1
|
Zhang Z, Mo X, Zhao H, Lu X, Fan S, Huang X, Mai H, Liao H, Zhang Y, Liang C, Tian J. Crystal structure and function of a phosphate starvation responsive protein phosphatase, GmHAD1-2 regulating soybean root development and flavonoid metabolism. THE NEW PHYTOLOGIST 2024; 244:2396-2412. [PMID: 39370627 DOI: 10.1111/nph.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Phosphate (Pi) availability is well known to regulate plant root growth. However, it remains largely unknown how flavonoid synthesis participates in affecting plant root growth in response to Pi starvation. In the study, the crystal structure of a plant protein phosphatase, GmHAD1-2, was dissected using X-ray crystallography for the first time. It was revealed that GmHAD1-2 contained a modified Rossmannoid class of α/β folds with three layered α/β sandwich. Transcripts of GmHAD1-2 were increased by Pi starvation in soybean roots, especially in lateral root tips. GmHAD1-2 suppression or overexpression significantly influenced soybean lateral root length and number, as well as phosphorus (P) content. Furthermore, GmHAD1-2 was found to interact with a chalcone reductase, GmCHR1. Suppression of GmHAD1-2 significantly changed the flavonoid biosynthesis pathway in soybean roots. Taken together, the results highlight that GmHAD1-2 can regulate soybean root growth by influencing flavonoid metabolism.
Collapse
Affiliation(s)
- Zeyu Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shilong Fan
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yinghe Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Xu Z, Liu J, Yang M, Huang K. EYA3 promotes the tumorigenesis of gastric cancer through activation of the mTORC1 signaling pathway and inhibition of autophagy. Sci Rep 2024; 14:28355. [PMID: 39550476 PMCID: PMC11569118 DOI: 10.1038/s41598-024-80027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related mortality, with a high rate of postoperative recurrence and poor long-term survival. The Eyes Absent (EYA) protein family plays a significant role in cancer progression, with EYA3 being implicated in promoting GC cell proliferation and tumor growth. Utilizing the DepMap database, we identified EYA3 as a gene of interest in GC. We analyzed EYA3 expression in GC tissues and cell lines, performed in vitro assays to assess its role in cell proliferation, and conducted gene set enrichment analysis to explore its relationship with autophagy and the mTORC1 signaling pathway. In vivo, we used a xenograft tumor model to examine the effects of EYA3 expression on tumor progression. EYA3 was consistently upregulated in GC tissues, and its high expression correlated with a decrease in patient survival rates. Silencing EYA3 in GC cell lines resulted in reduced cell proliferation. Inhibition of autophagy and activation of the mTORC1 signaling pathway were observed as mechanisms by which EYA3 may promote GC cell growth. In vivo experiments supported the in vitro findings, showing slower tumor growth with reduced EYA3 expression. Our study confirms the upregulation of EYA3 in GC and its association with poor prognosis. EYA3 promotes GC cell proliferation and tumor growth by activating the mTORC1 signaling pathway and inhibiting autophagy. These findings highlight the potential of EYA3 as a therapeutic target for GC, providing a foundation for future research and treatment strategies. Despite the promising data, the limitations of sample size and the need for further mechanistic studies are acknowledged.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Oncology, Nantong Haimen People's Hospital, Nantong, 226199, China
| | - Jianhua Liu
- Department of Oncology, Nantong Haimen People's Hospital, Nantong, 226199, China
| | - Mingjun Yang
- Department of Thoracic Surgery, Nantong University Affiliated Hospital, Nantong, 226001, China
| | - Kaibin Huang
- Department of General Surgery, Nantong Haimen People's Hospital, Nantong, 226199, China.
| |
Collapse
|
3
|
Reshi HA, Medishetti R, Ahuja A, Balasubramanian D, Babu K, Jaiswal M, Chatti K, Maddika S. EYA protein complex is required for Wntless retrograde trafficking from endosomes to Golgi. Dev Cell 2024; 59:2443-2459.e7. [PMID: 38870942 DOI: 10.1016/j.devcel.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Retrograde transport of WLS (Wntless) from endosomes to trans-Golgi network (TGN) is required for efficient Wnt secretion during development. However, the molecular players connecting endosomes to TGN during WLS trafficking are limited. Here, we identified a role for Eyes Absent (EYA) proteins during retrograde trafficking of WLS to TGN in human cell lines. By using worm, fly, and zebrafish models, we found that the EYA-secretory carrier-associated membrane protein 3 (SCAMP3) axis is evolved in vertebrates. EYAs form a complex and interact with retromer on early endosomes. Retromer-bound EYA complex recruits SCAMP3 to endosomes, which is necessary for the fusion of WLS-containing endosomes to TGN. Loss of EYA complex or SCAMP3 leads to defective transport of WLS to TGN and failed Wnt secretion. EYA mutations found in patients with hearing loss form a dysfunctional EYA-retromer complex that fails to activate Wnt signaling. These findings identify the EYA complex as a component of retrograde trafficking of WLS from the endosome to TGN.
