1
|
Verma K, Croft W, Margielewska-Davies S, Pearce H, Stephens C, Diaconescu D, Bevington S, Craddock C, Amel-Kashipaz R, Zuo J, Kinsella FAM, Moss P. CD70 identifies alloreactive T cells and represents a potential target for prevention and treatment of acute GVHD. Blood Adv 2024; 8:4900-4912. [PMID: 39028952 PMCID: PMC11421336 DOI: 10.1182/bloodadvances.2024012909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) remains a major challenge after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and further understanding of its immunopathology is crucial for developing new treatments. CD70 interacts with CD27 and is upregulated transiently on T cells after recent T-cell receptor (TCR) engagement. Here, we investigated the functional and clinical significance of CD70 expression on T cells during the early posttransplantation period. CD70 was expressed on a subset of highly activated memory T cells within the first 2 weeks after transplant, which then gradually declined in most patients. CD70+ T cells exhibited an open chromatin landscape and a transcriptional profile indicative of intense Myelocytomatosis oncogene (MYC)-driven glycolysis and proliferation. CD4+ and CD8+CD70+ T-cell numbers increased by ninefold and fourfold, respectively, during acute GVHD (aGVHD) and displayed an oligoclonal TCR repertoire. These cells expressed CCR4 and CCR6 chemokine receptors and were markedly increased in aGVHD tissue samples. Furthermore, CD70+ T cells demonstrated alloreactive specificity in vitro, and proliferative and inflammatory cytokine responses were markedly attenuated by CD70 blockade. These findings identify CD70 as a marker of highly activated alloreactive T cells and reveal the potential therapeutic importance of inhibiting CD27-CD70 costimulation in both the prophylaxis and treatment of aGVHD.
Collapse
Affiliation(s)
- Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Diana Diaconescu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick University, Coventry, United Kingdom
| | | | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A M Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Kean LS, Blazar BR. Major breakthroughs in hematopoietic stem cell transplantation and future challenges in clinical implementation. J Clin Invest 2024; 134:e179944. [PMID: 38618950 PMCID: PMC11014654 DOI: 10.1172/jci179944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Affiliation(s)
- Leslie S. Kean
- Division of Pediatric Hematology and Oncology, Boston Children’s Hospital and the Dana-Farber Cancer Institute; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Racca NM, Dontu A, Riley K, Yolcu ES, Shirwan H, Coronel MM. Bending the Rules: Amplifying PD-L1 Immunoregulatory Function Through Flexible Polyethylene Glycol Synthetic Linkers. Tissue Eng Part A 2024; 30:299-313. [PMID: 38318841 DOI: 10.1089/ten.tea.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.
Collapse
Affiliation(s)
- Nicole M Racca
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Dontu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayle Riley
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Associate Director, Immunomodulation and Regenerative Medicine Program, Ellis Fischel Cancer Center, Columbia, Missouri, USA
| | - María M Coronel
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Neidemire-Colley L, Khanal S, Braunreiter KM, Gao Y, Kumar R, Snyder KJ, Weber MA, Surana S, Toirov O, Karunasiri M, Duszynski ME, Chi M, Malik P, Kalyan S, Chan WK, Naeimi Kararoudi M, Choe HK, Garzon R, Ranganathan P. CRISPR/Cas9 deletion of MIR155HG in human T cells reduces incidence and severity of acute GVHD in a xenogeneic model. Blood Adv 2024; 8:947-958. [PMID: 38181781 PMCID: PMC10877121 DOI: 10.1182/bloodadvances.2023010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Shrijan Khanal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Kara M Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rathan Kumar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Margot A Weber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Simran Surana
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Olimjon Toirov
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Malith Karunasiri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Molly E Duszynski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sonu Kalyan
- Department of Pathology, New York University Langone Health, Long Island, NY
| | - Wing K Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
5
|
Gooptu M, Bolaños-Meade J, Koreth J. Expanding post-transplant cyclophosphamide to matched unrelated donor transplants and beyond. Blood Rev 2023; 62:101053. [PMID: 36822991 DOI: 10.1016/j.blre.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Affiliation(s)
- Mahasweta Gooptu
- Adult Stem-Cell Transplantation, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston 02215, USA
| | - Javier Bolaños-Meade
- Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 401 N Broadway, Baltimore MD 21231, USA
| | - John Koreth
- Adult Stem-Cell Transplantation, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston 02215, USA.
| |
Collapse
|
6
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
7
|
Tkachev V, Vanderbeck A, Perkey E, Furlan SN, McGuckin C, Atria DG, Gerdemann U, Rui X, Lane J, Hunt DJ, Zheng H, Colonna L, Hoffman M, Yu A, Outen R, Kelly S, Allman A, Koch U, Radtke F, Ludewig B, Burbach B, Shimizu Y, Panoskaltsis-Mortari A, Chen G, Carpenter SM, Harari O, Kuhnert F, Thurston G, Blazar BR, Kean LS, Maillard I. Notch signaling drives intestinal graft-versus-host disease in mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1175. [PMID: 37379368 PMCID: PMC10896076 DOI: 10.1126/scitranslmed.add1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4β7 in conventional T cells while preserving α4β7 in regulatory T cells, with findings suggesting increased β1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4β7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.
