1
|
Levian B, Hou Y, Tang X, Bainvoll L, Zheng K, Badarinarayana V, Aghamohammadzadeh S, Chen M. Novel readthrough agent suppresses nonsense mutations and restores functional type VII collagen and laminin 332 in epidermolysis bullosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102334. [PMID: 39391765 PMCID: PMC11465179 DOI: 10.1016/j.omtn.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) and junctional epidermolysis bullosa (JEB) are lethal blistering skin disorders resulting from mutations in genes coding for type VII collagen (COL7A1) and laminin 332 (LAMA3, LAMB3, or LAMC2), respectively. In RDEB, 25% of patients harbor nonsense mutations causing premature termination codons (PTCs). In JEB, a majority of mutations in LAMB3 are nonsense mutations (80%). ELX-02, an aminoglycoside analog, has demonstrated superior PTC readthrough activity and lower toxicity compared to gentamicin in various genetic disorders. This study investigated the ability of ELX-02 to suppress PTCs and promote the expression of C7 and laminin 332 in primary RDEB keratinocytes/fibroblasts and primary JEB keratinocytes harboring nonsense mutations. ELX-02 induced a dose-dependent production of C7 or laminin β3 that surpassed the results achieved with gentamicin. ELX-02 reversed RDEB and JEB cellular hypermotility and improved poor cell-substratum adhesion in JEB cells. Importantly, ELX-02-induced C7 and laminin 332 localized to the dermal-epidermal junction. This is the first study demonstrating that ELX-02 can induce PTC readthrough and restore functional C7 and laminin 332 in RDEB and JEB caused by nonsense mutations. Therefore, ELX-02 may offer a novel and safe therapy for RDEB, JEB, and other inherited skin diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Brandon Levian
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Tang
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Liat Bainvoll
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate Zheng
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C, Sun W, Huang X, An L, Zhang Y. Suppressor tRNA in gene therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2120-2131. [PMID: 38926247 DOI: 10.1007/s11427-024-2613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.
Collapse
Affiliation(s)
- Jingjing Ruan
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaoxiao Yu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Huixia Xu
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenyang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenlong Sun
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| | - Yue Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
3
|
Jover I, Ramos MC, Escámez MJ, Lozoya E, Tormo JR, de Prado-Verdún D, Mencía Á, Pont M, Puig C, Larraufie MH, Gutiérrez-Caballero C, Reyes F, Trincado JL, García-González V, Cerrato R, Andrés M, Crespo M, Vicente F, Godessart N, Genilloud O, Larcher F, Nueda A. Identification of novel small molecule-based strategies of COL7A1 upregulation and readthrough activity for the treatment of recessive dystrophic epidermolysis bullosa. Sci Rep 2024; 14:18969. [PMID: 39152155 PMCID: PMC11329504 DOI: 10.1038/s41598-024-67398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age. A frequent class of mutations in RDEB is premature termination codons (PTC), which appear in homozygosity or compound heterozygosity with other mutations. RDEB has no cure and current therapies are mostly palliative. Using patient-derived keratinocytes and a library of 8273 small molecules and 20,160 microbial extracts evaluated in a phenotypic screening interrogating C7 levels, we identified three active chemical series. Two of these series had PTC readthrough activity, and one upregulated C7 mRNA, showing synergistic activity when combined with the reference readthrough molecule gentamicin. These compounds represent novel potential small molecule-based systemic strategies that could complement topical-based treatments for RDEB.
Collapse
Affiliation(s)
- Irene Jover
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Maria C Ramos
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - María José Escámez
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Estrella Lozoya
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - José R Tormo
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Diana de Prado-Verdún
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ángeles Mencía
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Mercè Pont
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Carles Puig
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Marie-Helene Larraufie
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Juan Luis Trincado
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Vicente García-González
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Rosario Cerrato
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Miriam Andrés
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Maribel Crespo
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Nuria Godessart
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de La Salud, Av. Conocimiento 34, 18016, Granada, Spain
| | - Fernando Larcher
- Departamento de Bioingeniería E Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
- Unidad de Innovación Biomédica. Centro de Investigaciones Energéticas, U714-CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IISFJD), Madrid, Spain.
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| | - Arsenio Nueda
- R&D Centre, Almirall S.A., Laureà Miró 408-410, 08980, Sant Feliu de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Woodley DT, Hao M, Kwong A, Levian B, Cogan J, Hou Y, Mosallaei D, Kleinman E, Zheng K, Chung C, Kim G, Peng D, Chen M. Intravenous gentamicin therapy induces functional type VII collagen in patients with recessive dystrophic epidermolysis bullosa: an open-label clinical trial. Br J Dermatol 2024; 191:267-274. [PMID: 38366625 PMCID: PMC11250489 DOI: 10.1093/bjd/ljae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable widespread blistering skin disorder caused by mutations in the gene encoding for type VII collagen (C7), the major component of anchoring fibrils. OBJECTIVES To evaluate the efficacy and safety of intravenous (IV) gentamicin readthrough therapy in patients with RDEB harbouring nonsense mutations. The primary outcomes were increased expression of C7 in patients' skin and safety assessments (ototoxicity, nephrotoxicity, autoimmune response); secondary outcomes included measuring wound healing in target wounds and assessment by a validated Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) scoring system. METHODS An open-label pilot trial to assess two different IV gentamicin regimens between August 2018 and March 2020 with follow-up through to 180 days post-treatment was carried out. Three patients with RDEB with confirmed nonsense mutations in COL7A1 in either one or two alleles and decreased baseline expression of C7 at the dermal-epidermal junction (DEJ) of their skin participated in the study. Three patients received gentamicin 7.5 mg kg-1 daily for 14 days and two of the three patients further received 7.5 mg kg-1 IV gentamicin twice weekly for 12 weeks. Patients who had pre-existing auditory or renal impairment, were currently using ototoxic or nephrotoxic medications, or had allergies to aminoglycosides or sulfate compounds were excluded. RESULTS After gentamicin treatment, skin biopsies from all three patients (age range 18-28 years) exhibited increased C7 in their DEJ. With both regimens, the new C7 persisted for at least 6 months post-treatment. At 1 and 3 months post-treatment, 100% of the monitored wounds exhibited > 85% closure. Both IV gentamicin infusion regimens decreased EBDASI total activity scores. Of the patients assessed with the EBDASI, all exhibited decreased total activity scores 3 months post-treatment. All three patients completed the study; no adverse effects or anti-C7 antibodies were detected. CONCLUSIONS IV gentamicin induced the readthrough of nonsense mutations in patients with RDEB and restored functional C7 in their skin, enhanced wound healing and improved clinical parameters. IV gentamicin may be a safe, efficacious, low-cost and readily available treatment for this population of patients with RDEB.
Collapse
Affiliation(s)
- David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michelle Hao
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Kwong
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Levian
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yingping Hou
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Mosallaei
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elana Kleinman
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kate Zheng
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire Chung
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gene Kim
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Peng
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Laimer M. Nonsense variant readthrough therapy for epidermolysis bullosa. Br J Dermatol 2024; 191:161-162. [PMID: 38530166 DOI: 10.1093/bjd/ljae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Zandanell J, Wießner M, Bauer JW, Wagner RN. Stop codon readthrough as a treatment option for epidermolysis bullosa-Where we are and where we are going. Exp Dermatol 2024; 33:e15042. [PMID: 38459626 DOI: 10.1111/exd.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.