Collapse
Affiliation(s)
- Hilal Ahmad Reshi
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Aishwarya Ahuja
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | | | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kiranam Chatti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India.
| |
Collapse
|
4
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
5
|
Alderman C, Anderson R, Zhang L, Hughes CJ, Li X, Ebmeier C, Wagley ME, Ahn NG, Ford HL, Zhao R. Biochemical characterization of the Eya and PP2A-B55α interaction. J Biol Chem 2024; 300:107408. [PMID: 38796066 PMCID: PMC11328874 DOI: 10.1016/j.jbc.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Ebmeier
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Marisa E Wagley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Heide L Ford
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
6
|
Pan P, Guo A, Peng L. Establishment of glioma prognosis nomogram based on the function of meox1 in promoting the progression of cancer. Heliyon 2024; 10:e29827. [PMID: 38707372 PMCID: PMC11066332 DOI: 10.1016/j.heliyon.2024.e29827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Background Gliomas stand out as highly predominant malignant nervous tumors and are linked to adverse treatment outcomes and short survival periods. Current treatment options are limited, emphasizing the need to identify effective therapeutic targets. The heterogeneity of tumors necessitates a personalized treatment approach with an effective grouping system. Meox1 has been implicated in promoting tumor progression in diverse cancers; nonetheless, its role in gliomas remains unelucidated. Material/methods Utilized immunohistochemistry to assess the expression of Meox1 protein in glioma tissues. Proliferation and invasion assays were conducted on wild-type and meox1-overexpressed glioma cells using the CCK8 and Transwell assays, respectively. The expression levels of meox1 and its related genes in gliomas were obtained from Chinese Glioma Genome Atlas (CGGA), along with the corresponding patient survival periods. LASSO regression modeling was employed to construct a scoring system for patients with gliomas, categorizing them into high-/low-risk groups. Additionally, a nomogram for predicting the survival period of patients with glioma was developed using multivariate logistic analysis. Results We attempted, for the first time, to demonstrate heightened expression of Meox1 in glioma tumor tissues, correlating with significantly increased invasion and proliferation abilities of glioma cells following meox1 overexpression. The scoring system effectively stratified patients with glioma into high-/low-risk groups, revealing differences in the survival period and immunotherapy efficacy between the two groups. The integration of this scoring system with other clinical indicators yielded a nomogram capable of effectively predicting the survival period of individuals with gliomas. Conclusions Our study established a stratified investigation system based on the levels of meox1 and its related genes, providing a novel, cost-effective model for facilitating the prognosis prediction of individuals with glioma.