Collapse
Affiliation(s)
- Victor Tkachev
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, MA 02114
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group and Veterinary Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Xianliang Rui
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jennifer Lane
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniel J. Hunt
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Hengqi Zheng
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Lucrezia Colonna
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Michelle Hoffman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Alison Yu
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ute Koch
- EPFL, 1015 Lausanne, Switzerland
| | | | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Brandon Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Guoying Chen
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591
| | | | | | | | | | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Leslie S. Kean
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Chen J, Liu J, Huang H. Lkb1 loss in regulatory T cells leads to dysregulation of hematopoietic stem cell expansion and differentiation in bone marrow. FEBS Open Bio 2023; 13:270-278. [PMID: 36515008 PMCID: PMC9900093 DOI: 10.1002/2211-5463.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor Lkb1 is known to regulate the expression of forkhead box P3 (Foxp3), thereby maintaining the levels of Foxp3+ regulatory T cells (Treg) that play a crucial role in self-tolerance. However, the effect of Lkb1 in Treg on hematopoietic stem cells (HSCs) in the bone marrow (BM) remains obscure. Here, we demonstrated that conditional deletion of Lkb1 in Treg causes loss of Treg in the BM, which leads to failure of HSC homeostasis and the abnormal expansion. Moreover, the loss of BM Treg results in dysregulation of other developing progenitors/stem cell populations, leading to the defective differentiation of T cells and B cells. In addition, HSC from the BM with Treg loss exhibited poor engraftment efficiency, indicating that loss of Treg leads to irreversible impairment of HSC. Collectively, these results demonstrated the essential role of Lkb1 in Treg for maintaining HSC homeostasis and differentiation in mice. These findings provide insight into the mechanisms of HSC regulation and guidance for a strategy to improve the outcomes and reduce complications of HSC transplantation.
Collapse
Affiliation(s)
- Jiadi Chen
- Clinical LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Jingru Liu
- Central LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Huifang Huang
- Central LaboratoryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
9
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
10
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
11
|
Shaikh H, Pezoldt J, Mokhtari Z, Gamboa Vargas J, Le DD, Peña Mosca J, Arellano Viera E, Kern MA, Graf C, Beyersdorf N, Lutz MB, Riedel A, Büttner-Herold M, Zernecke A, Einsele H, Saliba AE, Ludewig B, Huehn J, Beilhack A. Fibroblastic reticular cells mitigate acute GvHD via MHCII-dependent maintenance of regulatory T cells. JCI Insight 2022; 7:154250. [PMID: 36227687 DOI: 10.1172/jci.insight.154250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.
Collapse
Affiliation(s)
- Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Michael Ag Kern
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Caroline Graf
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Niklas Beyersdorf
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection (HZI), Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
12
|
Wang CJ, Petersone L, Edner NM, Heuts F, Ovcinnikovs V, Ntavli E, Kogimtzis A, Fabri A, Elfaki Y, Houghton LP, Hosse RJ, Schubert DA, Frei AP, Ross EM, Walker LSK. Costimulation blockade in combination with IL-2 permits regulatory T cell sparing immunomodulation that inhibits autoimmunity. Nat Commun 2022; 13:6757. [PMID: 36347877 PMCID: PMC9643453 DOI: 10.1038/s41467-022-34477-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Blockade of CD28 costimulation with CTLA-4-Ig/Abatacept is used to dampen effector T cell responses in autoimmune and transplantation settings. However, a significant drawback of this approach is impaired regulatory T cell homeostasis that requires CD28 signaling. Therefore, strategies that restrict the effects of costimulation blockade to effector T cells would be advantageous. Here we probe the relative roles of CD28 and IL-2 in maintaining Treg. We find provision of IL-2 counteracts the regulatory T cell loss induced by costimulation blockade while minimally affecting the conventional T cell compartment. These data suggest that combining costimulation blockade with IL-2 treatment may selectively impair effector T cell responses while maintaining regulatory T cells. Using a mouse model of autoimmune diabetes, we show combined therapy supports regulatory T cell homeostasis and protects from disease. These findings are recapitulated in humanised mice using clinically relevant reagents and provide an exemplar for rational use of a second immunotherapy to offset known limitations of the first.
Collapse
Affiliation(s)
- Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Lina Petersone
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Natalie M Edner
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Elisavet Ntavli
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Alexandros Kogimtzis
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Astrid Fabri
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Yassin Elfaki
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Luke P Houghton
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Ralf J Hosse
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development (pRED), Schlieren, Switzerland
| | - David A Schubert
- Roche Innovation Center Basel, Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | - Andreas P Frei
- Roche Innovation Center Basel, Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | - Ellen M Ross
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK.
| |
Collapse
|
13
|
Gerdemann U, Fleming RA, Kaminski J, McGuckin C, Rui X, Lane JF, Keskula P, Cagnin L, Shalek AK, Tkachev V, Kean LS. Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Front Immunol 2022; 12:804932. [PMID: 35154078 PMCID: PMC8825351 DOI: 10.3389/fimmu.2021.804932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
T cell receptor (TCR) clonotype tracking is a powerful tool for interrogating T cell mediated immune processes. New methods to pair a single cell's transcriptional program with its TCR identity allow monitoring of T cell clonotype-specific transcriptional dynamics. While these technologies have been available for human and mouse T cells studies, they have not been developed for Rhesus Macaques (RM), a critical translational organism for autoimmune diseases, vaccine development and transplantation. We describe a new pipeline, 'RM-scTCR-Seq', which, for the first time, enables RM specific single cell TCR amplification, reconstruction and pairing of RM TCR's with their transcriptional profiles. We apply this method to a RM model of GVHD, and identify and track in vitro detected alloreactive clonotypes in GVHD target organs and explore their GVHD driven cytotoxic T cell signature. This novel, state-of-the-art platform fundamentally advances the utility of RM to study protective and pathogenic T cell responses.