Collapse
Affiliation(s)
- Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Roland N Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Cao L, Zhang Z, Yuan D, Yu M, Min J. Tissue engineering applications of recombinant human collagen: a review of recent progress. Front Bioeng Biotechnol 2024; 12:1358246. [PMID: 38419725 PMCID: PMC10900516 DOI: 10.3389/fbioe.2024.1358246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of synthetic biology, recombinant human collagen has emerged as a cutting-edge biological material globally. Its innovative applications in the fields of material science and medicine have opened new horizons in biomedical research. Recombinant human collagen stands out as a highly promising biomaterial, playing a pivotal role in crucial areas such as wound healing, stroma regeneration, and orthopedics. However, realizing its full potential by efficiently delivering it for optimal therapeutic outcomes remains a formidable challenge. This review provides a comprehensive overview of the applications of recombinant human collagen in biomedical systems, focusing on resolving this crucial issue. Additionally, it encompasses the exploration of 3D printing technologies incorporating recombinant collagen to address some urgent clinical challenges in regenerative repair in the future. The primary aim of this review also is to spotlight the advancements in the realm of biomaterials utilizing recombinant collagen, with the intention of fostering additional innovation and making significant contributions to the enhancement of regenerative biomaterials, therapeutic methodologies, and overall patient outcomes.
Collapse
Affiliation(s)
- Lili Cao
- Department of Plastic Surgery, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Zhongfeng Zhang
- Department of Plastic Surgery, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Dan Yuan
- Department of Plastic Surgery, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Meiping Yu
- Department of Plastic Surgery, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Jie Min
- General Surgery Department, Jiaxing No.1 Hospital, Jiaxing, Zhejiang, China
| |
Collapse
|
8
|
Lima Cunha D, Sarkar H, Eintracht J, Harding P, Zhou JH, Moosajee M. Restoration of functional PAX6 in aniridia patient iPSC-derived ocular tissue models using repurposed nonsense suppression drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:240-253. [PMID: 37483273 PMCID: PMC10362734 DOI: 10.1016/j.omtn.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Congenital aniridia is a rare, pan-ocular disease causing severe sight loss, with only symptomatic intervention offered to patients. Approximately 40% of aniridia patients present with heterozygous nonsense variants in PAX6, resulting in haploinsufficiency. Translational readthrough-inducing drugs (TRIDs) have the ability to weaken the recognition of in-frame premature termination codons (PTCs), permitting full-length protein to be translated. We established induced pluripotent stem cell (iPSC)-derived 3D optic cups and 2D limbal epithelial stem cell (LESC) models from two aniridia patients with prevalent PAX6 nonsense mutations. Both in vitro models show reduced PAX6 protein levels, mimicking the disease. The repurposed TRIDs amlexanox and 2,6-diaminopurine (DAP) and the positive control compounds ataluren and G418 were tested for their efficiency. Amlexanox was identified as the most promising TRID, increasing full-length PAX6 levels in both models and rescuing the disease phenotype through normalization of VSX2 and cell proliferation in the optic cups and reduction of ABCG2 protein and SOX10 expression in LESCs. This study highlights the significance of patient iPSC-derived cells as a new model system for aniridia and proposes amlexanox as a new putative treatment for nonsense-mediated aniridia.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Hajrah Sarkar
- UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
| | | | | | - Jo Huiqing Zhou
- Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
9
|
Wang S, Yang Z, Liu Y, Zhang H, Liu Z, Wang X, Li Y, Liu H, Yang Y, Ma L. Application of topical gentamicin ointment in the treatment of Nagashima-type palmoplantar keratosis in children with a nonsense mutation. Pediatr Investig 2023; 7:163-167. [PMID: 37736370 PMCID: PMC10509405 DOI: 10.1002/ped4.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 09/23/2023] Open
Abstract
Importance Nagashima-type palmoplantar keratosis (NPPK) is a hereditary dermatosis mostly caused by a nonsense mutation in SERPINB7. Despite the increasing interest in readthrough gentamicin treatment of NPPK, clinical evidence for this treatment is limited. Objective This study aimed to provide further evidence for the use of topical gentamicin in the treatment of NPPK in children with nonsense mutations. Methods We designed a bilaterally controlled study of topical gentamicin ointment. Children diagnosed with NPPK carrying nonsense mutations were enrolled in this study. A 0.1% gentamicin ointment was applied to one hand and an emollient to the other for 3 months. A bilateral comparison of the visual analog scale scores for clinical manifestations and safety was performed. Results Ten children with NPPK were included in this study. In comparison with the emollient side, the topical gentamicin side showed significant improvements in hyperkeratosis, erythema, maceration, and desquamation after 1 and 3 months of treatment (P < 0.05). However, hyperhidrosis and odor did not improve significantly. No adverse events were observed during the systemic safety monitoring examinations. Interpretation Topical gentamicin ointment showed good safety in the treatment of NPPK with nonsense mutations, indicating that it is a promising therapeutic choice in children with NPPK.
Collapse
Affiliation(s)
- Shan Wang
- Department of Dermatology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Zhou Yang
- Department of Dermatology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Ying Liu
- Department of Dermatology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Huan Zhang
- Department of Pharmacy, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Zongyang Liu
- Department of Pharmacy, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Ying Li
- Department of Otolaryngology, Head and Neck SurgeryBeijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck SurgeryBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Haihong Liu
- Department of Otolaryngology, Head and Neck SurgeryBeijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck SurgeryBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Yonghong Yang
- Department of Respiratory MedicineChina National Clinical Research Center for Respiratory DiseasesBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Lin Ma
- Department of Dermatology, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
10
|
Dieter K, Niebergall-Roth E, Daniele C, Fluhr S, Frank NY, Ganss C, Kiritsi D, McGrath JA, Tolar J, Frank MH, Kluth MA. ABCB5 + mesenchymal stromal cells facilitate complete and durable wound closure in recessive dystrophic epidermolysis bullosa. Cytotherapy 2023; 25:782-788. [PMID: 36868990 PMCID: PMC10257763 DOI: 10.1016/j.jcyt.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND AIMS Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6-36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB. METHODS Documentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds. RESULTS Of 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%. CONCLUSIONS Comparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients' dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds. TRIAL REGISTRATION Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.