Collapse
Affiliation(s)
- Peng Pan
- Department of clinical Laboratory, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Aiping Guo
- Department of Medical Oncology, Luhe People's Hospital, Nanjing, China
| | - Lu Peng
- Department of clinical laboratory, Nanjing Brain Hospital, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
8
|
Reina J, Vallmajo-Martin Q, Ning J, Michi AN, Yeung K, Wahl GM, Hunter T. LHPP expression in triple-negative breast cancer promotes tumor growth and metastasis by modulating the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590151. [PMID: 38712081 PMCID: PMC11071390 DOI: 10.1101/2024.04.19.590151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic form of breast cancer that lacks an effective targeted therapy. To identify new therapeutic targets, we investigated the phosphohistidine phosphatase, LHPP, which has been implicated in the development of several types of cancer. However, the full significance of LHPP in cancer progression remains unclear due to our limited understanding of its molecular mechanism. We found that levels of the LHPP phosphohistidine phosphatase were significantly increased in human breast cancer patients compared to normal adjacent tissues, with the highest levels in the TNBC subtype. When LHPP was knocked out in the MDA-MB-231 human TNBC cell line, cell proliferation, wound healing capacity, and invasion were significantly reduced. However, LHPP knockout in TNBC cells did not affect the phosphohistidine protein levels. Interestingly, LHPP knockout in MDA-MB-231 cells delayed tumor growth and reduced metastasis when orthotopically transplanted into mouse mammary glands. To investigate LHPP's role in breast cancer progression, we used next-generation sequencing and proximity-labeling proteomics, and found that LHPP regulates gene expression in chemokine-mediated signaling and actin cytoskeleton organization. Depletion of LHPP reduced the presence of tumor-infiltrating macrophages in mouse xenografts. Our results uncover a new tumor promoter role for LHPP phosphohistidine phosphatase in TNBC and suggest that targeting LHPP phosphatase could be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Jeffrey Reina
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Jia Ning
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Aubrey N Michi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kay Yeung
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Wiedner HJ, Blue RE, Sadovsky M, Mills CA, Wehrens XH, Herring LE, Giudice J. RBFOX2 regulated EYA3 isoforms partner with SIX4 or ZBTB1 to control transcription during myogenesis. iScience 2023; 26:108258. [PMID: 38026174 PMCID: PMC10665822 DOI: 10.1016/j.isci.2023.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matheus Sadovsky
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
11
|
Liu T, Nie J, Zhang X, Deng X, Fu B. The value of EYA1/3/4 in clear cell renal cell carcinoma: a study from multiple databases. Sci Rep 2023; 13:7442. [PMID: 37156847 PMCID: PMC10167363 DOI: 10.1038/s41598-023-34324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
There is evidence from multiple studies that dysregulation of the Eyes Absent (EYA) protein plays multiple roles in many cancers. Despite this, little is known about the prognostic significance of the EYAs family in clear cell renal cell carcinoma (ccRCC). We systematically analyzed the value of EYAs in Clear Cell Renal Cell Carcinoma. Our analysis included examining transcriptional levels, mutations, methylated modifications, co-expression, protein-protein interactions (PPIs), immune infiltration, single-cell sequencing, drug sensitivity, and prognostic values. We based our analysis on data from several databases, including the Cancer Genome Atlas database (TCGA), the Gene Expression Omnibus database (GEO), UALCAN, TIMER, Gene Expression Profiling Interactive Analysis (GEPIA), STRING, cBioPortal and GSCALite. In patients with ccRCC, the EYA1 gene was significantly highly expressed, while the expression of EYA2/3/4 genes showed the opposite trend. The level of expression of the EYA1/3/4 gene was significantly correlated with the prognosis and clinicopathological parameters of ccRCC patients. Univariate and multifactorial Cox regression analyses revealed EYA1/3 as an independent prognostic factor for ccRCC, establishing nomogram line plots with good predictive power. Meanwhile, the number of mutations in EYAs was also significantly correlated with poor overall survival (OS) and progression-free survival (PFS) of patients with ccRCC. Mechanistically, EYAs genes play an essential role in a wide range of biological processes such as DNA metabolism and double-strand break repair in ccRCC. The majority of EYAs members were related to the infiltration of immune cells, drug sensitivity, and methylation levels. Furthermore, our experiment confirmed that EYA1 gene expression was upregulated, and EYA2/3/4 showed low expression in ccRCC. The increased expression of EYA1 might play an important role in ccRCC oncogenesis, and the decreased expression of EYA3/4 could function as a tumor suppressor, suggesting EYA1/3/4 might serve as valuable prognostic markers and potential new therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Taobin Liu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jianqiang Nie
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoming Zhang
- Nanchang County People's Hospital, 199 Xiangyang Road, Liantang Town, Nanchang County, Nanchang City, 330200, Jiangxi Province, People's Republic of China.
| | - Xinxi Deng
- Department of Urology, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, Jiangxi Province, People's Republic of China.