Collapse
Affiliation(s)
- Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ryan A Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jennifer F Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Paula Keskula
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
15
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Graft-versus-host Disease Prophylaxis With Abatacept Reduces Severe Acute Graft-versus-host Disease in Allogeneic Hematopoietic Stem Cell Transplant for Beta-thalassemia Major With Busulfan, Fludarabine, and Thiotepa. Transplantation 2021; 105:891-896. [PMID: 32467478 DOI: 10.1097/tp.0000000000003327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We hypothesized that the addition of 4 doses of abatacept to our standard acute graft-versus-host disease (GVHD) prophylaxis would reduce the incidence of day +100 severe acute GVHD in children with transfusion-dependent beta-thalassemia major undergoing a myeloablative allogeneic hematopoietic stem cell transplant (HSCT), without impacting engraftment. METHODS Twenty-four children with beta-thalassemia major received abatacept at a dose of 10 mg/kg intravenously on days -1, +5, +14, and +28 after HSCT in addition to calcineurin inhibitors and methylprednisolone. Outcomes were compared to 8 beta-thalassemia patients who received standard acute GVHD prophylaxis. RESULTS There was no difference in engraftment between the 2 groups. No patient had grades III-IV acute GVHD by day +100 in the abatacept cohort compared with 50% in the standard acute GVHD prophylaxis group (P = 0.001). Viral reactivation occurred in 5 children in the standard acute GVHD cohort and in 20 children in the abatacept cohort (P = 0.2). Thalassemia-free survival after HSCT was 100% in the abatacept cohort compared to 62.5% in the standard cohort at last follow-up (P = 0.007). CONCLUSIONS Adding abatacept to our routine GVHD prophylaxis reduced the incidence of day +100 severe acute GVHD without impacting engraftment or survival.
Collapse
|
17
|
Adom D, Dillon SR, Yang J, Liu H, Ramadan A, Kushekhar K, Hund S, Albright A, Kirksey M, Adeniyan T, Lewis KE, Evans L, Wu R, Levin SD, Mudri S, Yang J, Rickel E, Seaberg M, Henderson K, Gudgeon CJ, Wolfson MF, Swanson RM, Swiderek KM, Peng SL, Hippen KL, Blazar BR, Paczesny S. ICOSL + plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist. Sci Transl Med 2021; 12:12/564/eaay4799. [PMID: 33028709 DOI: 10.1126/scitranslmed.aay4799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD.
Collapse
Affiliation(s)
- Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jinfeng Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hao Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abdulraouf Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kushi Kushekhar
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samantha Hund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda Albright
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maykala Kirksey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Titilayo Adeniyan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Rebecca Wu
- Alpine Immune Sciences, Seattle, WA 98102, USA
| | | | | | - Jing Yang
- Alpine Immune Sciences, Seattle, WA 98102, USA
| | | | | | | | | | | | | | | | | | - Keli L Hippen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Socié G, Kean LS, Zeiser R, Blazar BR. Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease. J Clin Invest 2021; 131:149296. [PMID: 34101618 PMCID: PMC8203454 DOI: 10.1172/jci149296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a result of impressive increases in our knowledge of rodent and human immunology, the understanding of the pathophysiologic mechanisms underlying graft-versus-host disease (GVHD) has dramatically improved in the past 15 years. Despite improved knowledge, translation to clinical care has not proceeded rapidly, and results from experimental models have been inconsistent in their ability to predict the clinical utility of new therapeutic agents. In parallel, new tools in immunology have allowed in-depth analyses of the human system and have recently been applied in the field of clinical GVHD. Notwithstanding these advances, there is a relative paucity of mechanistic insights into human translational research, and this remains an area of high unmet need. Here we review selected recent advances in both preclinical experimental transplantation and translational human studies, including new insights into human immunology, the microbiome, and regenerative medicine. We focus on the fact that both approaches can interactively improve our understanding of both acute and chronic GVHD biology and open the door to improved therapeutics and successes.
