1
|
Petrany A, Chen R, Zhang S, Chen Y. Theoretical framework for the difference of two negative binomial distributions and its application in comparative analysis of sequencing data. Genome Res 2024; 34:1636-1650. [PMID: 39406498 PMCID: PMC11529838 DOI: 10.1101/gr.278843.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/10/2024] [Indexed: 11/01/2024]
Abstract
High-throughput sequencing (HTS) technologies have been instrumental in investigating biological questions at the bulk and single-cell levels. Comparative analysis of two HTS data sets often relies on testing the statistical significance for the difference of two negative binomial distributions (DOTNB). Although negative binomial distributions are well studied, the theoretical results for DOTNB remain largely unexplored. Here, we derive basic analytical results for DOTNB and examine its asymptotic properties. As a state-of-the-art application of DOTNB, we introduce DEGage, a computational method for detecting differentially expressed genes (DEGs) in scRNA-seq data. DEGage calculates the mean of the sample-wise differences of gene expression levels as the test statistic and determines significant differential expression by computing the P-value with DOTNB. Extensive validation using simulated and real scRNA-seq data sets demonstrates that DEGage outperforms five popular DEG analysis tools: DEGseq2, DEsingle, edgeR, Monocle3, and scDD. DEGage is robust against high dropout levels and exhibits superior sensitivity when applied to balanced and imbalanced data sets, even with small sample sizes. We utilize DEGage to analyze prostate cancer scRNA-seq data sets and identify marker genes for 17 cell types. Furthermore, we apply DEGage to scRNA-seq data sets of mouse neurons with and without fear memory and reveal eight potential memory-related genes overlooked in previous analyses. The theoretical results and supporting software for DOTNB can be widely applied to comparative analyses of dispersed count data in HTS and broad research questions.
Collapse
Affiliation(s)
- Alicia Petrany
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, USA
| | - Ruoyu Chen
- Moorestown High School, Moorestown, New Jersey 08057, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, USA;
| |
Collapse
|
2
|
Taglialatela I, Indini A, Santanelli G, Di Liberti G, Di Guardo L, De Braud F, Del Vecchio M. Melanoma and sex hormones: Pathogenesis, progressive disease and response to treatments. TUMORI JOURNAL 2024; 110:309-318. [PMID: 38372040 DOI: 10.1177/03008916241231687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cutaneous melanoma represents the fifth tumor in terms of incidence in young adults, with a major involvement of males than females. Despite the significant changes in available effective treatments for cutaneous melanoma, there is still a proportion of patients that do not benefit long-term disease control with immune checkpoint inhibitors and/or BRAF/MEK inhibitors, and eventually develop progressive disease. In addition to the emerging biomarkers under investigation to understand resistance to treatments, recent studies resumed the role of sex hormones (estrogens, progesterone and androgens) in melanoma patients. In the last decades, the impact of sex hormones has been considered controversial in melanoma patients, but actual growing preclinical and clinical evidence underline the potential influence on melanoma cells' growth, tumor microenvironment, the immune system and consequently on the course of disease.This review will provide available insights on the role of sex hormones in melanoma pathogenesis, disease progression and response/resistance to systemic treatments. We will also offer an overview on the recent studies on the theme, describing the hormonal contribution to disease response and the interaction with targeted therapies and immune-checkpoint inhibitors in cutaneous melanoma patients, illustrating an insight into future research in this field.
Collapse
Affiliation(s)
- Ida Taglialatela
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alice Indini
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giulia Santanelli
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giorgia Di Liberti
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Università degli studi di Milano, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
3
|
Sakai H, Uno H, Yamakawa H, Tanaka K, Ikedo A, Uezumi A, Ohkawa Y, Imai Y. The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice. Proc Natl Acad Sci U S A 2024; 121:e2407768121. [PMID: 39292748 PMCID: PMC11441553 DOI: 10.1073/pnas.2407768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Androgens exert their effects primarily by binding to the androgen receptor (AR), a ligand-dependent nuclear receptor. While androgens have anabolic effects on skeletal muscle, previous studies reported that AR functions in myofibers to regulate skeletal muscle quality, rather than skeletal muscle mass. Therefore, the anabolic effects of androgens are exerted via nonmyofiber cells. In this context, the cellular and molecular mechanisms of AR in mesenchymal progenitors, which play a crucial role in maintaining skeletal muscle homeostasis, remain largely unknown. In this study, we demonstrated expression of AR in mesenchymal progenitors and found that targeted AR ablation in mesenchymal progenitors reduced limb muscle mass in mature adult, but not young or aged, male mice, although fatty infiltration of muscle was not affected. The absence of AR in mesenchymal progenitors led to remarkable perineal muscle hypotrophy, regardless of age, due to abnormal regulation of transcripts associated with cell death and extracellular matrix organization. Additionally, we revealed that AR in mesenchymal progenitors regulates the expression of insulin-like growth factor 1 (Igf1) and that IGF1 administration prevents perineal muscle atrophy in a paracrine manner. These findings indicate that the anabolic effects of androgens regulate skeletal muscle mass via, at least in part, AR signaling in mesenchymal progenitors.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Hideaki Uno
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Harumi Yamakawa
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka812-0054, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime791-0295, Japan
| |
Collapse
|
4
|
Ghosh S, Isma J, Ostano P, Mazzeo L, Toniolo A, Das M, White JR, Simon C, Paolo Dotto G. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat Commun 2024; 15:7984. [PMID: 39266569 PMCID: PMC11392952 DOI: 10.1038/s41467-024-52344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Campus, Pilani, India.