Collapse
Affiliation(s)
| | | | | | | | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany; TICEBA GmbH, Heidelberg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - John A McGrath
- St John's Institute of Dermatology, Guy's Hospital, King's College London, London, UK
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Mark A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany; TICEBA GmbH, Heidelberg, Germany.
| |
Collapse
|
11
|
Li S, Li J, Shi W, Nie Z, Zhang S, Ma F, Hu J, Chen J, Li P, Xie X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023; 13:988. [PMID: 37371567 DOI: 10.3390/biom13060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Around 11% of all known gene lesions causing human genetic diseases are nonsense mutations that introduce a premature stop codon (PTC) into the protein-coding gene sequence. Drug-induced PTC readthrough is a promising therapeutic strategy for treating hereditary diseases caused by nonsense mutations. To date, it has been found that more than 50 small-molecular compounds can promote PTC readthrough, known as translational readthrough-inducing drugs (TRIDs), and can be divided into two major categories: aminoglycosides and non-aminoglycosides. This review summarizes the pharmacodynamics and clinical application potential of the main TRIDs discovered so far, especially some newly discovered TRIDs in the past decade. The discovery of these TRIDs brings hope for treating nonsense mutations in various genetic diseases. Further research is still needed to deeply understand the mechanism of eukaryotic cell termination and drug-induced PTC readthrough so that patients can achieve the greatest benefit from the various TRID treatments.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyan Nie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianjun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Hou PC, del Agua N, Lwin SM, Hsu CK, McGrath JA. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 2023; 19:455-473. [PMID: 37337559 PMCID: PMC10277004 DOI: 10.2147/tcrm.s386923] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.
Collapse
Affiliation(s)
- Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nathalie del Agua
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Su M Lwin
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
13
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Affiliation(s)
- Aimee S Payne
- From the Department of Dermatology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Evaluation of Pharmacological Rescue of Melanocortin-4 Receptor Nonsense Mutations by Aminoglycoside. Life (Basel) 2022; 12:life12111793. [PMID: 36362948 PMCID: PMC9697516 DOI: 10.3390/life12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations’ position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.
Collapse
|
16
|
Sait H, Srivastava S, Saxena D. Integrated Management Strategies for Epidermolysis Bullosa: Current Insights. Int J Gen Med 2022; 15:5133-5144. [PMID: 35637703 PMCID: PMC9148209 DOI: 10.2147/ijgm.s342740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Epidermolysis bullosa (EB) is a group of rare genodermatoses that is characterized by skin fragility resulting from minor trauma. There are four major subtypes, namely, EB simplex, junctional EB, dystrophic EB and Kindler EB, depending upon the localization of defective protein and resulting plane of blister formation. The phenotype is heterogeneous in terms of severity and majority of them present at birth or neonatal period. Currently, the treatment is mainly supportive and requires multidisciplinary care. The complex molecular pathology creates difficulty in discovering a unified curative treatment approach. But with arduous efforts, significant progress has been made in the development of treatment strategies in the last decade. The management strategies range from targeting the underlying causative factor to symptom-relieving approaches, and include gene, mRNA, protein, cell and combination therapies. In this review, we enumerate the promising approaches that are currently under various stages of investigation to provide effective treatment for patients with EB.
Collapse
Affiliation(s)
- Haseena Sait
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Somya Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Has C, Sayar SB, Zheng S, Chacón-Solano E, Condrat I, Yadav A, Roberge M, Larcher Laguzzi F. Read-Through for Nonsense Mutations in Type XVII Collagen‒Deficient Junctional Epidermolysis Bullosa. J Invest Dermatol 2022; 142:1227-1230.e4. [PMID: 34673051 DOI: 10.1016/j.jid.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Saliha Beyza Sayar
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shuangshuang Zheng
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esteban Chacón-Solano
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Irina Condrat
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ayushi Yadav
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Roberge
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Larcher Laguzzi
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
18
|
Martínez-Santamaría L, Maseda R, de Arriba MDC, Membrilla JA, Sigüenza AI, Mascías J, García M, Quintana L, Esteban-Rodríguez I, Hernández-Fernández CP, Illera N, Duarte B, Guerrero-Aspizúa S, Woodley DT, del Río M, de Lucas R, Larcher F, Escámez MJ. Evaluation of Systemic Gentamicin as Translational Readthrough Therapy for a Patient With Epidermolysis Bullosa Simplex With Muscular Dystrophy Owing to PLEC1 Pathogenic Nonsense Variants. JAMA Dermatol 2022; 158:439-443. [PMID: 35234827 PMCID: PMC8892370 DOI: 10.1001/jamadermatol.2022.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) is an autosomal recessive disorder caused by pathogenic variants in PLEC1, which encodes plectin. It is characterized by mild mucocutaneous fragility and blistering and muscle weakness. Translational readthrough-inducing drugs, such as repurposed aminoglycoside antibiotics, may represent a valuable therapeutic alternative for untreatable rare diseases caused by nonsense variants. OBJECTIVE To evaluate whether systemic gentamicin, at a dose of 7.5 mg/kg/d for 14 consecutive days, is clinically beneficial in a patient with EBS-MD. DESIGN, SETTING, AND PARTICIPANTS A single patient in Madrid, Spain, received 2 treatment courses with gentamicin on July 2019 and February 2020 with a follow-up period of 120 and 150 days, respectively. RESULTS In this case report of a woman in her 30s with EBS-MD, before gentamicin treatment, the patient had mucocutaneous involvement, skeletal and respiratory muscle weakness, and myalgia that negatively affected her quality of life. Outcomes were evaluated with extensive laboratory tests and clinical scales. No nephrotoxic or ototoxic effects were detected after intravenous gentamicin administration. Gentamicin treatment was followed by plectin expression in the skin for at least 5 months. Although minimal changes were noted in skeletal muscle function (as measured by the Hammersmith functional motor scale and its expanded version: 6/40 to 7/40 and from 10/66 to 11/66, respectively) and respiratory musculature (maximal inspiratory and expiratory pressures D0 vs D16, MIP: 2.86 vs 3.63 KPa and MEP: 2.93 vs 4.63 KPa), myalgia disappeared (VAS dropped from 6 to 0), and quality of life improved (EuroQoL-5D-3L pain and anxiety dropped from 2 to 1). CONCLUSIONS AND RELEVANCE The findings of this single case report suggest that gentamicin treatment may help suppress PLEC1 premature termination codons and induce plectin expression in EBS-MD primary keratinocytes and skin. Our study suggests that gentamicin may play an important role in treating EBS-MD owing to nonsense variants.