Collapse
Affiliation(s)
- Gérard Socié
- Hematology-Transplantation, Assistance Publique–Hôpitaux de Paris (APHP), Hospital Saint Louis, Paris, France
- INSERM UMR 976 (Team Insights) and University of Paris, Paris, France
| | - Leslie S. Kean
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Abatacept is effective as GVHD prophylaxis in unrelated donor stem cell transplantation for children with severe sickle cell disease. Blood Adv 2021; 4:3894-3899. [PMID: 32813873 DOI: 10.1182/bloodadvances.2020002236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
We report results of a phase 1 multicenter stem cell transplantation (SCT) trial from HLA-matched (n = 7) or one-antigen-mismatched (n = 7) unrelated donors (URD) using bone marrow or cord blood as stem cell source, following reduced-intensity conditioning (RIC) in severe sickle cell disease (SCD). Conditioning included distal alemtuzumab, fludarabine, and melphalan (matched donors), with thiotepa (mismatched donors). Abatacept, a selective inhibitor of T cell costimulation, was added to tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis to offset GVHD risks, and was administered for longer duration in bone marrow recipients than in cord blood recipients because of increased incidence of chronic GVHD with bone marrow. Median age at transplant was 13 years (range, 7-21 years). The incidence of grades II to IV and grades III to IV acute GVHD at day +100 was 28.6% and 7%, respectively. One-year incidence of chronic GVHD was 57% and mild/limited in all but 1 patient who received abatacept for a longer duration. Only 1 patient developed reversible posterior encephalopathy syndrome and recovered. With a median follow-up of 1.6 years (range, 1-5.5 years), the 2-year overall and disease-free survival was 100% and 92.9%, respectively. The encouraging results from the phase 1 portion of this RIC SCT trial, despite risk factors such as older age, URD, and HLA-mismatch, support further evaluation of URD SCT in clinical trial settings. The phase 2 portion of the trial is in progress. This trial was registered at www.clinicaltrials.gov as NCT03128996.
Collapse
|
20
|
Parker MH, Stone D, Abrams K, Johnson M, Granot N, Storb R. Anti-ICOS mAb Targets Pathogenic IL-17A-expressing Cells in Canine Model of Chronic GVHD. Transplantation 2021; 105:1008-1016. [PMID: 33065723 PMCID: PMC8046842 DOI: 10.1097/tp.0000000000003489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (GVHD) is a significant cause of morbidity and mortality in transplant patients. We have previously shown that 3 doses of an anti-inducible costimulator (ICOS) mAb transiently ameliorated symptoms and extended survival of dogs affected by chronic GVHD over that of control dogs. The purpose of this study was to specifically correlate changes in T-cell populations in the peripheral blood with anti-ICOS treatment and chronic GVHD progression and regression to reach a better understanding of the mechanism of the disease and prioritize future studies. METHODS Peripheral blood cells from canines transplanted with DLA-mismatched bone marrow and peripheral blood mononuclear cells to generate chronic GVHD were analyzed by flow cytometry using a panel of antibodies specific to helper and cytolytic T cells. RESULTS Chronic GVHD was specifically associated with an increase in CD4+ICOS+ cells, ICOS+ cells expressing IL-17A, and CD8+ cells generating granzyme B. Treatment with anti-ICOS mAb at onset of chronic GVHD symptoms specifically targeted IL-17A+-expressing cells, transiently relieved symptoms, and lengthened survival but was unable to reduce the percentage of CD8+ T-cells expressing granzyme B. CONCLUSIONS These studies suggested a role for both CD4+ and CD8+ T cells in pathogenesis of chronic GVHD in the canine model. We propose that future studies should focus on further extending survival by developing a treatment that would control both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Maura H. Parker
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Diane Stone
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kraig Abrams
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa Johnson
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noa Granot
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rainer Storb
- Transplantation Biology Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
22
|
Abstract
Graft-vs. host disease (GVHD), both acute and chronic are among the chief non-relapse complications of allogeneic transplantation which still cause substantial morbidity and mortality despite significant advances in supportive care over the last few decades. The prevention of GVHD therefore remains critical to the success of allogeneic transplantation. In this review we briefly discuss the pathophysiology and immunobiology of GVHD and the current standards in the field which remain centered around calcineurin inhibitors. We then discuss important translational advances in GVHD prophylaxis, approaching these various platforms from a mechanistic standpoint based on the pathophysiology of GVHD including in-vivo and ex-vivo T-cell depletion alongwith methods of selective T-cell depletion, modulation of T-cell co-stimulatory pathways (checkpoints), enhancing regulatory T-cells (Tregs), targeting T-cell trafficking as well as cytokine pathways. Finally we highlight exciting novel pre-clinical research that has the potential to translate to the clinic successfully. We approach these methods from a pathophysiology based perspective as well and touch upon strategies targeting the interaction between tissue damage induced antigens and T-cells, regimen related endothelial toxicity, T-cell co-stimulatory pathways and other T-cell modulatory approaches, T-cell trafficking, and cytokine pathways. We end this review with a critical discussion of existing data and novel therapies that may be transformative in the field in the near future as a comprehensive picture of GVHD prophylaxis in 2020. While calcineurin inhibitors remain the standard, post-transplant eparinsphamide originally developed to facilitate haploidentical transplantation is becoming an attractive alternative to traditional calcinuerin inhibitor based prophylaxis due to its ability to reduce severe forms of acute and chronic GVHD without compromising other outcomes, even in the HLA-matched setting. In addition T-cell modulation, particularly targeting some important T-cell co-stimulatory pathways have resulted in promising outcomes and may be a part of GVHD prophylaxis in the future. Novel approaches including targeting early events in GVHD pathogenesis such as interactions bvetween tissue damage associated antigens and T-cells, endothelial toxicity, and T-cell trafficking are also promising and discussed in this review. GVHD prophylaxis in 2020 continues to evolve with novel exicitng therapies on the horizon based on a more sophisticated understanding of the immunobiology of GVHD.