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Monalisa Das
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Joni R White
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Personalised Cancer Prevention Unit, ORL Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
5
|
Jin SE, Kim J, Sung JH. Recent approaches of antibody therapeutics in androgenetic alopecia. Front Pharmacol 2024; 15:1434961. [PMID: 39221145 PMCID: PMC11362041 DOI: 10.3389/fphar.2024.1434961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Therapeutic antibodies (Abs) have been anticipated as promising alternatives to conventional treatments such as topical minoxidil and oral finasteride for androgenetic alopecia (AGA). Due to the high molecular weight of typical Abs, the half-life of subcutaneous Abs exceeds 2 weeks, allowing an administration intervals of once a month or longer. Direct injection into the areas of hair loss is also feasible, potentially enhancing treatment efficacy while minimizing systemic side effects. However, therapeutic Abs are rarely developed for AGA therapy due to the requirement to be responsiveness to androgens and to exist in the extracellular fluid or cell surface surrounding the hair follicle. In this review, we introduce recent progress of antibody therapeutics in AGA targeting the prolactin receptor, Interleukin-6 receptor, C-X-C motif chemokine ligand 12, and dickkopf 1. As therapeutic Abs for AGA are still in the early stages, targets need further validation and optimization for clinical application.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon, Republic of Korea
| | - Jino Kim
- New Hair Plastic Surgery Clinic, Seoul, Republic of Korea
| | | |
Collapse
|
6
|
Zhao J, Wang Q, Tan AF, Loh CJL, Toh HC. Sex differences in cancer and immunotherapy outcomes: the role of androgen receptor. Front Immunol 2024; 15:1416941. [PMID: 38863718 PMCID: PMC11165033 DOI: 10.3389/fimmu.2024.1416941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Across the wide range of clinical conditions, there exists a sex imbalance where biological females are more prone to autoimmune diseases and males to some cancers. These discrepancies are the combinatory consequence of lifestyle and environmental factors such as smoking, alcohol consumption, obesity, and oncogenic viruses, as well as other intrinsic biological traits including sex chromosomes and sex hormones. While the emergence of immuno-oncology (I/O) has revolutionised cancer care, the efficacy across multiple cancers may be limited because of a complex, dynamic interplay between the tumour and its microenvironment (TME). Indeed, sex and gender can also influence the varying effectiveness of I/O. Androgen receptor (AR) plays an important role in tumorigenesis and in shaping the TME. Here, we lay out the epidemiological context of sex disparity in cancer and then review the current literature on how AR signalling contributes to such observation via altered tumour development and immunology. We offer insights into AR-mediated immunosuppressive mechanisms, with the hope of translating preclinical and clinical evidence in gender oncology into improved outcomes in personalised, I/O-based cancer care.
Collapse
Affiliation(s)
- Junzhe Zhao
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Qian Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Medical Oncology Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | | | - Celestine Jia Ling Loh
- Duke-NUS Medical School, Singapore, Singapore
- Sengkang General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Suba Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers (Basel) 2024; 16:1573. [PMID: 38672654 PMCID: PMC11049279 DOI: 10.3390/cancers16081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In tumors, somatic mutagenesis presumably drives the DNA damage response (DDR) via altered regulatory pathways, increasing genomic instability and proliferative activity. These considerations led to the standard therapeutic strategy against cancer: the disruption of mutation-activated DNA repair pathways of tumors. PURPOSE Justifying that cancer cells are not enemies to be killed, but rather that they are ill human cells which have the remnants of physiologic regulatory pathways. RESULTS 1. Genomic instability and cancer development may be originated from a flaw in estrogen signaling rather than excessive estrogen signaling; 2. Healthy cells with genomic instability exhibit somatic mutations, helping DNA restitution; 3. Somatic mutations in tumor cells aim for the restoration of DNA damage, rather than further genomic derangement; 4. In tumors, estrogen signaling drives the pathways of DNA stabilization, leading to apoptotic death; 5. In peritumoral cellular infiltration, the genomic damage of the tumor induces inflammatory cytokine secretion and increased estrogen synthesis. In the inflammatory cells, an increased growth factor receptor (GFR) signaling confers the unliganded activation of estrogen receptors (ERs); 6. In breast cancer cells responsive to genotoxic therapy, constitutive mutations help the upregulation of estrogen signaling and consequential apoptosis. In breast tumors non-responsive to genotoxic therapy, the possibilities for ER activation via either liganded or unliganded pathways are exhausted, leading to farther genomic instability and unrestrained proliferation. CONCLUSIONS Understanding the real character and behavior of human tumors at the molecular level suggests that we should learn the genome repairing methods of tumors and follow them by supportive therapy, rather than provoking additional genomic damages.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
8
|
Mazzeo L, Ghosh S, Di Cicco E, Isma J, Tavernari D, Samarkina A, Ostano P, Youssef MK, Simon C, Dotto GP. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation. Nat Commun 2024; 15:1038. [PMID: 38310103 PMCID: PMC10838290 DOI: 10.1038/s41467-024-45308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
There are significant commonalities among several pathologies involving fibroblasts, ranging from auto-immune diseases to fibrosis and cancer. Early steps in cancer development and progression are closely linked to fibroblast senescence and transformation into tumor-promoting cancer-associated fibroblasts (CAFs), suppressed by the androgen receptor (AR). Here, we identify ANKRD1 as a mesenchymal-specific transcriptional coregulator under direct AR negative control in human dermal fibroblasts (HDFs) and a key driver of CAF conversion, independent of cellular senescence. ANKRD1 expression in CAFs is associated with poor survival in HNSCC, lung, and cervical SCC patients, and controls a specific gene expression program of myofibroblast CAFs (my-CAFs). ANKRD1 binds to the regulatory region of my-CAF effector genes in concert with AP-1 transcription factors, and promotes c-JUN and FOS association. Targeting ANKRD1 disrupts AP-1 complex formation, reverses CAF activation, and blocks the pro-tumorigenic properties of CAFs in an orthotopic skin cancer model. ANKRD1 thus represents a target for fibroblast-directed therapy in cancer and potentially beyond.