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
12
|
Dhanasekaran R, Hansen AS, Park J, Lemaitre L, Lai I, Adeniji N, Kuruvilla S, Suresh A, Zhang J, Swamy V, Felsher DW. MYC Overexpression Drives Immune Evasion in Hepatocellular Carcinoma That Is Reversible through Restoration of Proinflammatory Macrophages. Cancer Res 2023; 83:626-640. [PMID: 36525476 PMCID: PMC9931653 DOI: 10.1158/0008-5472.can-22-0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cancers evade immune surveillance, which can be reversed through immune-checkpoint therapy in a small subset of cases. Here, we report that the MYC oncogene suppresses innate immune surveillance and drives resistance to immunotherapy. In 33 different human cancers, MYC genomic amplification and overexpression increased immune-checkpoint expression, predicted nonresponsiveness to immune-checkpoint blockade, and was associated with both Th2-like immune profile and reduced CD8 T-cell infiltration. MYC transcriptionally suppressed innate immunity and MHCI-mediated antigen presentation, which in turn impeded T-cell response. Combined, but not individual, blockade of PDL1 and CTLA4 could reverse MYC-driven immune suppression by leading to the recruitment of proinflammatory antigen-presenting macrophages with increased CD40 and MHCII expression. Depletion of macrophages abrogated the antineoplastic effects of PDL1 and CTLA4 blockade in MYC-driven hepatocellular carcinoma (HCC). Hence, MYC is a predictor of immune-checkpoint responsiveness and a key driver of immune evasion through the suppression of proinflammatory macrophages. The immune evasion induced by MYC in HCC can be overcome by combined PDL1 and CTLA4 blockade. SIGNIFICANCE Macrophage-mediated immune evasion is a therapeutic vulnerability of MYC-driven cancers, which has implications for prioritizing MYC-driven hepatocellular carcinoma for combination immunotherapy.
Collapse
Affiliation(s)
- Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida S. Hansen
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Lai
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sibu Kuruvilla
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Varsha Swamy
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
15
|
Lu M, Wang K, Ji W, Yu Y, Li Z, Xia W, Lu S. FGFR1 promotes tumor immune evasion via YAP-mediated PD-L1 expression upregulation in lung squamous cell carcinoma. Cell Immunol 2022; 379:104577. [PMID: 35870429 DOI: 10.1016/j.cellimm.2022.104577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Variations in FGFR1 are common driver mutations of LSQCC. And immune checkpoint inhibitors targeting PD-1 and PD-L1 are powerful anticancer weapons. Activation of FGFR1 leads to tumorigenesis through multiple downstream molecules, including YAP, but whether and how FGFR1 regulates tumor immune evasion remain largely unclear. METHODS LSQCC cells were modified to increase or decrease the expression of FGFR1, YAP and PD-L1, as assessed by molecular assays. After FGFR1 knockdown, cancer cells were assessed after cocultured with Jurkat T cells in vitro, and the tumor microenvironment were analyzed in C57BL/6 mice. The effect of the combination of FGFR1 knockdown and PD-1 blockade was also explored. RESULTS In human LSQCC, activation of FGFR1 was positively correlated with transcription of PD-L1. In H520 and HCC95 cells, FGFR1 upregulated PD-L1 expression via YAP, and YAP initiated the transcription of PD-L1 after binding to its promoter region. FGFR1 knockdown decreased tumor growth, reduced immune escape and induced reactivation of CD8+ T cells. The combination of FGFR1 knockdown and PD-1 blockade synergistically exerted antitumor effects. CONCLUSIONS The FGFR1/YAP/PD-L1 regulatory axis mediates tumor-associated immune suppression in lung squamous cell carcinoma, and FGFR1 knockdown reactivates T cells in the tumor microenvironment. Synergistic inhibition of both FGFR1 and PD-1/PD-L1 pathways may be a possible treatment for lung cancer patients.
Collapse
Affiliation(s)
- Min Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, Shanghai 200024, China.
| | - Kaixuan Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China.
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China.
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China.
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China.
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, Shanghai 200024, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, Shanghai 200030, China.