Collapse
|
23
|
Paczesny S. Post-haematopoietic cell transplantation outcomes: why ST2 became a 'golden nugget' biomarker. Br J Haematol 2021; 192:951-967. [PMID: 32039480 PMCID: PMC7415515 DOI: 10.1111/bjh.16497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies have emerged as highly promising approaches to treat cancer patients. Allogeneic haematopoietic cell transplantation (HCT) is the most validated tumour immunotherapy available to date but its clinical efficacy is limited by toxicities, such as graft-versus-host disease (GVHD) and treatment resistance leading to relapse. The problems with new cellular therapies and checkpoint inhibitors are similar. However, development of biomarkers post-HCT, particularly for toxicities, has taken off in the last decade and has expanded greatly. Thanks to the advances in genomics, transcriptomics, proteomics and cytomics technologies, blood biomarkers have been identified and validated in promising diagnostic tests, prognostic tests stratifying for future occurrence of GVHD, and predictive tests for responsiveness to GVHD therapy and non-relapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. This review outlines a path from biomarker discovery to first clinical correlation, focusing on soluble STimulation-2 (sST2) - the interleukin (IL)-33-decoy receptor - which is the most validated biomarker.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
24
|
La Muraglia GM, Zeng S, Crichton ES, Wagener ME, Ford ML, Badell IR. Superior inhibition of alloantibody responses with selective CD28 blockade is CTLA-4 dependent and T follicular helper cell specific. Am J Transplant 2021; 21:73-86. [PMID: 32406182 PMCID: PMC7665991 DOI: 10.1111/ajt.16004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Abstract
Anti-donor antibodies cause immunologic injury in transplantation. CD28 blockade with CTLA-4-Ig has the ability to reduce the incidence of these donor-specific antibodies (DSA), but its mechanism is suboptimal for the inhibition of alloimmunity in that CTLA-4-Ig blocks both CD28 costimulation and CTLA-4 coinhibition. Thus selective CD28 blockade that spares CTLA-4 has potential to result in improved inhibition of humoral alloimmunity. To test this possibility, we utilized a full allogeneic mismatch murine transplant model and T follicular helper (Tfh):B cell co-culture system. We observed that selective blockade with an anti-CD28 domain antibody (dAb) compared to CTLA-4-Ig led to superior inhibition of Tfh cell, germinal center, and DSA responses in vivo and better control of B cell responses in vitro. CTLA-4 blockade enhanced the humoral alloresponse and, in combination with anti-CD28 dAb, abrogated the effects of selective blockade. This CTLA-4-dependent inhibition was Tfh cell specific in that CTLA-4 expression by Tfh cells was necessary and sufficient for the improved humoral inhibition observed with selective CD28 blockade. As CD28 blockade attracts interest for control of alloantibodies in the clinic, these data support selective CD28 blockade as a superior strategy to address DSA via the sparing of CTLA-4 and more potent targeting of Tfh cells.
Collapse
Affiliation(s)
| | - Susan Zeng
- Emory Transplant Center, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
25
|
Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes 2021; 13:1966262. [PMID: 34455917 PMCID: PMC8436969 DOI: 10.1080/19490976.2021.1966262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used for the treatment of hematologic cancers and disorders. However, graft-versus-host disease (GVHD) in which the donor immune cells attack the genetically-disparate recipient is a significant cause of morbidity. Acute GVHD is an inflammatory condition and the gastrointestinal system is a major organ affected but is also tied to beneficial graft-versus-tumor (GVT) effects. There is increasing interest on the role of the microbiome on immune function as well as on cancer progression and immunotherapy outcomes. However, there are still significant unanswered questions on the role the microbiome plays in GVHD progression or how to exploit the microbiome in GVHD prevention or treatment. In this review, concepts of HSCT with the focus on GVHD pathogenesis as well as issues in preclinical models used to study GVHD will be discussed with an emphasis on the impact of the microbiome. Factors affecting the microbiome and GVHD outcome such as obesity are also examined. The bridging of preclinical models and clinical outcomes in relation to the role of the microbiome will also be discussed along with possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USAs
| |
Collapse
|
26
|
Abstract
Acute graft-versus-host disease (aGvHD) is induced by immunocompetent alloreactive T lymphocytes in the donor graft responding to polymorphic and non-polymorphic host antigens and causing inflammation in primarily the skin, gastrointestinal tract and liver. aGvHD remains an important toxicity of allogeneic transplantation, and the search for better prophylactic and therapeutic strategies is critical to improve transplant outcomes. In this review, we discuss the significant translational and clinical advances in the field which have evolved based on a better understanding of transplant immunology. Prophylactic advances have been primarily focused on the depletion of T lymphocytes and modulation of T-cell activation, proliferation, effector and regulatory functions. Therapeutic strategies beyond corticosteroids have focused on inhibiting key cytokine pathways, lymphocyte trafficking, and immunologic tolerance. We also briefly discuss important future trends in the field, the role of the intestinal microbiome and dysbiosis, as well as prognostic biomarkers for aGvHD which may improve stratification-based application of preventive and therapeutic strategies.
Collapse
|
27
|
Vandenhove B, Canti L, Schoemans H, Beguin Y, Baron F, Graux C, Kerre T, Servais S. How to Make an Immune System and a Foreign Host Quickly Cohabit in Peace? The Challenge of Acute Graft- Versus-Host Disease Prevention After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2020; 11:583564. [PMID: 33193397 PMCID: PMC7609863 DOI: 10.3389/fimmu.2020.583564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.