Collapse
Affiliation(s)
- Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Soumitra Ghosh
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Markus K Youssef
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
9
|
Zheng M, Kim MH, Park SG, Kim WS, Oh SH, Sung JH. CXCL12 Neutralizing Antibody Promotes Hair Growth in Androgenic Alopecia and Alopecia Areata. Int J Mol Sci 2024; 25:1705. [PMID: 38338982 PMCID: PMC10855715 DOI: 10.3390/ijms25031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Min-Ho Kim
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| | - Sang-Gyu Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| | - Won-Serk Kim
- Department of Dermatology, School of Medicine, Sungkyunkwan University, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea;
| | - Sang-Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea; (M.Z.); (M.-H.K.)
| |
Collapse
|
10
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
11
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
12
|
Ghosh S, Isma J, Mazzeo L, Toniolo A, Simon C, Dotto GP. Nuclear lamin A/C phosphorylation by loss of Androgen Receptor is a global determinant of cancer-associated fibroblast activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546870. [PMID: 37425957 PMCID: PMC10327063 DOI: 10.1101/2023.06.28.546870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alterations of nuclear structure and function, and associated impact on gene transcription, are a hallmark of cancer cells. Little is known of these alterations in Cancer-Associated Fibroblasts (CAFs), a key component of the tumor stroma. Here we show that loss of androgen receptor (AR), which triggers early steps of CAF activation in human dermal fibroblasts (HDFs), leads to nuclear membrane alterations and increased micronuclei formation, which are unlinked from induction of cellular senescence. Similar alterations occur in fully established CAFs, which are overcome by restored AR function. AR associates with nuclear lamin A/C and loss of AR results in a substantially increased lamin A/C nucleoplasmic redistribution. Mechanistically, AR functions as a bridge between lamin A/C with the protein phosphatase PPP1. In parallel with a decreased lamin-PPP1 association, AR loss results in a marked increase of lamin A/C phosphorylation at Ser 301, which is also a feature of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the transcription promoter regulatory region of several CAF effector genes, which are upregulated due to the loss of AR. More directly, expression of a lamin A/C Ser301 phosphomimetic mutant alone is sufficient to convert normal fibroblasts into tumor-promoting CAFs of the myofibroblast subtype, without an impact on senescence. These findings highlight the pivotal role of the AR-lamin A/C-PPP1 axis and lamin A/C phosphorylation at Ser 301 in driving CAF activation.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Annagiada Toniolo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G. Paolo Dotto
- Personalised Cancer Prevention Unit, ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
13
|
Wang D, Cheng C, Chen X, Wang J, Liu K, Jing N, Xu P, Xi X, Sun Y, Ji Z, Zhao H, He Y, Zhang K, Du X, Dong B, Fang Y, Zhang P, Qian X, Xue W, Gao WQ, Zhu HH. IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206889. [PMID: 37092583 DOI: 10.1002/advs.202206889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1β in TAMs. IL-1β induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1β antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1β is an important androgen-responsive immunotherapeutic target for advanced PCa.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Penghui Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xialian Xi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yujiao Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuxiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Pengcheng Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xueming Qian
- Mabspace Biosciences (Suzhou) Co. Limited, Suzhou, 215123, P. R. China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
14
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
15
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
16
|
Singh N, Khatib J, Chiu CY, Lin J, Patel TS, Liu-Smith F. Tumor Androgen Receptor Protein Level Is Positively Associated with a Better Overall Survival in Melanoma Patients. Genes (Basel) 2023; 14:genes14020345. [PMID: 36833272 PMCID: PMC9957358 DOI: 10.3390/genes14020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Androgen receptor (AR) is expressed in numerous tissues and serves important biologic functions in skin, prostate, immune, cardiovascular, and neural systems, alongside sexual development. Several studies have associated AR expression and patient survival in various cancers, yet there are limited studies examining the relationship between AR expression and cutaneous melanoma. This study used genomics and proteomics data from The Cancer Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA), with 470 cutaneous melanoma patient data points. Cox regression analyses evaluated the association between AR protein level with overall survival and revealed that a higher level of AR protein was positively associated with a better overall survival (OS) (p = 0.003). When stratified by sex, the AR association with OS was only significant for both sexes. The multivariate Cox models with justifications of sex, age of diagnosis, stage of disease, and Breslow depth of the tumor confirmed the AR-OS association in all patients. However, the significance of AR was lost when ulceration was included in the model. When stratified by sex, the multivariate Cox models indicated significant role of AR in OS of female patients but not in males. AR-associated genes were identified and enrichment analysis revealed shared and distinct gene network in male and female patients. Furthermore, AR was found significantly associated with OS in RAS mutant subtypes of melanoma but not in BRAF, NF1, or triple-wild type subtypes of melanoma. Our study may provide insight into the well-known female survival advantage in melanoma patients.
