one patient with p.W126R. All patients presented with hypertension. Hypokalemia was documented in 98% of patients. The hypertension cure rate at 1 year after surgery was 35%. Patients with somatic KCNJ5 mutations required more potassium supplementation and had adrenal histology compatible with zona fasciculata–like cells compared with patients without the mutations (all P < 0.05). There were no significant differences in preoperative plasma aldosterone concentration (PAC), plasma renin activity, aldosterone/renin ratio, potassium level, treatment of hypertension, tumor size, and hypertension cure rate among patients in the KCNJ5-mutant and nonmutant groups. In a multivariate analysis, a higher PAC was associated with the presence of somatic KCNJ5 mutations. In summary, the prevalence of somatic KCNJ5 mutations in patients with sporadic APAs in Thailand, an Asian country with residents of different ethnic backgrounds, is comparable to previous reports in Asia.
Collapse
Affiliation(s)
- Wasita Warachit
- Division of General Internal Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok, Thailand.,Division of Endocrinology and Metabolism, Department of Medicine, and Hormonal and Metabolic Research Unit, Excellence Center for Diabetes, Hormone and Metabolism, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok, Thailand
| | - Taywin Atikankul
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Patumwan, Bangkok, Thailand
| | - Natnicha Houngngam
- Division of Endocrinology and Metabolism, Department of Medicine, and Hormonal and Metabolic Research Unit, Excellence Center for Diabetes, Hormone and Metabolism, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok, Thailand
| | - Sarat Sunthornyothin
- Division of Endocrinology and Metabolism, Department of Medicine, and Hormonal and Metabolic Research Unit, Excellence Center for Diabetes, Hormone and Metabolism, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok, Thailand
| |
Collapse
|
43
|
El Zein RM, Boulkroun S, Fernandes-Rosa FL, Zennaro MC. Molecular genetics of Conn adenomas in the era of exome analysis. Presse Med 2018; 47:e151-e158. [PMID: 30072045 DOI: 10.1016/j.lpm.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldosterone-producing adenomas (APA) are a major cause of primary aldosteronism (PA), the most common form of secondary hypertension. Exome analysis of APA has allowed the identification of recurrent somatic mutations in KCNJ5, CACNA1D, ATP1A1, and ATP2B3 in more than 50 % of sporadic cases. These gain of function mutations in ion channels and pumps lead to increased and autonomous aldosterone production. In addition, somatic CTNNB1 mutations have also been identified in APA. The CTNNB1 mutations were also identified in cortisol-producing adenomas and adrenal cancer, but their role in APA development and the mechanisms specifying the hormonal production or the malignant phenotype remain unknown. The role of the somatic mutations in the regulation of aldosterone production is well understood, while the impact of these mutations on cell proliferation remains to be established. Furthermore, the sequence of events leading to APA formation is currently the focus of many studies. There is evidence for a two-hit model where the somatic mutations are second hits occurring in a previously remodeled adrenal cortex. On the other hand, the APA-driver mutations were also identified in aldosterone-producing cell clusters (APCC) in normal adrenals, suggesting that these structures may represent precursors for APA development. As PA due to APA can be cured by surgical removal of the affected adrenal gland, the identification of the underlying genetic abnormalities by novel biomarkers could improve diagnostic and therapeutic approaches of the disease. In this context, recent data on steroid profiling in peripheral venous samples of APA patients and on new drugs capable of inhibiting mutated potassium channels provide promising preliminary data with potential for translation into clinical care.
