1
|
Parker N, Ching CRK. Mapping structural neuroimaging trajectories in bipolar disorder: neurobiological and clinical implications. Biol Psychiatry 2025:S0006-3223(25)00107-6. [PMID: 39956253 DOI: 10.1016/j.biopsych.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Neuroimaging is a powerful non-invasive method for studying brain alterations in bipolar disorder (BD). To date, most neuroimaging studies of BD include smaller cross-sectional samples reporting case versus control comparisons, revealing small to moderate effect sizes. In this narrative review, we discuss the current state of MRI-based, structural imaging studies, which inform our understanding of altered brain trajectories in BD across the lifespan. Alternative methodologies such as those that model patient deviations from age-specific norms are discussed, which may help derive new markers of BD pathophysiology. We discuss evidence from neuroimaging genetics and transcriptomics studies, which attempt to bridge the gap between macro-scale brain variations and underlying micro-scale neurodevelopmental mechanisms. We conclude with a look toward the future and how ambitious investments in longitudinal, deeply phenotyped, population-based cohorts can improve modeling of complex clinical factors and provide more clinically-actionable brain markers for BD.
Collapse
Affiliation(s)
- Nadine Parker
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| |
Collapse
|
2
|
Cao HL, Yu H, Xue R, Yang X, Ma X, Wang Q, Deng W, Guo WJ, Li ML, Li T. Convergence and divergence in neurostructural signatures of unipolar and bipolar depressions: Insights from surface-based morphometry and prospective follow-up. J Affect Disord 2024; 366:8-15. [PMID: 39173928 DOI: 10.1016/j.jad.2024.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is often misidentified as unipolar depression (UD) during its early stages, typically until the onset of the first manic episode. This study aimed to explore both shared and unique neurostructural changes in patients who transitioned from UD to BD during follow-up, as compared to those with UD. METHODS This study utilized high-resolution structural magnetic resonance imaging (MRI) to collect brain data from individuals initially diagnosed with UD. During the average 3-year follow-up, 24 of the UD patients converted to BD (cBD). For comparison, the study included 48 demographically matched UD patients who did not convert and 48 healthy controls. The MRI data underwent preprocessing using FreeSurfer, followed by surface-based morphometry (SBM) analysis to identify cortical thickness (CT), surface area (SA), and cortical volume (CV) among groups. RESULTS The SBM analysis identified shared neurostructural characteristics between the cBD and UD groups, specifically thinner CT in the right precentral cortex compared to controls. Unique to the cBD group, there was a greater SA in the right inferior parietal cortex compared to the UD group. Furthermore, no significant correlations were observed between cortical morphological measures and cognitive performance and clinical features in the cBD and UD groups. LIMITATIONS The sample size is relatively small. CONCLUSIONS Our findings suggest that while cBD and UD exhibit some common alterations in cortical macrostructure, numerous distinct differences are also present. These differences offer valuable insights into the neuropathological underpinnings that distinguish these two conditions.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Rui Xue
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wan-Jun Guo
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
3
|
Lei D, Li W, Tallman MJ, Strakowski SM, DelBello MP, Rodrigo Patino L, Fleck DE, Lui S, Gong Q, Sweeney JA, Strawn JR, Nery FG, Welge JA, Rummelhoff E, Adler CM. Changes in the structural brain connectome over the course of a nonrandomized clinical trial for acute mania. Neuropsychopharmacology 2022; 47:1961-1968. [PMID: 35585125 PMCID: PMC9485114 DOI: 10.1038/s41386-022-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Disrupted topological organization of brain functional networks has been widely reported in bipolar disorder. However, the potential clinical implications of structural connectome abnormalities have not been systematically investigated. The present study included 109 unmedicated subjects with acute mania who were assigned to 8 weeks of treatment with quetiapine or lithium and 60 healthy controls. High resolution 3D-T1 weighted magnetic resonance images (MRI) were collected from both groups at baseline, week 1 and week 8. Brain networks were constructed based on the similarity of morphological features across brain regions and analyzed using graph theory approaches. At baseline, individuals with bipolar disorder illness showed significantly lower clustering coefficient (Cp) (p = 0.012) and normalized characteristic path length (λ) (p = 0.004) compared to healthy individuals, as well as differences in nodal centralities across multiple brain regions. No baseline or