| |
Collapse
|
16
|
Wu H, Li H, Liu Y, Liang J, Liu Q, Xu Z, Chen Z, Zhang X, Zhang K, Xu C. Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact Mater 2022; 13:223-238. [PMID: 35224304 PMCID: PMC8843980 DOI: 10.1016/j.bioactmat.2021.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of multiple immunosuppressive targets and insufficient activation and infiltration of cytotoxic T lymphocytes (CTLs) allow tumor cells to escape immune surveillance and disable anti-PD-1/PD-L1 immunotherapy. Nanobiotechnology-engineered autologous tumor vaccines (ATVs) that were camouflaged by tumor cell membrane (TCM) were designed to activate and facilitate CTLs infiltration for killing the unprotected lung tumor cells, consequently realizing the sequential immunotherapy. PDE5 was firstly screened out as a new immunosuppressive target of lung cancer in clinical practice. Immediately afterwards, phosphodiesterase-5 (PDE5) and programmed cell death 1 ligand 1 (PD-L1) dual-target co-inhibition was proposed to unfreeze the immunosuppressive microenvironment of NSCLC. Systematic studies validated that this ATVs-unlocked sequential immunotherapy after co-encapsulating PDE5 inhibitor and NO donor (i.e., l-arginine) exerted robust anti-tumor effects through increasing inducible nitric oxide synthase (iNOS) expression, blockading PDE5 pathway and activating systematic immune responses, which synergistically eradicated local and abscopal lung cancers in either orthotopic or subcutaneous models. The pluripotent ATVs that enable PDE5 inhibition and sequential immunotherapy provide a new avenue to mitigate immunosuppressive microenvironment and magnify anti-PD-1/PD-L1 immunotherapy. A clinically-screened NSCLC immunosuppressive target (PDE5) is experimentally validated available for designing new drugs. Pluripotent ATVs unlock sequential immunotherapy via PDE5&PD-L1 co-inhibition and TCM antigens-arised immune activation. NO donor loaded in ATVs augmented PDE5i efficacy and magnified sequential immunotherapy along with TCM-enabled tumor tropism.
Collapse
Affiliation(s)
- Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Ren-min Road, Chengdu, 610042, Sichuan, PR China
| | - Hongyan Li
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Ren-min Road, Chengdu, 610042, Sichuan, PR China
| | - Jingchen Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Ren-min Road, Chengdu, 610042, Sichuan, PR China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Ren-min Road, Chengdu, 610042, Sichuan, PR China
| | - Zhigang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, NO. 319, Red River Avenue, Yong-chuan, 402160, Chongqing, PR China
| | - Zhongzhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, NO. 319, Red River Avenue, Yong-chuan, 402160, Chongqing, PR China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), NO. 30, Gao-tan-yan-zheng Street, Chongqing, 400038, PR China
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
- Corresponding author.
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Ren-min Road, Chengdu, 610042, Sichuan, PR China
- Corresponding author.
| |
Collapse
|
17
|
Shen JZ, Qiu Z, Wu Q, Zhang G, Harris R, Sun D, Rantala J, Barshop WD, Zhao L, Lv D, Won KA, Wohlschlegel J, Sangfelt O, Laman H, Rich JN, Spruck C. A FBXO7/EYA2-SCF FBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Mol Cell 2022; 82:1123-1139.e8. [PMID: 35182481 PMCID: PMC8934274 DOI: 10.1016/j.molcel.2022.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.
Collapse
Affiliation(s)
- Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | - Rebecca Harris
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dahui Sun
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deguan Lv
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Anantharajan J, Baburajendran N, Lin G, Loh YY, Xu W, Ahmad NHB, Liu S, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Hung AW, Joy J, Hill J, Ford HL, Zhao R, Keller TH, Kang C. Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase. Protein Sci 2022; 31:422-431. [PMID: 34761455 PMCID: PMC8819961 DOI: 10.1002/pro.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nithya Baburajendran
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Grace Lin
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yong Yao Loh
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Weijun Xu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Shuang Liu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
- Chemical Biology and Therapeutics ScienceBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anna E. Jansson
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - John Wee Liang Kuan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yee Khoon Yeo
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Alvin W. Hung
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Joma Joy
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Jeffrey Hill
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Heide L. Ford
- Department of Obstetrics and GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas H. Keller
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - CongBao Kang
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| |
Collapse
|
19
|
The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19:23-36. [PMID: 34508258 PMCID: PMC9083341 DOI: 10.1038/s41571-021-00549-2] [Citation(s) in RCA: 401] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.