Collapse
Affiliation(s)
- Lucía Martínez-Santamaría
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - Rocío Maseda
- Departamento de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - María del Carmen de Arriba
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | | | | | - Javier Mascías
- Departamento de Neurología, Hospital Universitario La Paz, Madrid, Spain
| | - Marta García
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - Lucía Quintana
- Departamento de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Nuria Illera
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - Blanca Duarte
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - Sara Guerrero-Aspizúa
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - David T. Woodley
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Raúl de Lucas
- Departamento de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - Fernando Larcher
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| | - María José Escámez
- Universidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial (UC3M), División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII (CIBERER-ISCIII) - IIS-FJD, Madrid, Spain
| |
Collapse
|
19
|
Mosallaei D, Hao M, Antaya RJ, Levian B, Kwong A, Cogan J, Hamilton C, Schwieger-Briel A, Tan C, Tang X, Woodley DT, Chen M. Molecular and Clinical Outcomes After Intravenous Gentamicin Treatment for Patients With Junctional Epidermolysis Bullosa Caused by Nonsense Variants. JAMA Dermatol 2022; 158:366-374. [PMID: 35234826 PMCID: PMC8892363 DOI: 10.1001/jamadermatol.2021.5992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Junctional epidermolysis bullosa (JEB) is an incurable blistering skin disorder with high infant mortality often caused by nonsense variants in the genes that encode laminin 332. OBJECTIVE To evaluate the safety and outcomes following intravenous gentamicin readthrough therapy and subsequent laminin 332 expression in patients with JEB. DESIGN, SETTING, AND PARTICIPANTS This open-label, pilot nonrandomized clinical trial assessed 1 course of low- or high-dose intravenous gentamicin, including follow-up at 30 and 90 days after treatment. Five pediatric patients with JEB (2 with intermediate JEB and 3 with severe JEB) and confirmed nonsense variants in LAMA3 or LAMB3 in 1 or 2 alleles and decreased expression of laminin 332 at the dermal-epidermal junction of their skin participated in the study, which was performed at a single institution in collaboration with physicians and home infusion services near the patients from April 1, 2019, to February 28, 2021, with follow-up until May 31, 2021. INTERVENTIONS Three patients received gentamicin at 7.5 mg/kg daily for 14 days, and 2 patients received gentamicin at 10 mg/kg daily for 24 days. MAIN OUTCOMES AND MEASURES Primary outcomes were change in expression of laminin 332 in patients' skin and assessments for safety (ototoxic effects, nephrotoxic effects, and autoimmune response). Secondary outcomes included wound healing in monitored wounds and Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) score. RESULTS After gentamicin treatment, all 5 patients (age range, 3 months to 10 years, 4 [80%] female) exhibited increased laminin 332 in the dermal-epidermal junction. By 1 month, 7 of 9 wounds in patients receiving low-dose intravenous gentamicin and all wounds in patients receiving high-dose intravenous gentamicin exhibited at least 50% wound closure. By 3 months, 8 of 9 wounds in patients receiving low-dose gentamicin and all wounds in patients receiving high-dose intravenous gentamicin exhibited greater than 85% closure. All 3 patients who were evaluated with EBDASI showed a decrease in total activity scores that met minimal clinically important differences 1 month after treatment. All 5 patients completed the study, and no ototoxic effects, nephrotoxic effects, or anti-laminin 332 antibodies were detected. CONCLUSIONS AND RELEVANCE In this nonrandomized clinical trial, intravenous gentamicin therapy was associated with induced readthrough of nonsense variants in patients with JEB, restored functional laminin 332 in their skin, and wound closure during the 3-month study period. Although long-term safety and efficacy requires further evaluation, a single cycle of intravenous gentamicin may be a safe and readily available therapy in the short term for this population of patients with JEB. TRIAL REGISTRATION ClinicalTrials.gov Identifiers: NCT03526159 and NCT04140786.
Collapse
Affiliation(s)
- Daniel Mosallaei
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Michelle Hao
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Richard J. Antaya
- Department of Dermatology and Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Brandon Levian
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Andrew Kwong
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Claire Hamilton
- Department of Dermatology and Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Agnes Schwieger-Briel
- Pediatric Skin Center, Division of Pediatric Dermatology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Calvin Tan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Xin Tang
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - David T. Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
20
|
Gurevich I, Agarwal P, Zhang P, Dolorito JA, Oliver S, Liu H, Reitze N, Sarma N, Bagci IS, Sridhar K, Kakarla V, Yenamandra VK, O'Malley M, Prisco M, Tufa SF, Keene DR, South AP, Krishnan SM, Marinkovich MP. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med 2022; 28:780-788. [PMID: 35347281 PMCID: PMC9018416 DOI: 10.1038/s41591-022-01737-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a lifelong genodermatosis associated with blistering, wounding, and scarring caused by mutations in COL7A1, the gene encoding the anchoring fibril component, collagen VII (C7). Here, we evaluated beremagene geperpavec (B-VEC), an engineered, non-replicating COL7A1 containing herpes simplex virus type 1 (HSV-1) vector, to treat RDEB skin. B-VEC restored C7 expression in RDEB keratinocytes, fibroblasts, RDEB mice and human RDEB xenografts. Subsequently, a randomized, placebo-controlled, phase 1 and 2 clinical trial (NCT03536143) evaluated matched wounds from nine RDEB patients receiving topical B-VEC or placebo repeatedly over 12 weeks. No grade 2 or above B-VEC-related adverse events or vector shedding or tissue-bound skin immunoreactants were noted. HSV-1 and C7 antibodies sometimes presented at baseline or increased after B-VEC treatment without an apparent impact on safety or efficacy. Primary and secondary objectives of C7 expression, anchoring fibril assembly, wound surface area reduction, duration of wound closure, and time to wound closure following B-VEC treatment were met. A patient-reported pain-severity secondary outcome was not assessed given the small proportion of wounds treated. A global assessment secondary endpoint was not pursued due to redundancy with regard to other endpoints. These studies show that B-VEC is an easily administered, safely tolerated, topical molecular corrective therapy promoting wound healing in patients with RDEB.
Collapse
Affiliation(s)
- Irina Gurevich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - John A Dolorito
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Henry Liu
- Krystal Biotech, Pittsburgh, PA, USA
| | | | | | - Isin Sinem Bagci
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kunju Sridhar
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Visesha Kakarla
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vamsi K Yenamandra
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marco Prisco
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara F Tufa
- Microscopy Unit, Shriners Hospital for Children, Portland, OR, USA
| | - Douglas R Keene
- Microscopy Unit, Shriners Hospital for Children, Portland, OR, USA
| | - Andrew P South
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - M Peter Marinkovich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA. .,Veterans Affairs Medical Center, Palo Alto, Stanford, CA, USA.
| |
Collapse
|
21
|
Asimakopoulou E, Andreou A, Patelarou A, Patelarou E, Sopjani I, Argyriadis A. Epidermolysis Bullosa: A case study in Cyprus and the nursing care plan. Int J Nurs Knowl 2022; 33:312-320. [PMID: 35302717 DOI: 10.1111/2047-3095.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To present a case study with Epidermolysis bullosa (EB) in Cyprus and to determine the nursing care plan, explaining the nursing interventions and showing the importance of nursing care of patients with EB. METHODS Literature review on EB and semi-structured interviews commenced through a direct discussion with open-ended questions to the research subject as well as to a close relative describing his feelings, experiences, and concerns about the disease. FINDINGS Thematic analysis approach was used to identify and analyze patterns in the data. Then, data were synthesized using the standardized nursing terminology of NANDA-I and the Nursing Interventions Classification. The accuracy of the diagnoses and the appropriateness of the nursing interventions were supported by the positive health outcomes of the patient. CONCLUSIONS Nurses should apply evidence-based practice interventions for EB wound care, pain management, nutrition, psychological and social support to these patients. IMPLICATIONS FOR NURSING PRACTICE Although EB is classified in the category of rare diseases, the presentation of a case study in Cyprus and the nursing care plan contribute further bibliographically to the holistic and at the same time individualized nursing practice.
