1
|
Porrino LJ, Smith HR, Beveridge TJR, Miller MD, Nader SH, Nader MA. Residual deficits in functional brain activity after chronic cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 2023; 48:290-298. [PMID: 34385608 PMCID: PMC9751134 DOI: 10.1038/s41386-021-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
Previous studies in humans and in animals have shown dramatic effects of cocaine on measures of brain function that persist into abstinence. The purpose of this study was to examine the neurobiological consequences of abstinence from cocaine, using a model that removes the potential confound of cocaine cues. Adult male rhesus monkeys self-administered cocaine (0.3 mg/kg/injection; N = 8) during daily sessions or served as food-reinforcement controls (N = 4). Two times per week, monkeys were placed in a neutral environment and presented with a cartoon video for ~30 min, sometimes pre- and sometimes post-operant session, but no reinforcement was presented during the video. After ~100 sessions and when the cocaine groups had self-administered 900 mg/kg cocaine, the final experimental condition was a terminal 2-[14C]-deoxyglucose procedure, which occurred in the neutral (cartoon video) environment; for half of the monkeys in each group, this occurred after 1 day of abstinence and for the others after 30 days of abstinence. Rates of local cerebral glucose metabolism were measured in 57 brain regions. Global rates of cerebral metabolism were significantly lower in animals 1 day and 30 days post-cocaine self-administration when compared to those of food-reinforced controls. Effects were larger in 30- vs. 1-day cocaine abstinence, especially in prefrontal, parietal and cingulate cortex, as well as dorsal striatum and thalamus. Because these measures were obtained from monkeys while in a neutral environment, the deficits in glucose utilization can be attributed to the consequences of cocaine exposure and not to effects of conditioned stimuli associated with cocaine.
Collapse
Affiliation(s)
- Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Mack D Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
2
|
Yang BZ, Balodis IM, Kober H, Worhunsky PD, Lacadie CM, Gelernter J, Potenza MN. GABAergic polygenic risk for cocaine use disorder is negatively correlated with precuneus activity during cognitive control in African American individuals. Addict Behav 2021; 114:106695. [PMID: 33153773 DOI: 10.1016/j.addbeh.2020.106695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Impaired cognitive control has been implicated in cocaine use disorder (CUD). GABAergic treatments have been proposed for CUD. Here we examined relationships between GABAergic genes and neural correlates of cognitive control in CUD. We analyzed two independent African American cohorts: one of >3000 genomewide-genotyped subjects with substance dependence and another of 40 CUD and 22 healthy control (HC) subjects who were exome-array genotyped and completed an fMRI Stroop task. We used five association thresholds to select variants of GABAergic genes in the reference cohort, yielding five polygenic risk scores (i.e., CUD-GABA-PRSs) for the fMRI cohort. At p < 0.005, the CUD-GABA-PRSs, which aggregated relative risks of CUD from 89 variants harboring in 16 genes, differed between CUD and HC individuals in the fMRI sample (p = 0.013). This CUD-GABA-PRS correlated inversely with Stroop-related activity in the left precuneus in CUD (r = -80.58, pFWE < 0.05) but not HC participants. Post-hoc seed-based connectivity analysis of the left precuneus identified reduced functional connectivity to the posterior cingulate cortex (PCC) in CUD compared to HC subjects (p = 0.0062) and the degree of connectivity correlated with CUD-GABA-PRSs in CUD individuals (r = 0.287, p = 0.036). Our findings suggest that the GABAergic genetic risk of CUD in African Americans relates to precuneus/PCC functional connectivity during cognitive control. Identification of these GABAergic processes may be relevant targets in CUD treatment. The novel identification of 16 GABAergic genes may be investigated further to inform treatment development efforts for this condition that currently has no medication with a formal indication for its treatment.