Collapse
Affiliation(s)
- Benoît Vandenhove
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Hélène Schoemans
- Department of Clinical Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, CHU UCL Namur (Godinne), Université Catholique de Louvain, Yvoir, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Servais
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Calabrese LH, Caporali R, Blank CU, Kirk AD. Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. J Autoimmun 2020; 115:102546. [PMID: 32980229 DOI: 10.1016/j.jaut.2020.102546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The T-cell response is regulated by the balance between costimulatory and coinhibitory signals. Immune checkpoints are essential for efficient T-cell activation, but also for maintaining self-tolerance and protecting tissues from damage caused by the immune system, and for providing protective immunity. Modulating immune checkpoints can serve diametric goals, such that blocking a coinhibitory molecule can unleash anti-cancer immunity whereas stimulating the same molecule can reduce an over-reaction in autoimmune disease. The purpose of this review is to examine the regulation of T-cell costimulation and coinhibition, which is central to the processes underpinning autoimmunity, transplant rejection and immune evasion in cancer. We will focus on the immunomodulation agents that regulate these unwanted over- and under-reactions. The use of such agents has led to control of symptoms and slowing of progression in patients with rheumatoid arthritis, reduced rejection rates in transplant patients, and prolonged survival in patients with cancer. The management of immune checkpoint inhibitor treatment in certain challenging patient populations, including patients with pre-existing autoimmune conditions or transplant patients who develop cancer, as well as the management of immune-related adverse events in patients receiving antitumor therapy, is examined. Finally, the future of immune checkpoint inhibitors, including examples of emerging targets that are currently in development, as well as recent insights gained using new molecular techniques, is discussed. T-cell costimulation and coinhibition play vital roles in these diverse therapeutic areas. Targeting immune checkpoints continues to be a powerful avenue for the development of agents suitable for treating autoimmune diseases and cancers and for improving transplant outcomes. Enhanced collaboration between therapy area specialists to share learnings across disciplines will improve our understanding of the opposing effects of treatments for autoimmune disease/transplant rejection versus cancer on immune checkpoints, which has the potential to lead to improved patient outcomes.
Collapse
Affiliation(s)
| | - Roberto Caporali
- University of Milan, Department of Clinical Sciences and Community Health and Rheumatology Division, ASST Pini-CTO Hospital, Milan, Italy
| | | | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
29
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
30
|
Schroder PM, Schmitz R, Fitch ZW, Ezekian B, Yoon J, Choi AY, Manook M, Barbas A, Leopardi F, Song M, Farris AB, Collins B, Kwun J, Knechtle SJ. Preoperative carfilzomib and lulizumab based desensitization prolongs graft survival in a sensitized non-human primate model. Kidney Int 2020; 99:161-172. [PMID: 32898569 DOI: 10.1016/j.kint.2020.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Sensitized patients are difficult to transplant due to pre-formed anti-donor immunity. We have previously reported successful desensitization using carfilzomib and belatacept in a non-human primate (NHP) model. Here we evaluated selective blockade of the co-stimulatory signal (CD28-B7) with Lulizumab, which preserves the co-inhibitory signal (CTLA4-B7). Five maximally MHC-mismatched pairs of NHPs were sensitized to each other with two sequential skin transplants. Individuals from each pair were randomized to either desensitization with once-weekly Carfilzomib (27mg/m2 IV) and Lulizumab (12.5mg/kg SC) over four weeks, or no desensitization (Control). NHPs then underwent life-sustaining kidney transplantation from their previous skin donor. Rhesus-specific anti-thymocyte globulin was used as induction therapy and immunosuppression maintained with tacrolimus, mycophenolate, and methylprednisolone. Desensitized subjects demonstrated a significant reduction in donor-specific antibody, follicular helper T cells (CD4+PD-1+ICOS+), and proliferating B cells (CD20+Ki67+) in the lymph nodes. Interestingly, regulatory T cell (CD4+CD25+CD127lo) frequency was maintained after desensitization in addition to increased frequency of naïve CD4 T cells (CCR7+CD45RA+) and naïve B cells (IgD+CD27-CD20+) in circulation. This was associated with significant prolongation in graft survival (MST = 5.8 ± 4.0 vs. 64.8 ± 36.3; p<0.05) and lower antibody-mediated rejection scores compared to control animals. However, all desensitized animals eventually developed AMR and graft failure. Desensitization with CFZ and Lulizumab improves allograft survival in allosensitized NHPs, by transient control of the germinal center and shifting of the immune system to a more naive phenotype. This regimen may translate into clinical practice to improve outcomes of highly sensitized transplant patients.
Collapse
Affiliation(s)
- Paul M Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Y Choi
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew Barbas
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Leopardi
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Mingqing Song
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alton B Farris
- Department of Pathology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Bradley Collins
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| | - Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
31
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
32
|
Adom D, Rowan C, Adeniyan T, Yang J, Paczesny S. Biomarkers for Allogeneic HCT Outcomes. Front Immunol 2020; 11:673. [PMID: 32373125 PMCID: PMC7186420 DOI: 10.3389/fimmu.2020.00673] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains the only curative therapy for many hematological malignant and non-malignant disorders. However, key obstacles to the success of HCT include graft-versus-host disease (GVHD) and disease relapse due to absence of graft-versus-tumor (GVT) effect. Over the last decade, advances in "omics" technologies and systems biology analysis, have allowed for the discovery and validation of blood biomarkers that can be used as diagnostic test and prognostic test (that risk-stratify patients before disease occurrence) for acute and chronic GVHD and recently GVT. There are also predictive biomarkers that categorize patients based on their likely to respond to therapy. Newer mathematical analysis such as machine learning is able to identify different predictors of GVHD using clinical characteristics pre-transplant and possibly in the future combined with other biomarkers. Biomarkers are not only useful to identify patients with higher risk of disease progression, but also help guide treatment decisions and/or provide a basis for specific therapeutic interventions. This review summarizes biomarkers definition, omics technologies, acute, chronic GVHD and GVT biomarkers currently used in clinic or with potential as targets for existing or new drugs focusing on novel published work.