Collapse
Affiliation(s)
| | - Aspasia Andreou
- Nursing Department, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | - Athina Patelarou
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, Crete, Greece
| | - Evridiki Patelarou
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, Crete, Greece
| | | | - Alexandros Argyriadis
- Nursing Department, School of Health Sciences, Frederick University, Nicosia, Cyprus
| |
Collapse
|
22
|
Yu J, Tang B, He X, Zou P, Zeng Z, Xiao R. Nonsense Suppression Therapy: An Emerging Treatment for Hereditary Skin Diseases. Acta Derm Venereol 2022; 102:adv00658. [DOI: 10.2340/actadv.v102.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense mutations cause the premature termination of protein translation via premature termination codons (PTCs), leading to the synthesis of incomplete functional proteins and causing large numbers of genetic disorders. The emergence of nonsense suppression therapy is considered to be an effective method for the treatment of hereditary diseases, but its application in hereditary skin diseases is relatively limited. This review summarizes the current research status of nonsense suppression therapy for hereditary skin diseases, and discusses the potential opportunities and challenges of applying new technologies related to nonsense suppression therapy to dermatology. Further research is needed into the possible use of nonsense suppression therapy as a strategy for the safer and specific treatment of hereditary skin diseases.
Collapse
|
23
|
Onoufriadis A, McGrath JA. ESDR 50th Anniversary Lecture summary: The past and future of rare skin disease research/therapy. J Invest Dermatol 2022; 142:1010-1014. [DOI: 10.1016/j.jid.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
|
24
|
Omachi K, Kai H, Roberge M, Miner JH. Full-length and split-NanoLuc reporters identify pathogenic COL4A5 nonsense mutations susceptible to premature termination codon readthrough. iScience 2022; 25:103891. [PMID: 35243249 PMCID: PMC8866893 DOI: 10.1016/j.isci.2022.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/02/2022] Open
Abstract
Alport syndrome, a disease of kidney, ear, and eye, is caused by pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes encoding collagen α3α4α5(IV) of basement membranes. Collagen IV chains that are truncated due to nonsense variants/premature termination codons (PTCs) cannot assemble into heterotrimers or incorporate into basement membranes. To investigate the feasibility of PTC readthrough therapy for Alport syndrome, we utilized two NanoLuc reporters in transfected cells: full-length for monitoring translation, and a split version for assessing readthrough product function. Full-length assays of 49 COL4A5 nonsense variants identified eleven as susceptible to PTC readthrough using various readthrough drugs. In split-NanoLuc assays, the predicted missense α5(IV) readthrough products of five nonsense mutations could heterotrimerize with α3(IV) and α4(IV). Readthrough was also observed in kidney cells from an engineered Col4a5 PTC mouse model. These results suggest that readthrough therapy is a feasible approach for a fraction of patients with Alport syndrome. NanoLuc fusion constructs identified COL4A5 mutants susceptible to PTC readthrough Readthrough enhancer and “designer” compounds promoted PTC readthrough Split-NanoLuc fusion constructs identified functional missense readthrough products Cultured Col4a5 nonsense mutant mouse kidney cells were susceptible to readthrough
Collapse
|
25
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
26
|
Mahajan R, Manjunath S, Madakshira M, De D, Handa S, Chatterjee D, Radotra B. Topical gentamicin 0.1% promotes collagen 7 expression in recessive dystrophic epidermolysis bullosa. Indian Dermatol Online J 2022; 13:480-483. [PMID: 36262564 PMCID: PMC9574149 DOI: 10.4103/idoj.idoj_554_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Currently, there is no cure for epidermolysis bullosa (EB) but few studies have explored the role of aminoglycosides in promoting collagen 7 expression in recessive dystrophic EB (RDEB). Materials and Methods: Consecutive patients aged >1 year with a confirmed diagnosis of dystrophic EB (DEB) were advised to apply 0.1% w/w gentamicin cream in a collagen base (Derbriment G™) twice daily on a representative area on right lower limb (RLL) and paraffin gauze dressings on the corresponding opposite side on the left lower limb (LLL). Skin lesions were evaluated clinically during the 12-week treatment period at the end of which a repeat skin biopsy was sent for immunofluorescence antigen mapping (IFM). Results: Twelve patients with DEB were recruited but only eight completed the study and were analyzed. The mean fluorescence intensity (MFI) of the study cohort increased from 2765 ± 1732.07 (263–4845) at baseline to 5412.75 ± 3937.64 (2100–13536) at 12 weeks; a 95.75% (range 5.34%–775.14%) increase in the MFI of collagen 7 from baseline (P = 0.06). Among patients with a known termination codon mutation (n = 3), the percentage increase in MFI was greater among patients with known premature termination codon (PTC) mutations compared to those with unknown mutations. The clinical severity did not change significantly in terms of the mean number of blisters, erosions, and scarring during the study period. None of the parents reported any adverse effect. Conclusions: Topical gentamicin 0.1% w/w is a safe and effective way to promote the expression of COL7A1 in DEB patients, especially those carrying PTC mutations.
Collapse
|
27
|
Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, McGrath JA. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci 2021; 104:164-176. [PMID: 34916041 DOI: 10.1016/j.jdermsci.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan; Department of Dermatology, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Subramaniam KS, Antoniou MN, McGrath JA, Lwin SM. The potential of gene therapy for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2021; 186:609-619. [PMID: 34862606 DOI: 10.1111/bjd.20910] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa (EB) encompasses a heterogeneous group of inherited skin fragility disorders with mutations in genes encoding the basement membrane zone (BMZ) proteins that normally ensure dermal-epidermal integrity. Of the four main EB types, recessive dystrophic EB (RDEB), especially the severe variant, represents one of the most debilitating clinical entities with recurrent mucocutaneous blistering and ulceration leading to chronic wounds, infections, inflammation, scarring and ultimately cutaneous squamous cell carcinoma, which leads to premature death. Improved understanding of the molecular genetics of EB over the past three decades and advances in biotechnology has led to rapid progress in developing gene and cell-based regenerative therapies for EB. In particular, RDEB is at the vanguard of advances in human clinical trials of advanced therapeutics. Furthermore, the past decade has witnessed the emergence of a real collective, global effort involving academia and industry, supported by international EB patient organisations such as the Dystrophic Epidermolysis Bullosa Research Association (DEBRA), amongst others, to develop clinically relevant and marketable targeted therapeutics for EB. Thus, there is an increasing need for the practising dermatologist to become familiar with the concept of gene therapy, fundamental differences between various approaches and their human applications. This review explains the principles of different approaches of gene therapy; summarises its journey and discusses its current and future impact in RDEB.