Collapse
|
3
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
4
|
Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0028. [PMID: 29352027 DOI: 10.1098/rstb.2017.0028] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Impairments in response inhibition and salience attribution (iRISA) have been proposed to underlie the clinical symptoms of drug addiction as mediated by cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting the iRISA model comes from neuroimaging research that has focused on cortical and striatal influences with less emphasis on the role of the thalamus. Here, we highlight the importance of the thalamus in drug addiction, focusing on animal literature findings on thalamic nuclei in the context of drug-seeking, structural and functional changes of the thalamus as measured by imaging studies in human drug addiction, particularly during drug cue and non-drug reward processing, and response inhibition tasks. Findings from the animal literature suggest that the paraventricular nucleus of the thalamus, the lateral habenula and the mediodorsal nucleus may be involved in the reinstatement, extinction and expression of drug-seeking behaviours. In support of the iRISA model, the human addiction imaging literature demonstrates enhanced thalamus activation when reacting to drug cues and reduced thalamus activation during response inhibition. This pattern of response was further associated with the severity of, and relapse in, drug addiction. Future animal studies could widen their field of focus by investigating the specific role(s) of different thalamic nuclei in different phases of the addiction cycle. Similarly, future human imaging studies should aim to specifically delineate the structure and function of different thalamic nuclei, for example, through the application of advanced imaging protocols at higher magnetic fields (7 Tesla).This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suzanne N Haber
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Clinical efficacy of sertraline alone and augmented with gabapentin in recently abstinent cocaine-dependent patients with depressive symptoms. J Clin Psychopharmacol 2014; 34:234-9. [PMID: 24525654 PMCID: PMC4068618 DOI: 10.1097/jcp.0000000000000062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cocaine dependence is a major public health problem with no available robustly effective pharmacotherapy. This study's aim was to determine if treatment with sertraline (SERT) or SERT plus gabapentin (GBP) improved treatment retention, depressive symptoms, and/or cocaine use. METHODS Depressed cocaine-dependent patients (N = 99) were enrolled in a 12-week, double-blind, randomized, placebo (PLA)-controlled, clinical trial and placed in research beds at a residential treatment facility (Recovery Centers of Arkansas). They were randomized by depressive symptom severity and inducted onto 1 of the following while residing at the Recovery Centers of Arkansas: SERT (200 mg/d), SERT (200 mg/d) plus GBP (1200 mg/d), or PLA. Participants transferred to outpatient treatment at the start of their third week, continued receiving study medications or PLA (weeks 3-12), and participated in weekly individual cognitive behavioral therapy. Compliance was facilitated through the use of contingency management procedures. Supervised urine samples were obtained thrice weekly and self-reported mood weekly. At the end of 12 weeks, participants were tapered off the study medication over 5 days and referred to a local treatment program. RESULTS Sertraline, but not SERT plus GBP, showed a significantly lower overall percentage of cocaine-positive urine samples compared with that of PLA. A significantly greater percentage of participants experienced relapse in the PLA group (88.9%) compared with that of the SERT group (65.2%). Hamilton depression ratings decreased significantly over time regardless of the treatment group. Retention in treatment did not differ significantly between the treatment groups. CONCLUSIONS Sertraline plus GBP may not be superior to SERT alone in delaying relapse among abstinent cocaine-dependent individuals undergoing cognitive behavioral therapy.
Collapse
|
6
|
Ramaekers JG, Evers EA, Theunissen EL, Kuypers KPC, Goulas A, Stiers P. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit. Psychopharmacology (Berl) 2013; 229:219-26. [PMID: 23604336 DOI: 10.1007/s00213-013-3105-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Release of dopamine in the nucleus accumbens (NAcc) is essential for acute drug reward. The present study was designed to trace the reinforcing effect of dopamine release by measuring the functional connectivity (FC) between the NAcc and brain regions involved in a limbic cortical-subcortical circuit during a dopaminergic challenge. Twenty healthy volunteers received single doses of methylphenidate (40 mg) and placebo on separate test days according to a double-blind, cross-over study design. Resting state functional magnetic resonance imaging (fMRI) was measured between 1.5 and 2 h postdosing. FC between regions of interest (ROI) in the NAcc, the medial dorsal nucleus (MDN) of the thalamus and remote areas within the limbic circuit was explored. Methylphenidate significantly reduced FC between the NAcc and the basal ganglia (i.e., subthalamic nucleus and ventral pallidum (VP)), relative to placebo. Methylphenidate also decreased FC between the NAcc and the medial prefrontal cortex (mPFC) as well as the temporal cortex. Methylphenidate did not affect FC between MDN and the limbic circuit. It is concluded that methylphenidate directly affects the limbic reward circuit. Drug-induced changes in FC of the NAcc may serve as a useful marker of drug activity in in the brain reward circuit.