Collapse
Affiliation(s)
- Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Courtney Rowan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Titilayo Adeniyan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jinfeng Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
33
|
Orlik C, Deibel D, Küblbeck J, Balta E, Ganskih S, Habicht J, Niesler B, Schröder-Braunstein J, Schäkel K, Wabnitz G, Samstag Y. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell Mol Immunol 2020; 17:380-394. [PMID: 31324882 PMCID: PMC7109061 DOI: 10.1038/s41423-019-0261-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/01/2022] Open
Abstract
The interplay between keratinocytes and immune cells, especially T cells, plays an important role in the pathogenesis of chronic inflammatory skin diseases. During psoriasis, keratinocytes attract T cells by releasing chemokines, while skin-infiltrating self-reactive T cells secrete proinflammatory cytokines, e.g., IFNγ and IL-17A, that cause epidermal hyperplasia. Similarly, in chronic graft-versus-host disease, allogenic IFNγ-producing Th1/Tc1 and IL-17-producing Th17/Tc17 cells are recruited by keratinocyte-derived chemokines and accumulate in the skin. However, whether keratinocytes act as nonprofessional antigen-presenting cells to directly activate naive human T cells in the epidermis remains unknown. Here, we demonstrate that under proinflammatory conditions, primary human keratinocytes indeed activate naive human T cells. This activation required cell contact and costimulatory signaling via CD58/CD2 and CD54/LFA-1. Naive T cells costimulated by keratinocytes selectively differentiated into Th1 and Th17 cells. In particular, keratinocyte-initiated Th1 differentiation was dependent on costimulation through CD58/CD2. The latter molecule initiated STAT1 signaling and IFNγ production in T cells. Costimulation of T cells by keratinocytes resulting in Th1 and Th17 differentiation represents a new explanation for the local enrichment of Th1 and Th17 cells in the skin of patients with a chronic inflammatory skin disease. Consequently, local interference with T cell-keratinocyte interactions may represent a novel strategy for the treatment of Th1 and Th17 cell-driven skin diseases.
Collapse
Affiliation(s)
- Christian Orlik
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Daniel Deibel
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Johanna Küblbeck
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Emre Balta
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Sabina Ganskih
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jüri Habicht
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, and nCounter Core Facility, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Jutta Schröder-Braunstein
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Boardman DA, Levings MK. Cancer immunotherapies repurposed for use in autoimmunity. Nat Biomed Eng 2019; 3:259-263. [PMID: 30952977 DOI: 10.1038/s41551-019-0359-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dominic A Boardman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada. .,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Pengam S, Durand J, Usal C, Gauttier V, Dilek N, Martinet B, Daguin V, Mary C, Thepenier V, Teppaz G, Renaudin K, Blancho G, Vanhove B, Poirier N. SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells. Am J Transplant 2019; 19:3263-3275. [PMID: 31207067 DOI: 10.1111/ajt.15497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.
Collapse
Affiliation(s)
| | - Justine Durand
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Claire Usal
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | - Nahzli Dilek
- OSE Immunotherapeutics, Nantes, France.,Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Véronique Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | | | | | | | - Karine Renaudin
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | | |
Collapse
|
36
|
High Dimensional Renal Profiling: Towards a Better Understanding or Renal Transplant Immune Suppression. CURRENT TRANSPLANTATION REPORTS 2019; 6:60-68. [PMID: 31595214 DOI: 10.1007/s40472-019-0225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss new approaches to avoid CNI/CCS toxicities with a focus on new biologics and new methods to understand transplant rejection at the single-cell level. RECENT FINDINGS Recently developed biologics hold significant promise as the next wave of therapeutics designed to promote CNI/CCS-free long-term allograft acceptance. Indeed, belatacept, soluble CTLA4-Ig, is largely devoid of CNI-like toxicities, although it is accompanied by an increased frequency of acute rejection. Besides belatacept, other biologics hold promise as CNI-free immune suppressive approaches. Finally, powerful new single cell approaches can enable characterization of cellular populations that drive rejection within the rejecting allograft. SUMMARY We propose that the incorporated single cell profiling into studies investigating new biologics in transplantation, could be tailored to each patient, correlated with potential biomarkers in the blood and urine, and provide a platform where therapeutic targets can be rationally defined, mechanistically-based, and exploited.