post-treatment differences were identified between drug treatment conditions, so change after treatment were considered in the combined treatment groups. Relative to healthy individuals, differences in Cp, λ and cingulate gyrus nodal centrality were significantly reduced with treatment; changes in these parameters correlated with changes in Young Mania Rating Scale scores. Baseline structural connectome matrices significantly differentiated responder and non-responder groups at 8 weeks with 74% accuracy. Global and nodal network alterations evident at baseline were normalized with treatment and these changes associated with symptomatic improvement. Further, baseline structural connectome matrices predicted treatment response. These findings suggest that structural connectome abnormalities are clinically significant and may be useful for predicting clinical outcome of treatment and tracking drug effects on brain anatomy in bipolar disorder. CLINICAL TRIALS REGISTRATION Name: Functional and Neurochemical Brain Changes in First-episode Bipolar Mania Following Successful Treatment with Lithium or Quetiapine. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00609193. Name: Neurofunctional and Neurochemical Markers of Treatment Response in Bipolar Disorder. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00608075.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of the Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry & Behavioral Sciences, Dell Medical School of The University of Texas at Austin, Austin, 78712, TX, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
4
|
Choi KW, Han KM, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Decreased cortical gyrification in patients with bipolar disorder. Psychol Med 2022; 52:2232-2244. [PMID: 33190651 DOI: 10.1017/s0033291720004079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An aberrant neural connectivity has been known to be associated with bipolar disorder (BD). Local gyrification may reflect the early neural development of cortical connectivity and has been studied as a possible endophenotype of psychiatric disorders. This study aimed to investigate differences in the local gyrification index (LGI) in each cortical region between patients with BD and healthy controls (HCs). METHODS LGI values, as measured using FreeSurfer software, were compared between 61 patients with BD and 183 HCs. The values were also compared between patients with BD type I and type II as a sub-group analysis. Furthermore, we evaluated whether there was a correlation between LGI values and illness duration or depressive symptom severity in patients with BD. RESULTS Patients with BD showed significant hypogyria in various cortical regions, including the left inferior frontal gyrus (pars opercularis), precentral gyrus, postcentral gyrus, superior temporal cortex, insula, right entorhinal cortex, and both transverse temporal cortices, compared to HCs after the Bonferroni correction (p < 0.05/66, 0.000758). LGI was not associated with clinical factors such as illness duration, depressive symptom severity, and lithium treatment. No significant differences in cortical gyrification according to the BD subtype were found. CONCLUSIONS BD appears to be characterized by a significant regionally localized hypogyria, in various cortical areas. This abnormality may be a structural and developmental endophenotype marking the risk for BD, and it might help to clarify the etiology of BD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4386-4396. [DOI: 10.1093/cercor/bhab490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
|
7
|
Macoveanu J, Freeman KO, Kjaerstad HL, Knudsen GM, Kessing LV, Miskowiak KW. Structural brain abnormalities associated with cognitive impairments in bipolar disorder. Acta Psychiatr Scand 2021; 144:379-391. [PMID: 34245569 DOI: 10.1111/acps.13349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cognitive impairment has been highlighted as a core feature of bipolar disorder (BD) that often persists during remission. The specific brain correlates of cognitive impairment in BD remain unclear which impedes efficient therapeutic approaches. In a large sample of remitted BD patients, we investigated whether morphological brain abnormalities within dorsal prefrontal cortex (PFC) and hippocampus were related to cognitive deficits. METHODS Remitted BD patients (n = 153) and healthy controls (n = 52) underwent neuropsychological assessment and structural MRI. Based on hierarchical cluster analysis of neuropsychological test performance, patients were classified as either cognitively impaired (n = 91) or cognitively normal (n = 62). The neurocognitive subgroups were compared amongst each other and with healthy controls in terms of dorsal PFC cortical thickness and volume, hippocampus shape and volume, and total cerebral grey and white matter volumes. RESULTS Cognitively impaired patients displayed greater left dorsomedial prefrontal thickness compared to cognitively normal patients and healthy controls. Hippocampal grey matter volume and shape were similar across patient subgroups and healthy controls. At a whole-brain level, cognitively impaired patients had lower cerebral white matter volume compared to the other groups. Across all participants, lower white matter volume correlated with more impaired neuropsychological test performance. CONCLUSIONS Our findings associate cognitive impairment in bipolar disorder with cerebral white matter deficits, factors which may relate to the observed morphological changes in dorsomedial PFC possibly due to increased neurocognitive effort to maintain symptom stability in these remitted patients.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katherine Olivia Freeman