Collapse
Affiliation(s)
- J G Ramaekers
- Department Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Lile JA, Stoops WW, Glaser PE, Hays LR, Rush CR. Physiological and subjective effects of acute intranasal methamphetamine during extended-release alprazolam maintenance. Drug Alcohol Depend 2011; 119:187-93. [PMID: 21737214 PMCID: PMC4384330 DOI: 10.1016/j.drugalcdep.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Medications development for methamphetamine dependence is ongoing, but no widely accepted, effective pharmacotherapy has been identified. Previous studies have demonstrated neurobiological perturbations to central GABA(A) activity following chronic stimulant use, and that positive modulation of GABA(A) receptors attenuates the neurochemical and behavioral response to stimulant drugs such as methamphetamine. Therefore, GABA(A) modulators could be useful as pharmacotherapies for stimulant-use disorders. METHODS This study tested the hypothesis that intranasal methamphetamine would be safe and well tolerated during maintenance on extended-release alprazolam (XR), and that the effects of methamphetamine would be attenuated. Eight non-treatment-seeking, stimulant-dependent individuals completed an inpatient experiment in which ascending doses of intranasal methamphetamine (0, 5, 10, 20 and 30 mg) were administered after four days of alprazolam XR maintenance (0 and 1mg/day). RESULTS Intranasal methamphetamine produced prototypical effects (e.g., increased positive subjective ratings and elevated cardiovascular signs). The combination of intranasal methamphetamine and alprazolam XR was safe and well tolerated. Alprazolam XR produced small, but orderly, reductions in some of the subjective effects of methamphetamine, and performance impairment. CONCLUSIONS The present results demonstrate that methamphetamine use during alprazolam XR treatment would not pose a significant safety risk. Given the potential of GABA(A) positive modulators to manage certain aspects of stimulant abuse and dependence (i.e., drug-induced seizures, anxiety and stress), but the relatively small impact on the acute abuse-related effects of methamphetamine observed here, additional research with GABA(A) positive modulators is warranted, but should consider their use as an adjunct component of combination behavioral and/or drug treatment.
Collapse
Affiliation(s)
- Joshua A. Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Sciences Building, Lexington, KY 40536-0086, U.S.A
| | - William W. Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Sciences Building, Lexington, KY 40536-0086, U.S.A,Department of Psychology, University of Kentucky College of Arts and Sciences, Kastle Hall, Lexington, KY 40506-0044
| | - Paul E.A. Glaser
- Department of Psychiatry, University of Kentucky College of Medicine, 3470 Blazer Parkway, Lexington, KY 40509-1810,Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Whitney-Hendrickson (MRISC), Lexington, KY 40536-0098,Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Lon R. Hays
- Department of Psychiatry, University of Kentucky College of Medicine, 3470 Blazer Parkway, Lexington, KY 40509-1810,Department of Internal Medicine, University of Kentucky College of Medicine, 740 South Limestone St., J525 Kentucky Clinic, Lexington, KY 40536-0284
| | - Craig R. Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, Medical Behavioral Sciences Building, Lexington, KY 40536-0086, U.S.A,Department of Psychiatry, University of Kentucky College of Medicine, 3470 Blazer Parkway, Lexington, KY 40509-1810,Department of Psychology, University of Kentucky College of Arts and Sciences, Kastle Hall, Lexington, KY 40506-0044,To whom correspondence should be addressed: Department of Behavioral Science, University of Kentucky Medical Center, Lexington, KY 40536-0086, Telephone: (859) 323-6130, Fax: (859) 257-7684,
| |
Collapse
|
8
|
Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology 2011; 36:2431-40. [PMID: 21775976 PMCID: PMC3194070 DOI: 10.1038/npp.2011.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cocaine addiction is often modeled in experimental paradigms where rodents learn to self-administer (SA) the drug. However, the extent to which these models replicate the functional alterations observed in clinical neuroimaging studies of cocaine addiction remains unknown. We used magnetic resonance imaging (MRI) to assess basal and evoked brain function in rats subjected to a prolonged, extended-access cocaine SA scheme. Specifically, we measured basal cerebral blood volume (bCBV), an established correlate of basal metabolism, and assessed the reactivity of the dopaminergic system by mapping the pharmacological MRI (phMRI) response evoked by the dopamine-releaser amphetamine. Cocaine-exposed subjects exhibited reduced bCBV in fronto-cortical areas, nucleus accumbens, ventral hippocampus, and thalamus. The cocaine group also showed an attenuated functional response to amphetamine in ventrostriatal areas, an effect that was significantly correlated with total cocaine intake. An inverse relationship between bCBV in the reticular thalamus and the frontal response elicited by amphetamine was found in control subjects but not in the cocaine group, suggesting that the inhibitory interplay within this attentional circuit may be compromised by the drug. Importantly, histopathological analysis did not reveal significant alterations of the microvascular bed in the brain of cocaine-exposed subjects, suggesting that the imaging findings cannot be merely ascribed to cocaine-induced vascular damage. These results document that chronic, extended-access cocaine SA in the rat produces focal fronto-cortical and striatal alterations that serve as plausible neurobiological substrate for the behavioral expression of compulsive drug intake in laboratory animals.
Collapse
|
9
|
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35:217-38. [PMID: 19710631 PMCID: PMC2805560 DOI: 10.1038/npp.2009.110] [Citation(s) in RCA: 3565] [Impact Index Per Article: 237.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 12/29/2022]
Abstract
Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: 'binge/intoxication', 'withdrawal/negative affect', and 'preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
10
|
Valproate treatment and cocaine cue reactivity in cocaine dependent individuals. Drug Alcohol Depend 2009; 102:144-50. [PMID: 19375250 PMCID: PMC2712872 DOI: 10.1016/j.drugalcdep.2009.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/17/2009] [Accepted: 02/21/2009] [Indexed: 11/20/2022]
Abstract
Based on prior clinical trials indicating that gamma-aminobutyric acid (GABA)-based anticonvulsant medications reduce drug craving in cocaine dependent study participants, we tested the effects of valproate treatment on cue-induced cocaine craving. Crack cocaine dependent individuals (N=20) were tested in a randomized, placebo-controlled, within-subjects, crossover study design. Valproate treatment was titrated up to 1500 mg/day by Day 6 of treatment, cue testing was completed on Day 8 of treatment, and all study participants underwent a washout period of 5 days between active and placebo medication treatment periods. Testing included both cocaine and neutral cue exposure sessions, presented in a random and counterbalanced order. Main effects of cue exposure were found for subjective ratings of "desire to use cocaine now", the cocaine craving index, cocaine-like high, and cocaine withdrawal. Treatment interaction effects were found with "desire to use cocaine now", which underwent a greater increase following cocaine cue exposure in the valproate condition. Main effects of medication treatment were found, in which lower blood pressure and heart rate, and higher plasma cortisol levels, were associated with valproate treatment. Valproate treatment was also associated, at a trend level, with higher pre-test cocaine craving levels. The results demonstrate that cocaine cue reactivity is a robust phenomena across two assessment sessions, but fail to support the use of valproate as a means of reducing spontaneous and cue-induced cocaine craving. The use of valproate as a treatment for cocaine dependence is not supported.
Collapse
|
11
|
Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008; 135:738-48. [PMID: 19013281 DOI: 10.1016/j.cell.2008.10.028] [Citation(s) in RCA: 879] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/18/2008] [Accepted: 10/28/2008] [Indexed: 01/01/2023]
Abstract
The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.
Collapse
Affiliation(s)
- Myriam Heiman
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|