Collapse
Affiliation(s)
- Nupur Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jude Khatib
- Department of Dermatology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Chi-Yang Chiu
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jianjian Lin
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Tejesh Surender Patel
- Department of Dermatology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Feng Liu-Smith
- Department of Dermatology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Correspondence:
| |
Collapse
|
17
|
Ma J, Yao Y, Tian Y, Chen K, Liu B. Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. Biol Sex Differ 2022; 13:58. [PMID: 36273184 PMCID: PMC9587634 DOI: 10.1186/s13293-022-00469-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
A wide sex disparity has been demonstrated in cancer incidence, tumor aggressiveness, prognosis, and treatment response of different types of cancer. The sex specificity of cancer appears to be a relevant issue in managing the disease, and studies investigating the role of sex and gender are becoming extremely urgent. Immunotherapy plays a leading role in cancer treatment, offering a new perspective on advanced malignancies. Gender has not been considered in standard cancer treatment, suggesting increasing the recognition of sex differences in cancer research and clinical management. This paper provides an overview of sex and gender disparities in cancer immunotherapy efficacy, anti-cancer immune response, predictive biomarkers, and so on. We focus on the molecular differences between male and female patients across a broad range of cancer types to arouse the attention and practice of clinicians and researchers in a sex perspective of new cancer treatment strategies. Sex differences exist in the prevalence, tumor invasiveness, treatment responses, and clinical outcomes of pan-cancer, suggesting that, while not yet incorporated, sex will probably be considered in future practice guidelines. Inherent genetic differences, overlapping epigenetic alterations, and sex hormone influences underpin everything. Androgen receptors influence the sexual differences in TME by regulating epigenetic and transcriptional differentiation programs. It highlights a sex-based therapeutic target for cancer immunotherapy. Proper consideration of sex, age, sex hormones/menopause status, and socio-cultural gender differences in clinical investigation and gene association studies of cancer are needed to fill current gaps and implement precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Junfu Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Ye Tian
- Department of Senior Ward, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
18
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Yang C, Jin J, Yang Y, Sun H, Wu L, Shen M, Hong X, Li W, Lu L, Cao D, Wang X, Sun J, Ye Y, Su B, Deng L. Androgen receptor-mediated CD8 + T cell stemness programs drive sex differences in antitumor immunity. Immunity 2022; 55:1268-1283.e9. [PMID: 35700739 DOI: 10.1016/j.immuni.2022.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
The incidence and mortality rates of many non-reproductive human cancers are generally higher in males than in females. However, the immunological mechanism underlying sexual differences in cancers remains elusive. Here, we demonstrated that sex-related differences in tumor burden depended on adaptive immunity. Male CD8+ T cells exhibited impaired effector and stem cell-like properties compared with female CD8+ T cells. Mechanistically, androgen receptor inhibited the activity and stemness of male tumor-infiltrating CD8+ T cells by regulating epigenetic and transcriptional differentiation programs. Castration combined with anti-PD-L1 treatment synergistically restricted tumor growth in male mice. In humans, fewer male CD8+ T cells maintained a stem cell-like memory state compared with female counterparts. Moreover, AR expression correlated with tumor-infiltrating CD8+ T cell exhaustion in cancer patients. Our findings reveal sex-biased CD8+ T cell stemness programs in cancer progression and in the responses to cancer immunotherapy, providing insights into the development of sex-based immunotherapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Chao Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanqin Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingling Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyi Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaochuan Hong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Lu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liufu Deng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
20
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
21
|
Vellano CP, White MG, Andrews MC, Chelvanambi M, Witt RG, Daniele JR, Titus M, McQuade JL, Conforti F, Burton EM, Lastrapes MJ, Ologun G, Cogdill AP, Morad G, Prieto P, Lazar AJ, Chu Y, Han G, Khan MAW, Helmink B, Davies MA, Amaria RN, Kovacs JJ, Woodman SE, Patel S, Hwu P, Peoples M, Lee JE, Cooper ZA, Zhu H, Gao G, Banerjee H, Lau M, Gershenwald JE, Lucci A, Keung EZ, Ross MI, Pala L, Pagan E, Segura RL, Liu Q, Borthwick MS, Lau E, Yates MS, Westin SN, Wani K, Tetzlaff MT, Haydu LE, Mahendra M, Ma X, Logothetis C, Kulstad Z, Johnson S, Hudgens CW, Feng N, Federico L, Long GV, Futreal PA, Arur S, Tawbi HA, Moran AE, Wang L, Heffernan TP, Marszalek JR, Wargo JA. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022; 606:797-803. [PMID: 35705814 PMCID: PMC10071594 DOI: 10.1038/s41586-022-04833-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2-4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy.
Collapse
Affiliation(s)
- Christopher P Vellano
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell G Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Daniele
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabio Conforti
- Division of Melanoma, Sarcomas, and Rare Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elizabeth M Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew J Lastrapes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, Guthrie Courtland Medical Center, Courtland, NY, USA
| | - Alexandria P Cogdill
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Immunai, New York, NY, USA
| | - Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Prieto
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M A Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Kovacs
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sapna Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Moffitt Cancer Center, Tampa, FL, USA
| | - Michael Peoples
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AstraZeneca, Gaithersburg, MD, USA
| | - Haifeng Zhu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Gao
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiya Banerjee
- Clinical Development and Analytics, Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Mike Lau
- Novartis Pharma, Basel, Switzerland
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Pala
- Division of Melanoma, Sarcomas, and Rare Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eleonora Pagan
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Rossana Lazcano Segura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikayla S Borthwick
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, University of California, San Francisco, CA, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - XiaoYan Ma
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary Kulstad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorenzo Federico
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swathi Arur
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy E Moran
- Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joseph R Marszalek
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Licitra F, Giovannelli P, Di Donato M, Monaco A, Galasso G, Migliaccio A, Castoria G. New Insights and Emerging Therapeutic Approaches in Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:840787. [PMID: 35222290 PMCID: PMC8873523 DOI: 10.3389/fendo.2022.840787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is the second most frequently diagnosed cancer in men and several therapeutic approaches are currently available for patient's care. Although the androgen receptor status represents a good predictor of response to androgen deprivation therapy, prostate cancer frequently becomes resistant to this approach and spreads. The molecular mechanisms that contribute to progression and drug-resistance of this cancer remain still debated. However, few therapeutic options are available for patient's management, at this stage. Recent years have seen a great expansion of the studies concerning the role of stromal-epithelial interactions and tumor microenvironment in prostate cancer progression. The findings so far collected have provided new insights into diagnostic and clinical management of prostate cancer patients. Further, new fascinating aspects concerning the intersection of the androgen receptor with survival factors as well as calcium channels have been reported in cultured prostate cancer cells and mouse models. The results of these researches have opened the way for a better understanding of the basic mechanisms involved in prostate cancer invasion and drug-resistance. They have also significantly expanded the list of new biomarkers and druggable targets in prostate cancer. The primary aim of this manuscript is to provide an update of these issues, together with their translational aspects. Exploiting the power of novel promising therapeutics would increase the success rate in the diagnostic path and clinical management of patients with advanced disease.