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Lie Kjaerstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular imaging, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Bio DS, Moreno RA, Garcia-Otaduy MC, Nery F, Lafer B, Soeiro-de-Souza MG. Altered brain creatine cycle metabolites in bipolar I disorder with childhood abuse: A 1H magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110233. [PMID: 33387596 DOI: 10.1016/j.pnpbp.2020.110233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Childhood abuse (CA) is a risk factor for a number of psychiatric disorders and has been associated with higher risk of developing bipolar disorders (BD). CA in BD has been associated with more severe clinical outcomes, but the neurobiological explanation for this is unknown. Few studies have explored in vivo measurement of brain metabolites using proton magnetic resonance spectroscopy (1H-MRS) in CA and no studies have investigated the association of CA severity with brain neurometabolites in BD. OBJECTIVE To investigate whether CA severity is associated with changes in anterior cingulate cortex (ACC) neurometabolite profile in BD and HC subjects. METHODS Fifty-nine BD I euthymic patients and fifty-nine HC subjects were assessed using the Childhood Trauma Questionnaire (CTQ) and underwent a 3-Tesla 1H-MRS scan. Severity of childhood abuse (physical, sexual and emotional) and its association with levels of brain metabolites was analyzed within each group. RESULTS BD patients had higher total scores on the CTQ and higher severity rates of sexual and physical abuse compared to HC subjects. Greater severity of physical and sexual abuse was associated with increased ACC PCr level and lower Cr/PCr ratio in the BD group only. CONCLUSION Sexual and physical abuse in BD patients, but not in HC subjects, appeared to be associated with creatine metabolism in the ACC, which can influence neuronal mitochondrial energy production. Further studies should investigate whether this is the mechanism underlying the association between CA and worse clinical outcomes in BD.
Collapse
Affiliation(s)
- Danielle Soares Bio
- Mood Disorders Unit (PROGRUDA), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | - Ricardo Alberto Moreno
- Mood Disorders Unit (PROGRUDA), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | | | - Fabiano Nery
- University of Cincinnati Medical Center, United States
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department of Psychiatry, School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
9
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
10
|
Achalia R, Raju VB, Jacob A, Nahar A, Achalia G, Nagendra B, Kaginalkar V, Choudhary S, Venkatasubramanian G, Rao NP. Comparison of first-episode and multiple-episode bipolar disorder: A surface-based morphometry study. Psychiatry Res Neuroimaging 2020; 302:111110. [PMID: 32505904 DOI: 10.1016/j.pscychresns.2020.111110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
It is still unclear whether the structural abnormalities in Bipolar disorder (BD) are static or progressive. We aimed to compare differences in cortical thickness, surface area, and volume between patients with BD and healthy volunteers (HV) and to examine whether there are differences between patients who have had a single manic episode and those with multiple episodes. We recruited 30 patients with Type I BD and 30 age and sex matched HV. All participants underwent structural magnetic resonance imaging. Cortical volume, thickness, and surface area were measured using the QDEC tool from the Freesurfer software with age and intracranial volume as covariates. Study groups were comparable across age, sex distribution, and intracranial volume. Patients had significantly lower surface area in bilateral cuneus, right postcentral gyrus, and rostral middle frontal gyri; and lower cortical volume in the left middle temporal gyrus, right postcentral gyrus, and right cuneus. BD patients with multiple episodes had lower cortical measures while those with single episode had cortical measures comparable to HV. Findings indicate that the pathophysiological processes in BD are possibly progressive in nature. Our findings underscore the potential importance of early diagnosis and intervention in preventing deterioration and improving functional recovery.