Collapse
Affiliation(s)
- Rami M El Zein
- Paris Cardiovascular Research Center, INSERM, UMRS 970, 56, rue Leblanc, 75015 Paris, France; University Paris Descartes, Sorbonne Paris cité, 12, rue de l'École-de-médecine, 75006 Paris, France
| | - Sheerazed Boulkroun
- Paris Cardiovascular Research Center, INSERM, UMRS 970, 56, rue Leblanc, 75015 Paris, France; University Paris Descartes, Sorbonne Paris cité, 12, rue de l'École-de-médecine, 75006 Paris, France
| | - Fabio Luiz Fernandes-Rosa
- Paris Cardiovascular Research Center, INSERM, UMRS 970, 56, rue Leblanc, 75015 Paris, France; University Paris Descartes, Sorbonne Paris cité, 12, rue de l'École-de-médecine, 75006 Paris, France; Assistance publique-Hôpitaux de Paris, hôpital européen Georges-Pompidou, service de génétique, 20, rue Leblanc, 75015 Paris, France
| | - Maria-Christina Zennaro
- Paris Cardiovascular Research Center, INSERM, UMRS 970, 56, rue Leblanc, 75015 Paris, France; University Paris Descartes, Sorbonne Paris cité, 12, rue de l'École-de-médecine, 75006 Paris, France; Assistance publique-Hôpitaux de Paris, hôpital européen Georges-Pompidou, service de génétique, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
44
|
Crona J, Beuschlein F, Pacak K, Skogseid B. Advances in adrenal tumors 2018. Endocr Relat Cancer 2018; 25:R405-R420. [PMID: 29794126 PMCID: PMC5976083 DOI: 10.1530/erc-18-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
This review aims to provide clinicians and researchers with a condensed update on the most important studies in the field during 2017. We present the academic output measured by active clinical trials and peer-reviewed published manuscripts. The most important and contributory manuscripts were summarized for each diagnostic entity, with a particular focus on manuscripts that describe translational research that have the potential to improve clinical care. Finally, we highlight the importance of collaborations in adrenal tumor research, which allowed for these recent advances and provide structures for future success in this scientific field.
Collapse
Affiliation(s)
- J Crona
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVKlinikum der Universität München, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - K Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - B Skogseid
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Williams TA, Reincke M. MANAGEMENT OF ENDOCRINE DISEASE: Diagnosis and management of primary aldosteronism: the Endocrine Society guideline 2016 revisited. Eur J Endocrinol 2018; 179:R19-R29. [PMID: 29674485 DOI: 10.1530/eje-17-0990] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
The syndrome of primary aldosteronism (PA) is characterized by hypertension with excessive, autonomous aldosterone production and is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. The diagnostic workup of PA is a sequence of three phases comprising screening tests, confirmatory tests and the differentiation of unilateral from bilateral forms. The latter step is necessary to determine the optimal treatment approach of unilateral laparoscopic adrenalectomy (for patients with unilateral PA) or medical treatment with a mineralocorticoid receptor antagonist (for patients with bilateral PA). Since the publication of the revised Endocrine Society guideline 2016, a number of key studies have been published. They challenge the recommendations of the guideline in some areas and confirm current practice in others. Herein, we present the recent developments and current approaches to the medical management of PA.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
46
|
Zennaro MC, Fernandes-Rosa FL, Boulkroun S. Overview of aldosterone-related genetic syndromes and recent advances. Curr Opin Endocrinol Diabetes Obes 2018; 25:147-154. [PMID: 29432258 DOI: 10.1097/med.0000000000000409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary aldosteronism is the most common form of secondary hypertension. Early diagnosis and treatment are key to cure of hypertension and prevention of cardiovascular complications. Recent genetic discoveries have improved our understanding on the pathophysiology of aldosterone production and triggered the development of new diagnostic procedures and targeted treatments for primary aldosteronism. RECENT FINDINGS Different inherited genetic abnormalities distinguish specific forms of familial hyperaldosteronism. Somatic mutations are found not only in aldosterone-producing adenoma (APA), leading to primary aldosteronism, but also in aldosterone producing cell clusters of normal and micronodules from image-negative adrenal glands. Genetic knowledge has allowed the discovery of surrogate biomarkers and specific pharmacological inhibitors. Ageing appears to be associated with dysregulated and relatively autonomous aldosterone production. SUMMARY New biochemical markers and pharmacological approaches may allow preoperative identification of somatic mutation carriers and use of targeted treatments.