Collapse
|
20
|
Rosenbaum SR, Tiago M, Caksa S, Capparelli C, Purwin TJ, Kumar G, Glasheen M, Pomante D, Kotas D, Chervoneva I, Aplin AE. SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Rep 2021; 37:110085. [PMID: 34879275 PMCID: PMC8720266 DOI: 10.1016/j.celrep.2021.110085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental factors may regulate the expression of immune modulatory proteins in cancer, linking embryonic development and cancer cell immune evasion. This is particularly relevant in melanoma because immune checkpoint inhibitors are commonly used in the clinic. SRY-box transcription factor 10 (SOX10) mediates neural crest development and is required for melanoma cell growth. In this study, we investigate immune-related targets of SOX10 and observe positive regulation of herpesvirus entry mediator (HVEM) and carcinoembryonic-antigen cell-adhesion molecule 1 (CEACAM1). Sox10 knockout reduces tumor growth in vivo, and this effect is exacerbated in immune-competent models. Modulation of CEACAM1 expression but not HVEM elicits modest effects on tumor growth. Importantly, Sox10 knockout effects on tumor growth are dependent, in part, on CD8+ T cells. Extending this analysis to samples from patients with cutaneous melanoma, we observe a negative correlation with SOX10 and immune-related pathways. These data demonstrate a role for SOX10 in regulating immune checkpoint protein expression and anti-tumor immunity in melanoma.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Databases, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- SOXE Transcription Factors/genetics
- SOXE Transcription Factors/metabolism
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - McKenna Glasheen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Danielle Pomante
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Kotas
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Division of Biostatistics in the Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN. Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 2021; 218:212685. [PMID: 34617969 PMCID: PMC8504185 DOI: 10.1084/jem.20202669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan L Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas H Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Grace Lin
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
22
|
Xu S, Lian Z, Zhang S, Xu Y, Zhang H. CircGNG4 Promotes the Progression of Prostate Cancer by Sponging miR-223 to Enhance EYA3/c-myc Expression. Front Cell Dev Biol 2021; 9:684125. [PMID: 34395419 PMCID: PMC8356047 DOI: 10.3389/fcell.2021.684125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
Patients diagnosed with prostate cancer often have a poor prognosis and limited treatment options, as the specific pathogenesis remains to be elucidated. Circular RNA (circRNA) is a type of non-coding RNA that interacts with microRNA (miRNA/miR) and transcription factors to regulate gene expression. However, little is known about specific circRNAs that serve roles in the pathogenesis of prostate cancer. Findings of the present study confirmed that circRNA G protein subunit γ 4 (circGNG4) was upregulated in prostate cancer tissues and cell lines. Knockdown of circGNG4 inhibited the malignant behavior of prostate cancer cells. Furthermore, bioinformatics were used to predict targeting interactions between circGNG4 or miR-223 and EYA transcriptional coactivator and phosphatase 3 (EYA3)/c-Myc mRNA. miR-223 inhibited the malignant behavior of prostate cancer cells, while EYA3/c-Myc had the opposite effect. circGNG4 enhanced the expression of EYA3/c-Myc by sponging miR-223 to promote the growth of prostate cancer tumors in vivo. In conclusion, the circGNG4/miR-223/EYA3/c-Myc regulatory pathway promoted the malignant progression of prostate cancer. The results of the present study may provide potential new targets for the diagnosis or treatment of prostate cancer.
Collapse
Affiliation(s)
- Shengxian Xu
- Department of Urology, Tianjin Key Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhenpeng Lian
- Department of Urology, Tianjin Key Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Siyang Zhang
- Department of Urology, Tianjin Key Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Urology, Tianjin Key Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Hongtuan Zhang
- Department of Urology, Tianjin Key Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
The Eyes Absent proteins in development and in developmental disorders. Biochem Soc Trans 2021; 49:1397-1408. [PMID: 34196366 PMCID: PMC8286820 DOI: 10.1042/bst20201302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.
Collapse
|
24
|
Ren L, Guo D, Wan X, Qu R. EYA2 upregulates miR-93 to promote tumorigenesis of breast cancer by targeting and inhibiting the STING signaling pathway. Carcinogenesis 2021; 43:bgab001. [PMID: 33449106 DOI: 10.1093/carcin/bgab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Herein, we used DIANA TOOLS, GEPIA and other bioinformatics databases to predict regulatory pathways in breast cancer. Accordingly, we clarified the regulatory mechanism of EYA2 on miR-93 expression to aggravate breast cancer, which was involved with the STING signaling pathway. CCK-8 assay, scratch test, Transwell assay, and flow cytometry were applied to detect cell viability, migration, invasion, and apoptosis. The experimental data found that EYA2 was highly expressed in breast cancer tissues and cells and associated with poor prognosis. Overexpression of miR-93 in breast cancer was positively correlated with EYA2. EYA2 promoted miR-93 expression, advanced breast cancer cell proliferation and inhibited their apoptosis. Results of luciferase assay showed that miR-93 was enriched in the STING 3'UTR. Furthermore, knockdown of EYA2 inhibited the expression of miR-93, promoted the expression of STING, and inhibited the tumor growth. In response to EYA2 knockdown, the expression of IFN-β and ISG was increased, and PD-L1 was decreased. In addition, the phosphorylation level of TBK1 and IRF3 was enhanced, the percentage of myeloid-derived suppressor cells in blood was reduced, and secretion of IFN-β and IL-12 was enhanced. In conclusion, EYA2 upregulates miR-93 expression and promotes malignancy of breast cancer by targeting and inhibiting the STING signaling pathway.