Collapse
Affiliation(s)
- K S Subramaniam
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - M N Antoniou
- Gene Expression and Therapy Group, Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - S M Lwin
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
29
|
Wang S, Yang Z, Liu Y, Zhao MT, Zhao J, Zhang H, Liu ZY, Wang XL, Ma L, Yang YH. Application of topical gentamicin-a new era in the treatment of genodermatosis. World J Pediatr 2021; 17:568-575. [PMID: 34787828 DOI: 10.1007/s12519-021-00469-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The clinical use of gentamicin always lies in its antimicrobial activity in the past as an aminoglycoside antibiotic. However, in the past decade, there were considerable interests in therapeutic approaches in treating hereditary diseases. Some of the genodermatosis is caused by nonsense mutations that create premature termination codons and lead to the production of truncated or non-functional proteins. Gentamicin could induce readthrough of nonsense mutations and enable the synthesis of full-length proteins. We focus on previous publications on topical application of gentamicin and review its utility in genetic skin diseases. DATA SOURCES We search the MEDLINE through PubMed, EMBASE databases, and the Clinical Trials Registry Platform from January 1960 to July 2020 using the key search terms "gentamicin, topical gentamicin, genodermatosis, genetic skin diseases". RESULTS The application of gentamicin in genodermatosis yielded promising results, both in vivo and in vitro, including Nagashima-type palmoplantar keratosis, epidermolysis bullosa, Hailey-Hailey disease, hereditary hypotrichosis simplex of the scalp, etc. CONCLUSIONS: Topical gentamicin is a potential treatment option for genodermatosis caused by nonsense mutation.
Collapse
Affiliation(s)
- Shan Wang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Zhou Yang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Ying Liu
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Mu-Tong Zhao
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Juan Zhao
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Huan Zhang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Zong-Yang Liu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Xiao-Ling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Lin Ma
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China.
| | - Yong-Hong Yang
- China National Clinical Research Center for Respiratory Diseases, Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 South Li Shi Road, Xi Cheng District, Beijing, 100045, China
| |
Collapse
|
30
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
31
|
Popp CM, Miller WC, Eide CR, Tolar J. Future applications of 3D bioprinting: A promising technology for treating recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 31:384-392. [PMID: 34699623 DOI: 10.1111/exd.14484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) bioprinting is a rapidly developing technology that has the potential to initiate a paradigm shift in the treatment of skin wounds arising from burns, ulcers and genodermatoses. Recessive dystrophic epidermolysis bullosa (RDEB), a severe form of epidermolysis bullosa, is a rare genodermatosis that results in mechanically induced blistering of epithelial tissues that leads to chronic wounds. Currently, there is no cure for RDEB, and effective treatment is limited to protection from trauma and extensive bandaging. The care of chronic wounds and burns significantly burdens the healthcare system, further illustrating the dire need for more beneficial wound care. However, in its infancy, 3D bioprinting offers therapeutic potential for wound healing and could be a breakthrough technology for the treatment of rare, incurable genodermatoses like RDEB. This viewpoint essay outlines the promise of 3D bioprinting applications for treating RDEB, including skin regeneration, a delivery system for gene-edited cells and small molecules, and disease modelling. Although the future of 3D bioprinting is encouraging, there are many technical challenges to overcome-including optimizing bioink and cell source-before this approach can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Courtney M Popp
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William C Miller
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy R Eide
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Hayashi R, Shimomura Y. Update of recent findings in genetic hair disorders. J Dermatol 2021; 49:55-67. [PMID: 34676598 DOI: 10.1111/1346-8138.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
33
|
Nilay M, Saxena D, Mandal K, Moirangthem A, Phadke SR. Novel pathogenic variants in an Indian cohort with epidermolysis bullosa: Expanding the genotypic spectrum. Eur J Med Genet 2021; 64:104345. [PMID: 34597860 DOI: 10.1016/j.ejmg.2021.104345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/14/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a genodermatosis characterized by skin fragility and blisters with variable severity. Patients with Dystrophic EB (DEB) or Junctional EB (JEB) mainly present to clinic due to greater functional impairment. Pathogenic sequence variations in COL7A1 are implicated in DEB. OBJECTIVE We have tried to decipher the molecular spectrum and genotype phenotype correlation of 21 Indian patients with EB. METHODS Next generation sequencing (NGS) was performed to determine the pathogenic variants. Sanger sequencing was also done for validation of the variants in eleven individuals. RESULTS Pathogenic variants were detected in 20 individuals (diagnostic yield of 95%). Majority of them (90%) had sequence variation in COL7A1 while two had pathogenic variants in ITGB4 and KRT14 respectively. Out of the 18 patients confirmed to have DEB, 3 had Dominant DEB (DDEB) whereas 15 patients had Recessive DEB (RDEB). Amongst 23 sequence variations identified, 12 were found to be novel (3 were missense, 5 were premature termination codon variants while 4 were splice-site changes). CONCLUSION Genotype phenotype correlation was noted with milder manifestations in those with dominant inheritance types. Exact molecular diagnosis can be ascertained by NGS in majority of cases.
Collapse
Affiliation(s)
- Mayank Nilay
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
34
|
Chen F, Guo Y, Zhou K, Deng D, Yue W, Yang W, Zhang B, Li Y, Liang J, Li M, Yao Z. The clinical efficacy and safety of anti-IgE therapy in recessive dystrophic epidermolysis bullosa. Clin Genet 2021; 101:110-115. [PMID: 34494659 DOI: 10.1111/cge.14062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
The treatment of recessive dystrophic epidermolysis bullosa (RDEB) remains challenging. Elevated IgE levels have previously been reported in several RDEB patients. In this prospective, single-centre, open intervention study, elevated IgE levels were seen in 11 out of 12 patients with intense pruritus, and the patients with elevated IgE levels received anti-IgE therapy every 4 weeks for at least three cycles. Compared with the baseline, 10 patients with RDEB had good clinical outcomes with enhanced wound healing, a reduction in Birmingham (epidermolysis bullosa) EB severity score by 15%, a reduction in affected body surface area by 23.3%, amelioration of skin inflammation, and an increase in type VII collagen deposition by 13.1-fold. All the patients had a good tolerance to anti-IgE therapy. Furthermore, patients with higher IgE levels tended to have higher disease severity and more favorable clinical outcomes. Our report also suggested the potential role of IgE in the pathogenesis of inflammatory conditions associated with RDEB. (ChiCTR1900021437).
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifeng Guo
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Zhou
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wanbo Yue
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqin Yang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Beibei Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Zeng M, Xu Q, Zhou D, A S, Alshehri F, Lara-Sáez I, Zheng Y, Li M, Wang W. Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 2021; 176:113842. [PMID: 34293384 DOI: 10.1016/j.addr.2021.113842] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(β-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.
Collapse
|
36
|
Welponer T, Prodinger C, Pinon-Hofbauer J, Hintersteininger A, Breitenbach-Koller H, Bauer JW, Laimer M. Clinical Perspectives of Gene-Targeted Therapies for Epidermolysis Bullosa. Dermatol Ther (Heidelb) 2021; 11:1175-1197. [PMID: 34110606 PMCID: PMC8322229 DOI: 10.1007/s13555-021-00561-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into molecular genetics and pathomechanisms in epidermolysis bullosa (EB), methodological and technological advances in molecular biology as well as designated funding initiatives and facilitated approval procedures for orphan drugs have boosted translational research perspectives for this devastating disease. This is echoed by the increasing number of clinical trials assessing innovative molecular therapies in the field of EB. Despite remarkable progress, gene-corrective modalities, aimed at sustained or permanent restoration of functional protein expression, still await broad clinical availability. This also reflects the methodological and technological shortcomings of current strategies, including the translatability of certain methodologies beyond preclinical models as well as the safe, specific, efficient, feasible, sustained and cost-effective delivery of therapeutic/corrective information to target cells. This review gives an updated overview on status, prospects, challenges and limitations of current gene-targeted therapies.