Collapse
|
23
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
24
|
Ma M, Ghosh S, Tavernari D, Katarkar A, Clocchiatti A, Mazzeo L, Samarkina A, Epiney J, Yu YR, Ho PC, Levesque MP, Özdemir BC, Ciriello G, Dummer R, Dotto GP. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J Exp Med 2021; 218:211509. [PMID: 33112375 PMCID: PMC7596884 DOI: 10.1084/jem.20201137] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/08/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Melanoma susceptibility differs significantly in male versus female populations. Low levels of androgen receptor (AR) in melanocytes of the two sexes are accompanied by heterogeneous expression at various stages of the disease. Irrespective of expression levels, genetic and pharmacological suppression of AR activity in melanoma cells blunts proliferation and induces senescence, while increased AR expression or activation exert opposite effects. AR down-modulation elicits a shared gene expression signature associated with better patient survival, related to interferon and cytokine signaling and DNA damage/repair. AR loss leads to dsDNA breakage, cytoplasmic leakage, and STING activation, with AR anchoring the DNA repair proteins Ku70/Ku80 to RNA Pol II and preventing RNA Pol II-associated DNA damage. AR down-modulation or pharmacological inhibition suppresses melanomagenesis, with increased intratumoral infiltration of macrophages and, in an immune-competent mouse model, cytotoxic T cells. AR provides an attractive target for improved management of melanoma independent of patient sex.
Collapse
Affiliation(s)
- Min Ma
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Soumitra Ghosh
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA.,Department of Dermatology, Harvard Medical School, Boston, MA
| | - Luigi Mazzeo
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Justine Epiney
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Berna C Özdemir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,International Cancer Prevention Institute, Epalinges, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA.,International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
25
|
Camacho L, Zabala-Letona A, Cortazar AR, Astobiza I, Dominguez-Herrera A, Ercilla A, Crespo J, Viera C, Fernández-Ruiz S, Martinez-Gonzalez A, Torrano V, Martín-Martín N, Gomez-Muñoz A, Carracedo A. Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens. Cancers (Basel) 2021; 13:cancers13174307. [PMID: 34503116 PMCID: PMC8431577 DOI: 10.3390/cancers13174307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.
Collapse
Affiliation(s)
- Laura Camacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Asier Dominguez-Herrera
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jana Crespo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Sonia Fernández-Ruiz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ainara Martinez-Gonzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Veronica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence:
| |
Collapse
|
26
|
Enriquez C, Cancila V, Ferri R, Sulsenti R, Fischetti I, Milani M, Ostano P, Gregnanin I, Mello-Grand M, Berrino E, Bregni M, Renne G, Tripodo C, Colombo MP, Jachetti E. Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer. Cancer Res 2021; 81:4257-4274. [PMID: 34185677 PMCID: PMC9398117 DOI: 10.1158/0008-5472.can-21-0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 06/18/2021] [Indexed: 01/07/2023]
Abstract
Fatal neuroendocrine differentiation (NED) of castration-resistant prostate cancer is a recurrent mechanism of resistance to androgen deprivation therapies (ADT) and antiandrogen receptor pathway inhibitors (ARPI) in patients. The design of effective therapies for neuroendocrine prostate cancer (NEPC) is complicated by limited knowledge of the molecular mechanisms governing NED. The paucity of acquired genomic alterations and the deregulation of epigenetic and transcription factors suggest a potential contribution from the microenvironment. In this context, whether ADT/ARPI induces stromal cells to release NED-promoting molecules and the underlying molecular networks are unestablished. Here, we utilized transgenic and transplantable mouse models and coculture experiments to unveil a novel tumor-stroma cross-talk that is able to induce NED under the pressure of androgen deprivation. Castration induced upregulation of GRP78 in tumor cells, which triggers miR29-b-mediated downregulation of the matricellular protein SPARC in the nearby stroma. SPARC downregulation enabled stromal cells to release IL6, a known inducer of NED. A drug that targets GRP78 blocked NED in castrated mice. A public, human NEPC gene expression dataset showed that Hspa5 (encoding for GRP78) positively correlates with hallmarks of NED. Finally, prostate cancer specimens from patients developing local NED after ADT showed GRP78 upregulation in tumor cells and SPARC downregulation in the stroma. These results point to GRP78 as a potential therapeutic target and to SPARC downregulation in stromal cells as a potential early biomarker of tumors undergoing NED. SIGNIFICANCE: Tumor-stroma cross-talk promotes neuroendocrine differentiation in prostate cancer in response to hormone therapy via a GRP78/SPARC/IL6 axis, providing potential therapeutic targets and biomarkers for neuroendocrine prostate cancer.
Collapse
Affiliation(s)
- Claudia Enriquez
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Renata Ferri
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Sulsenti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Enrico Berrino
- Department of Medical Sciences, University of Turin, Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marco Bregni
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy
| | - Giuseppe Renne
- Division of Uropathology and Intraoperative Consultation, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
27
|
The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types. EBioMedicine 2021; 65:103269. [PMID: 33706249 PMCID: PMC7960932 DOI: 10.1016/j.ebiom.2021.103269] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Background The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed. Methods Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours. Image analysis performed tissue segmentation into stromal and epithelial compartment based on pan-cytokeratin staining and autofluorescence patterns. Findings The stroma fraction was highly variable within and across the tumour types, with kidney cancer showing the lowest and pancreato-biliary type periampullary cancer showing the highest stroma proportion (median 19% and 73% respectively). Adjusted Cox regression models revealed both positive (pancreato-biliary type periampullary cancer and oestrogen negative breast cancer, HR(95%CI)=0.56(0.34-0.92) and HR(95%CI)=0.41(0.17-0.98) respectively) and negative (intestinal type periampullary cancer, HR(95%CI)=3.59(1.49-8.62)) associations of the tumour stroma fraction with survival. Interpretation Our study provides an objective quantification of the tumour stroma fraction across major types of solid cancer. Findings strongly argue against the commonly promoted view of a general associations between high stroma abundance and poor prognosis. The results also suggest that full exploitation of the prognostic potential of tumour stroma requires analyses that go beyond determination of stroma abundance. Funding The Swedish Cancer Society, The Lions Cancer Foundation Uppsala, The Swedish Government Grant for Clinical Research, The Mrs Berta Kamprad Foundation, Sweden, Sellanders foundation, P.O.Zetterling Foundation, and The Sjöberg Foundation, Sweden.