Collapse
Affiliation(s)
- Maria-Christina Zennaro
- INSERM, UMRS_970, Paris Cardiovascular Research Center
- Université Paris Descartes, Sorbonne Paris Cité
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
| | - Fabio L Fernandes-Rosa
- INSERM, UMRS_970, Paris Cardiovascular Research Center
- Université Paris Descartes, Sorbonne Paris Cité
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Genetics Department, Paris, France
| | - Sheerazed Boulkroun
- INSERM, UMRS_970, Paris Cardiovascular Research Center
- Université Paris Descartes, Sorbonne Paris Cité
| |
Collapse
|
47
|
Lenzini L, Prisco S, Caroccia B, Rossi GP. Saga of Familial Hyperaldosteronism: Yet a New Channel. Hypertension 2018; 71:1010-1014. [PMID: 29735637 DOI: 10.1161/hypertensionaha.118.11150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Livia Lenzini
- From the Department of Medicine, University of Padova, Italy
| | - Selene Prisco
- From the Department of Medicine, University of Padova, Italy
| | | | | |
Collapse
|
48
|
Monticone S, Buffolo F, Tetti M, Veglio F, Pasini B, Mulatero P. GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. Eur J Endocrinol 2018; 178:R101-R111. [PMID: 29348113 DOI: 10.1530/eje-17-0946] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
Abstract
Aldosterone is the main mineralocorticoid hormone in humans and plays a key role in maintaining water and electrolyte homeostasis. Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction by the adrenal glands, affects 6% of the general hypertensive population and can be either sporadic or familial. Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH) are the two most frequent subtypes of sporadic PA and 4 forms of familial hyperaldosteronism (FH-I to FH-IV) have been identified. Over the last six years, the introduction of next-generation sequencing has significantly improved our understanding of the molecular mechanisms responsible for autonomous aldosterone overproduction in both sporadic and familial PA. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D), differently implicated in intracellular ion homeostasis, have been identified in nearly 60% of the sporadic APAs. Germline mutations in KCNJ5 and CACNA1H cause FH-III and FH-IV, respectively, while germline mutations in CACNA1D cause the rare PASNA syndrome, featuring primary aldosteronism seizures and neurological abnormalities. Further studies are warranted to identify the molecular mechanisms underlying BAH and FH-II, the most common forms of sporadic and familial PA whose molecular basis is yet to be uncovered.
Collapse
Affiliation(s)
- Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Franco Veglio
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Barbara Pasini
- Division of Medical Genetics, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
49
|
Maiolino G, Ceolotto G, Battistel M, Barbiero G, Cesari M, Amar L, Caroccia B, Padrini R, Azizi M, Rossi GP. Macrolides for KCNJ5-mutated aldosterone-producing adenoma (MAPA): design of a study for personalized diagnosis of primary aldosteronism. Blood Press 2018; 27:200-205. [PMID: 29409357 DOI: 10.1080/08037051.2018.1436961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Aldosterone-producing adenoma (APA) is the main curable cause of endocrine hypertension cause of primary aldosteronism (PA) and it is in up to 66% of all cases investigated with adrenal vein sampling (AVS). Mutations in the KCNJ5 potassium channel involve up to 70% of APA and cause the most florid PA phenotypes. The recent finding that macrolide antibiotics specifically inhibit in vitro the altered function of mutated KCNJ5 channels has opened new horizons for the diagnosis and treatment of APA with KCNJ5 mutations in that it can allow identification and target treatment of PA patients harbouring a mutated APA. Thus, we aimed at investigating if clarithromycin and roxithromycin, two macrolides that potently blunt mutated Kir3.4 channel function in vitro, affect plasma aldosterone concentration in adrenal vein blood during AVS and in peripheral blood, respectively, in PA patients with a mutated APA. METHODS AND DESIGN We designed two proof of concept studies. In study A: consecutive patients with an unambiguous biochemical evidence of PA will be exposed to a single dose of 250 mg clarithromycin during AVS, to assess its effect on the relative aldosterone secretion index in adrenal vein blood from the gland with and without APA. In study B: consecutive hypertensive patients submitted to the work-up for hypertension will receive a single oral dose of 150 mg roxithromycin. The experimental endpoints will be the change induced by roxithromycin of plasma aldosterone concentration and other steroids, direct active renin concentration, serum K+, systolic and diastolic blood pressure. DISCUSSION We expect to prove that: (i) clarithromycin allows identification of mutated APA before adrenalectomy and sequencing of tumour DNA; (ii) the acute changes of plasma aldosterone concentration, direct active renin concentration, and blood pressure in peripheral venous blood after roxithromycin can be a proxy for the presence of an APA with somatic mutations.