Collapse
Affiliation(s)
- Tobias Welponer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Christine Prodinger
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Josefina Pinon-Hofbauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Arno Hintersteininger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Johann W Bauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
37
|
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic disorders for which significant progress has been achieved in the development of molecular therapies in the last few decades. Such therapies require knowledge of mutant genes and specific mutations, some of them being allele specific. A relatively large number of clinical trials are ongoing and ascertaining the clinical efficacy of gene, protein or cell therapies or of repurposed drugs, mainly in recessive dystrophic EB. It is expected that some new drugs may emerge in the near future and that combinations of different approaches may result in improved treatment outcomes for individuals with EB.
Collapse
|
38
|
Ryumina II, Goryunov KV, Silachev DN, Shevtsova YA, Babenko VA, Marycheva NM, Kotalevskaya YY, Zubkov VV, Zubkov GT. Pathogenetic Therapy of Epidermolysis Bullosa: Current State and Prospects. Bull Exp Biol Med 2021; 171:109-121. [PMID: 34050833 DOI: 10.1007/s10517-021-05182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.
Collapse
Affiliation(s)
- I I Ryumina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - K V Goryunov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia.
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V A Babenko
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N M Marycheva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Yu Yu Kotalevskaya
- M. F. Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V V Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - G T Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
39
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
40
|
Baradaran-Heravi A, Balgi AD, Hosseini-Farahabadi S, Choi K, Has C, Roberge M. Effect of small molecule eRF3 degraders on premature termination codon readthrough. Nucleic Acids Res 2021; 49:3692-3708. [PMID: 33764477 PMCID: PMC8053119 DOI: 10.1093/nar/gkab194] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Premature termination codon (PTC) readthrough is considered a potential treatment for genetic diseases caused by nonsense mutations. High concentrations of aminoglycosides induce low levels of PTC readthrough but also elicit severe toxicity. Identifying compounds that enhance PTC readthrough by aminoglycosides or reduce their toxicity is a continuing challenge. In humans, a binary complex of eukaryotic release factors 1 (eRF1) and 3 (eRF3a or eRF3b) mediates translation termination. They also participate in the SURF (SMG1-UPF1-eRF1-eRF3) complex assembly involved in nonsense-mediated mRNA decay (NMD). We show that PTC readthrough by aminoglycoside G418 is considerably enhanced by eRF3a and eRF3b siRNAs and cereblon E3 ligase modulators CC-885 and CC-90009, which induce proteasomal degradation of eRF3a and eRF3b. eRF3 degradation also reduces eRF1 levels and upregulates UPF1 and selectively stabilizes TP53 transcripts bearing a nonsense mutation over WT, indicating NMD suppression. CC-90009 is considerably less toxic than CC-885 and it enhances PTC readthrough in combination with aminoglycosides in mucopolysaccharidosis type I-Hurler, late infantile neuronal ceroid lipofuscinosis, Duchenne muscular dystrophy and junctional epidermolysis bullosa patient-derived cells with nonsense mutations in the IDUA, TPP1, DMD and COL17A1 genes, respectively. Combination of CC-90009 with aminoglycosides such as gentamicin or ELX-02 may have potential for PTC readthrough therapy.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
41
|
Hosseini-Farahabadi S, Baradaran-Heravi A, Zimmerman C, Choi K, Flibotte S, Roberge M. Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough. PLoS Biol 2021; 19:e3001221. [PMID: 33939688 PMCID: PMC8118496 DOI: 10.1371/journal.pbio.3001221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/13/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.
Collapse
Affiliation(s)
- Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carla Zimmerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
42
|
Hung JH, Hou PC, Huang FC, Hsu CK. Topical gentamicin ointment induces LAMB3 nonsense mutation readthrough and improves corneal erosions in a patient with junctional epidermolysis bullosa. Clin Exp Ophthalmol 2021; 49:309-312. [PMID: 33634938 DOI: 10.1111/ceo.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Chin Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Kai Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
43
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
44
|
Mariath LM, Kiszewski AE, Frantz JA, Siebert M, Matte U, Schuler-Faccini L. Gene panel for the diagnosis of epidermolysis bullosa: proposal for a viable and efficient approach. An Bras Dermatol 2021; 96:155-162. [PMID: 33640189 PMCID: PMC8007490 DOI: 10.1016/j.abd.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/20/2023] Open
Abstract
Background Epidermolysis bullosa is characterized by cutaneous fragility and blistering. Historically, diagnosis is achieved by immunofluorescence mapping or transmission electron microscopy, both involving biopsy procedures. Genetic analysis, especially through next-generation sequencing, is an important tool for the diagnosis of this disease. In Brazil, access to diagnostic methods is limited, and consequently, most patients do not have an accurate diagnosis. Diagnosis allows the indication of prognosis and genetic counselling of the patient. Objectives To evaluate the cost-effectiveness of a gene panel compared to immunofluorescence mapping and transmission electron microscopy by analyzing its benefits, limitations, and economic aspects. Methods The gene panel included the 11 main genes associated with epidermolysis bullosa. The techniques were compared, assessing the average cost, advantages, and limitations, through a price survey and literature review. Results Both immunofluorescence mapping and transmission electron microscopy require skin biopsy, are dependent on the investigator’s expertise, and are subject to frequent inconclusive results. The gene panel is effective for the conclusive diagnosis of epidermolysis bullosa, presents high efficiency and accuracy, is economically feasible, and excludes the need for biopsy. The gene panel allows for prognosis, prenatal genetic diagnosis, and genetic counseling. Study limitations It was not possible to find laboratories that perform transmission electron microscopy for epidermolysis bullosa diagnosis in Brazil. Conclusion This study supports the gene panel as the first-choice method for epidermolysis bullosa diagnosis.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Elisa Kiszewski
- Dermatology Section, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Dermatological Pediatrics Section, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jeanine Aparecida Frantz
- School of Medicine, Universidade Regional de Blumenau, Blumenau, SC, Brazil; DEBRA Brasil, Blumenau, SC, Brazil
| | - Marina Siebert
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schuler-Faccini
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil.