Collapse
|
28
|
Doultsinos D, Mills IG. Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges. Cancers (Basel) 2021; 13:495. [PMID: 33525365 PMCID: PMC7865812 DOI: 10.3390/cancers13030495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a high-incidence cancer that requires improved patient stratification to ensure accurate predictions of risk and treatment response. Due to the significant contributions of transcription factors and epigenetic regulators to prostate cancer progression, there has been considerable progress made in developing gene signatures that may achieve this. Some of these are aligned to activities of key drivers such as the androgen receptor, whilst others are more agnostic. In this review, we present an overview of these signatures, the strategies for their derivation, and future perspectives on their continued development and evolution.
Collapse
Affiliation(s)
- Dimitrios Doultsinos
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
29
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
30
|
Novin A, Suhail Y, Ajeti V, Goyal R, Wali K, Seck A, Jackson A, Kshitiz. Diversity in cancer invasion phenotypes indicates specific stroma regulated programs. Hum Cell 2021; 34:111-121. [PMID: 32935295 PMCID: PMC11019343 DOI: 10.1007/s13577-020-00427-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
Tumor dissemination into the surrounding stroma is the initial step in a metastatic cascade. Invasion into stroma is a non-autonomous process for cancer, and its progression depends upon the stage of cancer, as well as the cells residing in the stroma. However, a systems framework to understand how stromal fibroblasts resist, collude, or aid cancer invasion has been lacking, limiting our understanding of the role of stromal biology in cancer metastasis. We and others have shown that gene perturbation in stromal fibroblasts can modulate cancer invasion into the stroma, highlighting the active role stroma plays in regulating its own invasion. However, cancer invasion into stroma is a complex higher-order process and consists of various sub-phenotypes that together can result in an invasion. Stromal invasion exhibits a diversity of modalities in vivo. It is not well understood if these diverse modalities are correlated, or they emanate from distinct mechanisms and if stromal biology could regulate these characteristics. These characteristics include the extent of invasion, formation, and persistence of invasive forks by cancer as opposed to a collective frontal invasion, the persistence of invading velocity by leader cells at the tip of invasive forks, etc. We posit that quantifying distinct aspects of collective invasion can provide useful suggestions about the plausible mechanisms regulating these processes, including whether the process is regulated by mechanics or by intercellular communication between stromal cells and cancer. Here, we have identified the sub-characteristics of invasion, which might be indicative of broader mechanisms regulating these processes, developed methods to quantify these metrics, and demonstrated that perturbation of stromal genes can modulate distinct aspects of collective invasion. Our results highlight that the genetic state of stromal fibroblasts can regulate complex phenomena involved in cancer dissemination and suggest that collective cancer invasion into stroma is an outcome of the complex interplay between cancer and stromal fibroblasts.
Collapse
Affiliation(s)
- Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Cancer Systems Biology@ Yale, New Haven, CT, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Cancer Systems Biology@ Yale, New Haven, CT, USA
| | - Ruchi Goyal
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Khadija Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Central Connecticut State University, New Britain, CT, USA
| | - Atta Seck
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- College of Engineering, Technology, and Architecture, University of Hartford, Hartford, CT, USA
| | - Alex Jackson
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Cancer Systems Biology@ Yale, New Haven, CT, USA.
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
31
|
Özdemir BC. Androgen Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:169-183. [PMID: 33123999 DOI: 10.1007/978-3-030-47189-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key function of mesenchymal/stromal androgen receptor (AR) signaling for prostate development has been well documented by tissue recombination experiments. Some studies have addressed the expression and function of AR in stromal cells in prostate cancer, yet our understanding of the role of stromal AR in other tissues beyond prostate is still insufficient.Genomic analysis has revealed that cellular responses to androgens differ between epithelial and stromal cells. AR in stromal cells seems not to act via classical AR transcription factors such as FOXA1 but rather depends on the JUN/AP1 complex. Stromal AR appears to have tumor-promoting and tumor-protective functions depending on tumor stage. Loss of AR signaling in fibroblasts has been detected already in premalignant lesions in the skin and prostate and has been associated with tumor induction in xenografts of skin cancer and aggressive disease features and poor patient prognosis in prostate cancer. Moreover, AR expression is found on virtually all tissue-infiltrating immune cells and plays critical roles in immune cell function. These findings suggest a potential deleterious impact of current androgen deprivation therapies which inhibit both epithelial and stromal AR, highlighting the need to develop tissue-specific AR inhibitors.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
32
|
Song Y, Huang R, Wu S, Zheng H, Guo M, Fu L, Yu S. Diagnostic and prognostic role of NR3C4 in breast cancer through a genomic network understanding. Pathol Res Pract 2020; 217:153310. [PMID: 33348168 DOI: 10.1016/j.prp.2020.153310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR, NR3C4) is believed to participate in the development of breast cancer, but its molecular mechanism and role in prognosis is still controversial and opaque. This study aimed to explore the expression, associations with clinicopathologic features and underlying molecular mechanisms of AR in breast cancer. The present study investigated invasive breast carcinoma through comprehensive bioinformatics. The expression and mutation rate of AR in breast cancer was obtained from the TCGA database. Training survival prediction analysis was applied to the data extracted from the KM plotter database. The prediction of the survival cohort was validated using the bcGenExMiner database in breast cancer molecular subgroups. Represented immunohistochemical images of AR and its related expression with the molecular subtype status were generated. The underlying molecular mechanism for AR in breast cancer was analyzed with the GEO dataset and Gene Ontology. A protein-to-protein interaction network and core pathways were constructed to show the protein functions with AR. Our results show that AR expression was significantly higher in cancerous tissue than in normal breast tissue and differentially expressed in the clinical stages. AR would also generally be considered as a favorable prognostic biomarker when including the major molecular subtypes of breast cancer. AR IHC staining could be easily used in clinical applications. The major molecular functions for AR were regulating the cell cycle checkpoints and chromatin remodeling. Our investigation showed that AR expression level could be used as a favorable and independent prognostic prediction factor for the disease-free survival time in breast cancer, especially for the ER-positive subgroup. However, AR was not a sensitive prognostic biomarker for the prediction of overall survival time or for the PR and TBC subgroups. In terms of the underlying molecular mechanism, AR may mainly participate in the cell cycle checkpoints related to the G1/S transition of the mitotic cell cycle to control the subdivision of the epithelial terminal unit and chromatin remodeling in breast cancer.