Collapse
Affiliation(s)
- Lishen Ren
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Dongrui Guo
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaohui Wan
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
25
|
Liu W, Zou J, Ren R, Liu J, Zhang G, Wang M. A Novel 10-Gene Signature Predicts Poor Prognosis in Low Grade Glioma. Technol Cancer Res Treat 2021; 20:1533033821992084. [PMID: 33550903 PMCID: PMC7876581 DOI: 10.1177/1533033821992084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Low grade glioma (LGG) is a lethal brain cancer with relatively poor prognosis in young adults. Thus, this study was performed to develop novel molecular biomarkers to effectively predict the prognosis of LGG patients and finally guide treatment decisions. METHODS survival-related genes were determined by Kaplan-Meier survival analysis and multivariate Cox regression analysis using the expression and clinical data of 506 LGG patients from The Cancer Genome Atlas (TCGA) database and independently validated in a Chinese Glioma Genome Atlas (CGGA) dataset. A prognostic risk score was established based on a linear combination of 10 gene expression levels using the regression coefficients of the multivariate Cox regression models. GSEA was performed to analyze the altered signaling pathways between the high and low risk groups stratified by median risk score. RESULTS We identified a total of 1489 genes significantly correlated with patients' prognosis in LGG. The top 5 protective genes were DISP2, CKMT1B, AQP7, GPR162 and CHGB, the top 5 risk genes were SP1, EYA3, ZSCAN20, ITPRIPL1 and ZNF217 in LGG. The risk score was predictive of poor overall survival and relapse-free survival in LGG patients. Pathways of small cell lung cancer, pathways in cancer, chronic myeloid leukemia, colorectal cancer were the top 4 most enriched pathways in the high risk group. SP1, EYA3, ZSCAN20, ITPRIPL1, ZNF217 and GPR162 were significantly up-regulated, while DISP2, CKMT1B, AQP7 were down-regulated in 523 LGG tissues as compared to 1141 normal brain controls. CONCLUSIONS The 10-gene signature may become novel prognostic and diagnostic biomarkers to considerably improve the prognostic prediction in LGG.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jiaxuan Zou
- Fuzhou Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rijun Ren
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jingping Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Gentang Zhang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Maokai Wang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
26
|
Hegde RS, Roychoudhury K, Pandey RN. The multi-functional eyes absent proteins. Crit Rev Biochem Mol Biol 2020; 55:372-385. [PMID: 32727223 PMCID: PMC7727457 DOI: 10.1080/10409238.2020.1796922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.
Collapse
Affiliation(s)
- Rashmi S. Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| |
Collapse
|
27
|
Zhao Z, Zhang N, Li A, Zhou B, Chen Y, Chen S, Huang M, Wu F, Zhang L. Insulin-like growth factor-1 receptor induces immunosuppression in lung cancer by upregulating B7–H4 expression through the MEK/ERK signaling pathway. Cancer Lett 2020; 485:14-26. [PMID: 32417396 DOI: 10.1016/j.canlet.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
|
28
|
Abdel-Aziz AK, Saadeldin MK, D'Amico P, Orecchioni S, Bertolini F, Curigliano G, Minucci S. Preclinical models of breast cancer: Two-way shuttles for immune checkpoint inhibitors from and to patient bedside. Eur J Cancer 2019; 122:22-41. [PMID: 31606656 DOI: 10.1016/j.ejca.2019.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
The Food and Drug Administration has lately approved atezolizumab, anti-programmed death ligand 1 (PD-L1), to be used together with nanoparticle albumin-bound (nab) paclitaxel in treating patients with triple negative breast cancer (BC) expressing PD-L1. Nonetheless, immune checkpoint inhibitors (ICIs) are still challenged by the resistance and immune-related adverse effects evident in a considerable subset of treated patients without conclusive comprehension of the underlying molecular basis, biomarkers and tolerable therapeutic regimens capable of unleashing the anti-tumour immune responses. Stepping back to preclinical models is thus inevitable to address these inquiries. Herein, we comprehensively review diverse preclinical models of BC exploited in investigating ICIs underscoring their pros and cons as well as the learnt and awaited lessons to allow full exploitation of ICIs in BC therapy.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Mona Kamal Saadeldin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October City, Cairo, Egypt
| | - Paolo D'Amico
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
29
|