| |
Collapse
|
45
|
Titeux M, Bonnet des Claustres M, Izmiryan A, Ragot H, Hovnanian A. Emerging drugs for the treatment of epidermolysis bullosa. Expert Opin Emerg Drugs 2020; 25:467-489. [DOI: 10.1080/14728214.2020.1839049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matthias Titeux
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | | | - Araksya Izmiryan
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Helene Ragot
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Alain Hovnanian
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
- Départment de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
46
|
Prodinger C, Bauer JW, Laimer M. Translational perspectives to treat Epidermolysis bullosa-Where do we stand? Exp Dermatol 2020; 29:1112-1122. [PMID: 33043517 PMCID: PMC7756480 DOI: 10.1111/exd.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB) is the prototypical example of genetic skin fragility disorders. Genotypic heterogeneity, modifier genes, epigenetic, biochemical and environmental factors alter and determine pathogenic traits and, ultimately, the wide and striking phenotypic variability in EB. Besides the primary structural-functional defect, chronic tissue damage with induction and dysregulation of inflammatory pathways is a common pathogenic mechanism in EB. In localized variants, the inflammatory aberrations may mainly affect the micromilieu of lesional skin, while a systemic inflammatory response was shown to contribute to the systemic morbidity in severe EB subtypes with extensive cutaneous involvement. Our continued understanding of the pathophysiology of EB, as well as advances in molecular technologies, has paved the way for translational therapeutic approaches. The spectrum comprises of corrective and symptom-relieving therapies that include innovative therapeutic options garnered from the bench, repurposed drugs approved for other diseases, as well as strategies for gene-, protein- and cell-based therapies. Immunological traits further define new targets of therapy, aimed at improving skin barrier restoration, microbial surveillance and infection control, wound healing and anti-neoplastic effects. Clinical availability and feasibility of these approaches for all EB patients and subtypes are currently limited, reflecting issues of efficacy, specificity, tolerability and safety. A multistep targeting approach and highly individualized, risk-stratified combinatory treatment plans will thus be essential for sustained efficacy and improved overall quality of life in EB.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Johann W Bauer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Martin Laimer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| |
Collapse
|
47
|
Wally V, Reisenberger M, Kitzmüller S, Laimer M. Small molecule drug development for rare genodermatoses - evaluation of the current status in epidermolysis bullosa. Orphanet J Rare Dis 2020; 15:292. [PMID: 33076941 PMCID: PMC7574495 DOI: 10.1186/s13023-020-01467-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary epidermolysis bullosa (EB) comprises a heterogeneous group of rare genodermatoses, which are caused by mutations in genes involved in the maintenance of the structural and functional integrity of dermo-epidermal adhesion in various stratified epithelia. In severe variants, generalized skin disease, extracutaneous manifestations and multi-organ involvement cause considerable morbidity and mortality. Causal and early treatment by re-expression of a respective mutated gene is the major long-term goal in therapy development. However, characterization and targeted modulation of pathogenic molecular cascades in EB also holds great promise as a symptom-relieving approach to ameliorate phenotype, complications and quality of life. Small molecules are chemical structures of less than 900 Da that can diffuse across cell membranes and interfere with target biomolecules, thus influencing their function at different levels. They constitute the vast majority of active components of all approved drugs. Methods We performed PubMed and Google Scholar search for publications and screened FDA- and EMA-hosted clinical trial registries to identify studies using small molecule-based drugs for epidermolysis bullosa. Upon detailed analysis this resulted in the identification of a total of 84 studies. Results We identified 52 publications and 32 registered trials that investigate small molecules for their safety and efficacy as treatment for different aspects of epidermolysis bullosa. Further, a total of 38 different small molecules clinically used in EB were found. Most frequent outcome measures concerned wound healing, reduction in blister numbers, as well as reduction of itch and pain, predominantly for EBS and RDEB. Conclusion We provide a comprehensive summary of the current status of clinical small molecule development for EB and discuss prospects and limitations in orphan drug development for rare conditions like EB.
Collapse
Affiliation(s)
- Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Manuela Reisenberger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| | - Sophie Kitzmüller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.,Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| |
Collapse
|
48
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
49
|
Chen VM, Mehta N, Robbins CC, Noh E, Pramil V, Duker JS, Waheed NK. Anterior-segment spectral domain optical coherence tomography in epidermolysis bullosa. Ocul Surf 2020; 18:912-919. [PMID: 32976999 DOI: 10.1016/j.jtos.2020.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Assess epidermolysis bullosa (EB)-related corneal pathology using anterior segment optical coherence tomography (AS-OCT) and correlate imaging with clinical metrics in EB patients versus age-matched controls. METHODS EB patients and controls were recruited during an EB conference (July 2018) and at Tufts Medical Center (June-August 2019). Subjects completed a questionnaire, had best corrected visual acuity (BCVA) tested, and underwent AS-OCT scanning. Stromal and epithelial thickness were measured. Depth, length, and type of the three largest lesions were assessed by a masked examiner using a novel pathology grading system. Multivariate analysis of AS-OCT findings and clinical metrics was performed. RESULTS 62 EB patients and 60 age-matched controls were enrolled. Mean BCVA was 1.8 lines worse in patients (p < 0.001). Vision loss was associated with increased stromal thickness. Discrete lesions were seen in 60.2% of patient eyes, averaging 1.71 ± 1.75 lesions in patients and 0.14 ± 0.42 in controls (p < 0.001). Mean primary lesion depth was 151.88 ± 97.49 μm in patients. Patients showed significant stromal thickening versus controls and lesions were most common in the periphery and inferiorly. Differences in frequency and duration of abrasions and severity of pain were all statistically and clinically significant in patients versus controls (p < 0.001). CONCLUSIONS AS-OCT can visualize and quantify differences in the corneas of EB patients compared with age-matched controls. Novel findings include quantification of average depth, length, and severity of discrete lesions, and sparing of the superior quadrant from stromal thickening in EB patients. These results support use of AS-OCT and a questionnaire in clinical trials for new EB therapies.
Collapse
Affiliation(s)
- Vicki M Chen
- New England Eye Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA.
| | - Nihaal Mehta
- Dpartment of Ophthalmology, University of Colorado, Denver, CO, USA
| | | | - Elizabeth Noh
- Tufts University School of Medicine, Boston, MA, USA
| | - Varsha Pramil
- New England Eye Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Jay S Duker
- New England Eye Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Nadia K Waheed
- New England Eye Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Beilin AK, Rippa AL, Sharobaro VI, Gurskaya NG, Vorotelyak EA. The Reconstructed Human Epidermis in vitro — a Model for Basic and Applied Research of Human Skin. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/vdv1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background. The reconstructed human epidermis (RE) is an in vitro tissue-engineering construct similar to the native epidermis.
Objective. To develop a full-layer RE. Describe its structure: determine the presence of all layers of the epidermal component, including basal, spinous and granular layers and stratum corneum of the epidermis; detect the basement membrane, the border between the epidermal and mesenchymal component.
Materials and methods. Isolation of keratinocytes and fibroblasts from human donor skin. Cultivation of keratinocytes and fibroblasts in vitro under 2D conditions, cell subculturing and 3D modeling of RE, obtaining cryosections, histological staining, immunohistochemical (IHC) study with antibodies to cytokeratins 14 and 10, Ki67 protein, loricrin, laminin 5 and plectin.
Results. A technique was developed for the formation of RE. Histological examination showed that the stratification of keratinocyte layers occurs during the formation of RE. Layers are formed including basal, spinous and granular layers and stratum corneum. The IHC study has shown the proliferative activity of keratinocytes of the basal layer and has detected the presence of marker proteins of keratinocytes at different stages of differentiation. RE basal keratinocytes, like native ones, form hemidesmosomes and synthesize basement membrane proteins.
Conclusions. A full-layer human RE was obtained in vitro. RE meets all the characteristics of the native epidermis and it is suitable for basic and practical research in the field of skin biology, dermatology, and cosmetology.
Collapse
|