Collapse
Affiliation(s)
- Yanni Song
- Department of Pathology, Tianjin Medical University Cancer Hospital, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, China; Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Harbin Medical University, China.
| | - Rui Huang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, China.
| | - Siyu Wu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, China.
| | - Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, China.
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, China.
| | - Li Fu
- Department of Pathology, Tianjin Medical University Cancer Hospital, China.
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
33
|
Meng Q, Luo X, Chen J, Wang D, Chen E, Zhang W, Zhang G, Zhou W, Xu J, Song Z. Unmasking carcinoma-associated fibroblasts: Key transformation player within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2020; 1874:188443. [DOI: 10.1016/j.bbcan.2020.188443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
|
34
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Bilinska B, Hejmej A. Crosstalk between Androgen-ZIP9 Signaling and Notch Pathway in Rodent Sertoli Cells. Int J Mol Sci 2020; 21:ijms21218275. [PMID: 33167316 PMCID: PMC7663815 DOI: 10.3390/ijms21218275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC). We found that testosterone (10-8 M-10-6 M) increased the expression of Notch1 receptor, its active form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9 as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in controlling Sertoli cell function.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Correspondence:
| |
Collapse
|
35
|
Katarkar A, Bottoni G, Clocchiatti A, Goruppi S, Bordignon P, Lazzaroni F, Gregnanin I, Ostano P, Neel V, Dotto GP. NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin. Nat Commun 2020; 11:5126. [PMID: 33046701 PMCID: PMC7550609 DOI: 10.1038/s41467-020-18919-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment. Genomic alterations in these cells remain a point of contention. We report that CAFs from skin squamous cell carcinomas (SCCs) display chromosomal alterations, with heterogeneous NOTCH1 gene amplification and overexpression that also occur, to a lesser extent, in dermal fibroblasts of apparently unaffected skin. The fraction of the latter cells harboring NOTCH1 amplification is expanded by chronic UVA exposure, to which CAFs are resistant. The advantage conferred by NOTCH1 amplification and overexpression can be explained by NOTCH1 ability to block the DNA damage response (DDR) and ensuing growth arrest through suppression of ATM-FOXO3a association and downstream signaling cascade. In an orthotopic model of skin SCC, genetic or pharmacological inhibition of NOTCH1 activity suppresses cancer/stromal cells expansion. Here we show that NOTCH1 gene amplification and increased expression in CAFs are an attractive target for stroma-focused anti-cancer intervention.
Collapse
Affiliation(s)
- Atul Katarkar
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Francesca Lazzaroni
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Ilaria Gregnanin
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Department of Dermatology, Harvard Medical School, Boston, MA, 02125, USA. .,International Cancer Prevention Institute, 1066, Epalinges, Switzerland.
| |
Collapse
|
36
|
Zhang Z, Karthaus WR, Lee YS, Gao VR, Wu C, Russo JW, Liu M, Mota JM, Abida W, Linton E, Lee E, Barnes SD, Chen HA, Mao N, Wongvipat J, Choi D, Chen X, Zhao H, Manova-Todorova K, de Stanchina E, Taplin ME, Balk SP, Rathkopf DE, Gopalan A, Carver BS, Mu P, Jiang X, Watson PA, Sawyers CL. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell 2020; 38:279-296.e9. [PMID: 32679108 PMCID: PMC7472556 DOI: 10.1016/j.ccell.2020.06.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023]
Abstract
Despite the development of second-generation antiandrogens, acquired resistance to hormone therapy remains a major challenge in treating advanced prostate cancer. We find that cancer-associated fibroblasts (CAFs) can promote antiandrogen resistance in mouse models and in prostate organoid cultures. We identify neuregulin 1 (NRG1) in CAF supernatant, which promotes resistance in tumor cells through activation of HER3. Pharmacological blockade of the NRG1/HER3 axis using clinical-grade blocking antibodies re-sensitizes tumors to hormone deprivation in vitro and in vivo. Furthermore, patients with castration-resistant prostate cancer with increased tumor NRG1 activity have an inferior response to second-generation antiandrogen therapy. This work reveals a paracrine mechanism of antiandrogen resistance in prostate cancer amenable to clinical testing using available targeted therapies.
Collapse
Affiliation(s)
- Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vianne R Gao
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Chao Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Joshua W Russo
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Menghan Liu
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Jose Mauricio Mota
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Eliot Linton
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Eugine Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Spencer D Barnes
- Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hsuan-An Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Danielle Choi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Mary-Ellen Taplin
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dana E Rathkopf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Brett S Carver
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA.
| | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA.