Collapse
|
37
|
Selective Costimulation Blockade With Antagonist Anti-CD28 Therapeutics in Transplantation. Transplantation 2019; 103:1783-1789. [DOI: 10.1097/tp.0000000000002740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Xia Y, Tian LM, Liu Y, Guo KS, Lv M, Li QT, Hao SY, Ma CH, Chen YX, Tanaka M, Bai WB, Qiu CH. Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium-Induced Colitis, Mediated by CD169+ Macrophage Pathway. Inflamm Bowel Dis 2019; 25:1510-1521. [PMID: 31107535 DOI: 10.1093/ibd/izz090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. Cyanidin-3-O-glucoside (C3G) is a powerful anti-inflammatory agent, widely existing in fruits and vegetables. However, the role of C3G has rarely been investigated in dextran sulfate sodium (DSS)-induced colitis. METHODS In an attempt to elucidate the possible mechanism of IBD and develop new efficient therapeutic methods for colitis, we evaluated the effects of C3G on DSS-induced colitis. DSS-induced colitic C57BL/6 mice were intraperitoneal injected with 1ug C3G or phosphate buffer every 2 days, a total of 3 times; the changes in macrophages and regular T cells were analyzed by flow cytometry and immunofluorescence. Cytokines and chemokines were measured by real-time quantitative polymerase chain reaction. RESULTS The results showed that C3G treatment did not cause changes in body weight and colon length as much as those of DSS-treated mice only. Cytokine expression levels such as interleukin (IL)- 6, IL-1β, IL-18, tumor necrosis factor α, interferon γ (IFN γ) in colons and mesenteric lymph nodes (mLNs) from C3G-treated mice were lower than those from colitic mice. Meanwhile, C3G injection inhibited the decrease in CCL22 levels and Tregs induction in colitic mice. Furthermore, the activation of macrophages by LPS and increase of CD169+ cells induced by type I IFN could be inhibited by C3G directly in vitro. CONCLUSIONS The study is the first to demonstrate strong effects of C3G to alleviate DSS-induced colonic damage in mice. The effect of C3G on DSS-induced colitis clearly showed a decrease of CD169+ macrophages in both the colon and mLNs. An increase of CD169+ cells induced by type I IFN could be inhibited by C3G. All these data suggest that the role of C3G in colitic inflammation was mediated at least partially by CD169+ cells and the type I IFN pathway.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Ling-Min Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yu Liu
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Kang-Shun Guo
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Min Lv
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Qiu-Ting Li
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Sheng-Yu Hao
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Chun-Hong Ma
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yao-Xing Chen
- Fudan University School of Medicine, Shanghai, China
| | - Masato Tanaka
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Chun-Hong Qiu
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Li M, Lu C, Zhu H, Kang X, Wang F, Shao L, Lu X, Chen W, Xia X. Cenicriviroc ameliorates the severity of graft-versus-host disease through inhibition of CCR5 in a rat model of liver transplantation. Am J Transl Res 2019; 11:3438-3449. [PMID: 31312356 PMCID: PMC6614659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is one of the major complications after liver transplantation (LTx), which is induced by over-activation of T helper lymphocytes. Cenicriviroc (CVC) exerts its anti-inflammatory effect through inhibition of C-C chemokine receptor 5 (CCR5). However, whether CVC ameliorates aGVHD after liver transplantation remains unknown. In the present study, a rat aGVHD liver transplantation model (LTx-aGVHD) was constructed. CVC was intravenously injected from day 7 to day 14 after LTx. Liver and intestine samples were harvested to evaluate GVHD severity. Peripheral blood mononuclear cells (PBMCs) were collected and CCR5 antibodies were prepared to further explore the molecular mechanism in vitro. CVC significantly decreased the severity of GVHD associated skin and intestine injury. Quality of life of the LTx-GVHD rats was improved after CVC treatment. Flow cytometry further confirmed diminished peripheral donor-derived Th cells after CVC treatment. Molecularly, CVC treatment showed similar anti-inflammatory effects to CCR5 antibody injection. The level of CCR5, C-C motif chemokine ligand 5 (CCL5), and pro-inflammatory cytokines in the liver and intestines were inhibited after CVC treatment. Thus, CVC deactivated Th lymphocytes and decreased the severity of LTx-aGVHD through inhibition of CCR5.
Collapse
Affiliation(s)
- Minhuan Li
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211100, Jiangsu Province, China
| | - Chenglin Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Hao Zhu
- Department of Gastroenterologz, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Xing Kang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Feng Wang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Lihua Shao
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Xiaofeng Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang Province, China
| | - Xuefeng Xia
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| |
Collapse
|
40
|
Thangavelu G, Blazar BR. Achievement of Tolerance Induction to Prevent Acute Graft-vs.-Host Disease. Front Immunol 2019; 10:309. [PMID: 30906290 PMCID: PMC6419712 DOI: 10.3389/fimmu.2019.00309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), a main therapy to treat various hematological disorders. Despite rapid progress in understanding GVHD pathogenesis, broad immunosuppressive agents are most often used to prevent and remain the first line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT would permit reductions in immunosuppressant use and their associated undesirable side effects. In this review, we discuss the mechanisms responsible for GVHD and advancement in strategies to achieve immune balance and tolerance thereby avoiding GVHD and its complications.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
41
|
Zeng H. Graft-versus-host disease: Tread carefully on T cell suppression. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aav0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD28-targeting synergizes with mTOR inhibition to prevent graft-versus-host disease but increases infection-related fatality in nonhuman primates.
Collapse
Affiliation(s)
- Hu Zeng
- Division of Rheumatology, Department of Medicine, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|