Collapse
Affiliation(s)
- Giuseppe Maiolino
- a Department of Medicine-DIMED, Clinica dell'Ipertensione Arteriosa , University of Padova , Padova , Italy
| | - Giulio Ceolotto
- a Department of Medicine-DIMED, Clinica dell'Ipertensione Arteriosa , University of Padova , Padova , Italy
| | - Michele Battistel
- b Department of Medicine-DIMED, Institute of Radiology , University of Padova , Padova , Italy
| | - Giulio Barbiero
- b Department of Medicine-DIMED, Institute of Radiology , University of Padova , Padova , Italy
| | - Maurizio Cesari
- a Department of Medicine-DIMED, Clinica dell'Ipertensione Arteriosa , University of Padova , Padova , Italy
| | - Laurence Amar
- c Department of Medicine-DIMED, Clinical Pharmacology , University of Padova , Padova , Italy
| | - Brasilina Caroccia
- a Department of Medicine-DIMED, Clinica dell'Ipertensione Arteriosa , University of Padova , Padova , Italy
| | - Roberto Padrini
- d APHP , Georges Pompidou European Hospital and Paris Descartes University , Paris , France
| | - Michel Azizi
- c Department of Medicine-DIMED, Clinical Pharmacology , University of Padova , Padova , Italy
| | - Gian Paolo Rossi
- a Department of Medicine-DIMED, Clinica dell'Ipertensione Arteriosa , University of Padova , Padova , Italy
| |
Collapse
|
50
|
Zennaro MC, Boulkroun S, Fernandes-Rosa F. Genetic Causes of Functional Adrenocortical Adenomas. Endocr Rev 2017; 38:516-537. [PMID: 28973103 DOI: 10.1210/er.2017-00189] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
Aldosterone and cortisol, the main mineralocorticoid and glucocorticoid hormones in humans, are produced in the adrenal cortex, which is composed of three concentric zones with specific functional characteristics. Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism, the most frequent form of secondary arterial hypertension. In the case of cortisol production, ACAs lead to overt or subclinical Cushing syndrome. Genetic analysis driven by next-generation sequencing technology has enabled the discovery, during the past 7 years, of the genetic causes of a large subset of ACAs. In particular, somatic mutations in genes regulating intracellular ionic homeostasis and membrane potential have been identified in aldosterone-producing adenomas. These mutations all promote increased intracellular calcium concentrations, with activation of calcium signaling, the main trigger for aldosterone production. In cortisol-producing adenomas, recurrent somatic mutations in PRKACA (coding for the cyclic adenosine monophosphate-dependent protein kinase catalytic subunit α) affect cyclic adenosine monophosphate-dependent protein kinase A signaling, leading to activation of cortisol biosynthesis. In addition to these specific pathways, the Wnt/β-catenin pathway appears to play an important role in adrenal tumorigenesis, because β-catenin mutations have been identified in both aldosterone- and cortisol-producing adenomas. This, together with different intermediate states of aldosterone and cortisol cosecretion, raises the possibility that the two conditions share a certain degree of genetic susceptibility. Alternatively, different hits might be responsible for the diseases, with one hit leading to adrenocortical cell proliferation and nodule formation and the second specifying the hormonal secretory pattern.
Collapse
Affiliation(s)
- Maria-Christina Zennaro
- French National Institute of Health and Medical Research (INSERM), Unité Mixte de Recherche Scientifique (UMRS)_970, Paris Cardiovascular Research Center, France.,Université Paris Descartes, Sorbonne Paris Cité, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, France
| | - Sheerazed Boulkroun
- French National Institute of Health and Medical Research (INSERM), Unité Mixte de Recherche Scientifique (UMRS)_970, Paris Cardiovascular Research Center, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Fabio Fernandes-Rosa
- French National Institute of Health and Medical Research (INSERM), Unité Mixte de Recherche Scientifique (UMRS)_970, Paris Cardiovascular Research Center, France.,Université Paris Descartes, Sorbonne Paris Cité, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, France
| |
Collapse
|