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA.
| |
Collapse
|
37
|
Wagner AD, Oertelt-Prigione S, Adjei A, Buclin T, Cristina V, Csajka C, Coukos G, Dafni U, Dotto GP, Ducreux M, Fellay J, Haanen J, Hocquelet A, Klinge I, Lemmens V, Letsch A, Mauer M, Moehler M, Peters S, Özdemir BC. Gender medicine and oncology: report and consensus of an ESMO workshop. Ann Oncol 2019; 30:1914-1924. [PMID: 31613312 DOI: 10.1093/annonc/mdz414] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The importance of sex and gender as modulators of disease biology and treatment outcomes is well known in other disciplines of medicine, such as cardiology, but remains an undervalued issue in oncology. Considering the increasing evidence for their relevance, European Society for Medical Oncology decided to address this topic and organized a multidisciplinary workshop in Lausanne, Switzerland, on 30 November and 1 December 2018. DESIGN Twenty invited faculty members and 40 selected physicians/scientists participated. Relevant content was presented by faculty members on the basis of a literature review conducted by each speaker. Following a moderated consensus session, the final consensus statements are reported here. RESULTS Clinically relevant sex differences include tumour biology, immune system activity, body composition and drug disposition and effects. The main differences between male and female cells are sex chromosomes and the level of sexual hormones they are exposed to. They influence both local and systemic determinants of carcinogenesis. Their effect on carcinogenesis in non-reproductive organs is largely unknown. Recent evidence also suggests differences in tumour biology and molecular markers. Regarding body composition, the difference in metabolically active, fat-free body mass is one of the most prominent: in a man and a woman of equal weight and height, it accounts for 80% of the man's and 65% of the woman's body mass, and is not taken into account in body-surface area based dosing of chemotherapy. CONCLUSION Sex differences in cancer biology and treatment deserve more attention and systematic investigation. Interventional clinical trials evaluating sex-specific dosing regimens are necessary to improve the balance between efficacy and toxicity for drugs with significant pharmacokinetic differences. Especially in diseases or disease subgroups with significant differences in epidemiology or outcomes, men and women with non-sex-related cancers should be considered as biologically distinct groups of patients, for whom specific treatment approaches merit consideration.
Collapse
Affiliation(s)
- A D Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - S Oertelt-Prigione
- Department of Primary and Community Care, Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Adjei
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - T Buclin
- Service of Clinical Pharmacology, Lausanne University, Lausanne
| | - V Cristina
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Csajka
- Service of Clinical Pharmacology, Lausanne University, Lausanne; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne
| | - G Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Ludwig Lausanne Branch and Swiss Cancer Center, Lausanne, Switzerland
| | - U Dafni
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; National and Kapodistrian University of Athens, Athens, Greece
| | - G-P Dotto
- Department of Biochemistry, Lausanne University, Lausanne, Switzerland; Massachusetts General Hospital, Boston, USA; International Cancer Prevention Institute, Epalinges, Switzerland
| | - M Ducreux
- Gastrointestinal Cancer Unit, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - J Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne; EPFL School of Life Sciences, Lausanne, Switzerland
| | - J Haanen
- Division of Medical Oncology and Immunology, Department of Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Hocquelet
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - I Klinge
- Dutch Society for Gender and Health
| | - V Lemmens
- Department of Research and Development, Comprehensive Cancer Organisation the Netherlands, Utrecht; Department of Public Health, Erasmus Medical Centre University, Rotterdam, The Netherlands
| | - A Letsch
- Department of Hematology and Oncology, Charity CBF, Berlin; Charity Comprehensive Cancer Center CCCC, Berlin; Palliative Care Unit, Campus Benjamin Franklin, Berlin, Germany
| | | | - M Moehler
- Department of Internal Medicine 1/Gastrointestinal Oncology, Johannes-Gutenberg-University Clinic, Mainz, Germany
| | - S Peters
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - B C Özdemir
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
38
|
CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nat Commun 2019; 10:3884. [PMID: 31467287 PMCID: PMC6715699 DOI: 10.1038/s41467-019-11785-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond. Conversion of dermal fibroblasts into Cancer Associated Fibroblasts (CAFs) can play an important role in keratinocyte tumour development. Here the authors reveal that CSL plays a role in maintenance of telomeres and genomic integrity in both dermal fibroblasts and CAFs.
Collapse
|
39
|
Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019; 121:293-302. [PMID: 31289350 PMCID: PMC6738083 DOI: 10.1038/s41416-019-0509-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M Butler
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, Australia. .,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
40
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
41
|
Özdemir BC, Dotto GP. Sex Hormones and Anticancer Immunity. Clin Cancer Res 2019; 25:4603-4610. [PMID: 30890551 DOI: 10.1158/1078-0432.ccr-19-0137] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The impact of sex hormones on anticancer immunity deserves attention due to the importance of the immune system in cancer therapy and the recognition of sex differences in immunity. Cancer is ultimately the result of failed immune surveillance, and the diverging effects of male and female sex hormones on anticancer immunity could contribute to the higher cancer incidence and poorer outcome in men. Estrogens and androgens affect the number and function of immune cells, an effect that depends on cell type, tumor microenvironment, and the age and reproductive status of the individual. Despite the recent progress in immuno-oncology, our current understanding of the interplay between sex hormones and anticancer immune responses is in its infancy. In this review, we will focus on the impact of sex hormones on anticancer immunity and immunotherapy. We will discuss the potential role of the changing hormone levels in anticancer immunity during aging and in the context of menopausal hormone therapies and oral contraception. We will review emerging data on sex differences in PD-L1 expression and potential biomarkers predictive for the efficacy of immune checkpoint inhibitors such as the microbiome and consider ongoing clinical trials evaluating the potential impact of hormone deprivation therapies to increase response to immune checkpoint inhibitors in breast and prostate cancer. Finally, we will point to areas of future research.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland
| | - Gian-Paolo Dotto
- International Cancer Prevention Institute, Epalinges, Switzerland. .,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|