Anantharajan J, Zhou H, Zhang L, Hotz T, Vincent MY, Blevins MA, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Baburajendran N, Lin G, Hung AW, Joy J, Patnaik S, Marugan J, Rudra P, Ghosh D, Hill J, Keller TH, Zhao R, Ford HL, Kang C. Structural and Functional Analyses of an Allosteric EYA2 Phosphatase Inhibitor That Has On-Target Effects in Human Lung Cancer Cells. Mol Cancer Ther 2019; 18:1484-1496. [PMID: 31285279 DOI: 10.1158/1535-7163.mct-18-1239] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/05/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
EYA proteins (EYA1-4) are critical developmental transcriptional cofactors that contain an EYA domain (ED) harboring Tyr phosphatase activity. EYA proteins are largely downregulated after embryogenesis but are reexpressed in cancers, and their Tyr phosphatase activity plays an important role in the DNA damage response and tumor progression. We previously identified a class of small-molecule allosteric inhibitors that specifically inhibit the Tyr phosphatase activity of EYA2. Herein, we determined the crystal structure of the EYA2 ED in complex with NCGC00249987 (a representative compound in this class), revealing that it binds to an induced pocket distant from the active site. NCGC00249987 binding leads to a conformational change of the active site that is unfavorable for Mg2+ binding, thereby inhibiting EYA2's Tyr phosphatase activity. We demonstrate, using genetic mutations, that migration, invadopodia formation, and invasion of lung adenocarcinoma cells are dependent on EYA2 Tyr phosphatase activity, whereas growth and survival are not. Further, we demonstrate that NCGC00249987 specifically targets migration, invadopodia formation, and invasion of lung cancer cells, but that it does not inhibit cell growth or survival. The compound has no effect on lung cancer cells carrying an EYA2 F290Y mutant that abolishes compound binding, indicating that NCGC00249987 is on target in lung cancer cells. These data suggest that the NCGC00249987 allosteric inhibitor can be used as a chemical probe to study the function of the EYA2 Tyr phosphatase activity in cells and may have the potential to be developed into an antimetastatic agent for cancers reliant on EYA2's Tyr phosphatase activity.
Collapse
Affiliation(s)
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Hotz
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Anna E Jansson
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | | | - Yee Khoon Yeo
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | - Grace Lin
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Alvin W Hung
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Joma Joy
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey Hill
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Thomas H Keller
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado. .,Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - CongBao Kang
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| |
Collapse
|
30
|
Kong D, Ma W, Zhang D, Cui Q, Wang K, Tang J, Liu Z, Wu G. EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma. Am J Transl Res 2019; 11:2328-2338. [PMID: 31105839 PMCID: PMC6511787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Hepatocellular carcinoma (HCC) patients are at high risk for both local recurrence and distant metastasis and tightly associated with poor prognosis. Exploring the molecular mechanism will provide a new opportunity in developing personal treatment for advanced HCC patients. As a critical member of the Retinal Determination Gene Network (RDGN), EYA1 has been identified as a tumor promoter in various cancers; however, its role in HCC has never been investigated. The present study was aimed to explore the role of EYA1 in HCC development. By analyzing public microarray datasets, we found that the EYA1 mRNA level was enhanced in HCC, which was significantly correlated with an aggressive phenotype and poor prognosis. Besides, EYA1 was coordinated with the fibronectin type III domain containing 3B (FNDC3B) to promote the migration and invasion of HCC cells. Western blot assays indicated that EYA1 not only increased the abundance of FNDC3B but also contributed to Epithelial-Mesenchymal Transition (EMT)-like phenotype change, like increased N-cadherin and decreased E-cadherin expression. Collectively, this study suggested that EYA1 activated FNDC3B to promote the migration and invasion in HCC. The aberrant expressions of EYA1 and FNDC3B may become the poor predictors for HCC patients.
Collapse
Affiliation(s)
- Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Weijie Ma
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| |
Collapse
|
31
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
32
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|