Collapse
Affiliation(s)
| | - Vikas B Raju
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Arpitha Jacob
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Abhinav Nahar
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Bhargavi Nagendra
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | - Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
11
|
Chen J, Tan J, Greenshaw AJ, Sawalha J, Liu Y, Zhang X, Zou W, Cheng X, Deng W, Zhang Y, Cui L, Liu C, Sun J, Cheng X, Wu Q, Li S, Mai S, Lan X, Chen Y, Cai Y, Zheng C, Cheng D, Zhang B, Yang C, Li X, Li X, Ye B, Yousefnezhad M, Zhang Y, Zhao L, Soares JC, Zhang X, Li T, Cao B, Cao L. CACNB2 rs11013860 polymorphism correlates of prefrontal cortex thickness in bipolar patients with first-episode mania. J Affect Disord 2020; 268:82-87. [PMID: 32158010 DOI: 10.1016/j.jad.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The β2 subunit of the voltage-gated l-type calcium channel gene(CACNB2) rs11013860 polymorphism is a putative genetic susceptibility marker for bipolar disorder (BD). However, the neural effects of CACNB2 rs11013860 in BD are largely unknown. METHODS Forty-six bipolar patients with first-episode mania and eighty-three healthy controls (HC) were genotyped for CACNB2 rs11013860 and were scanned with a 3.0 Tesla structural magnetic resonance imaging system to measure cortical thickness of prefrontal cortex (PFC) components (superior frontal cortex, orbitofrontal cortex, middle and inferior frontal gyri). RESULTS Cortical thickness was thinner in patients on all PFC measurements compared to HC (p < 0.050). Moreover, we found a significant interaction between CACNB2 genotype and diagnosis for the right superior frontal cortical thickness (F = 8.190, p = 0.040). Bonferroni corrected post-hoc tests revealed that, in CACNB2 A-allele carriers, patients displayed thinner superior frontal thickness compared to HC (p < 0.001). In patients, CACNB2 A-allele carriers also exhibited reduced superior frontal thickness compared to CACNB2 CC-allele carriers (p = 0.016). LIMITATIONS Lithium treatment may influence our results, and the sample size in our study is relatively small. CONCLUSIONS Our results suggest that the CACNB2 rs11013860 might impact PFC thickness in patients with first-episode mania. These findings provide evidence to support CACNB2 rs11013860 involvement in the emotion-processing neural circuitry abnormality in the early stage of BD, which will ultimately contribute to revealing the link between the variation in calcium channel genes and the neuropathological mechanism of BD.
Collapse
Affiliation(s)
- Jianshan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiuwei Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Sawalha
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Yang Liu
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaofei Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenjin Zou
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofang Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenhao Deng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yizhi Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; General Hospital of Southern Theater Command, Guangzhou, Guangdong, PR China
| | - Liqian Cui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chuihong Liu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiaqi Sun
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiongchao Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Nanning Fifth People's Hospital, Nanning, Guangxi Zhuang autonomous region, PR China
| | - Qiuxia Wu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Suyi Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Siming Mai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofeng Lan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yingmei Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yinglian Cai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chaodun Zheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Daomeng Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Bin Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chanjuan Yang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xuan Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xinmin Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Biyu Ye
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | | | - Yamin Zhang
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liansheng Zhao
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Tao Li
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bo Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China.
| |
Collapse
|
12
|
Madeira N, Duarte JV, Martins R, Costa GN, Macedo A, Castelo-Branco M. Morphometry and gyrification in bipolar disorder and schizophrenia: A comparative MRI study. NEUROIMAGE-CLINICAL 2020; 26:102220. [PMID: 32146321 PMCID: PMC7063231 DOI: 10.1016/j.nicl.2020.102220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Increased right globus pallidus is a consistent marker in schizophrenia (SCZ). Left supramarginal gyrification increases in bipolar disorder (BPD) in contrast with SCZ. Gyrification analysis may help distinguish early phases of BPD and SCZ.
Schizophrenia is believed to be a neurodevelopmental disease with high heritability. Differential diagnosis is often challenging, especially in early phases, namely with other psychotic disorders or even mood disorders. such as bipolar disorder with psychotic symptoms. Key pathophysiological changes separating these two classical psychoses remain poorly understood, and current evidence favors a more dimensional than categorical differentiation between schizophrenia and bipolar disorder. While established biomarkers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies, gyrification is assumed to be more specifically determined by genetic and early developmental factors. The aim of our study was to compare both classical and novel morphometric features in these two archetypal psychiatric disorders. We included 20 schizophrenia patients, 20 bipolar disorder patients and 20 age- and gender-matched healthy controls. Data analyses were performed with CAT12/SPM12 applying general linear models for four morphometric measures: gyrification and cortical thickness (surface-based morphometry), and whole-brain grey matter/grey matter volume (voxel-based morphometry - VBM). Group effects were tested using age and gender as covariates (and total intracranial volume for VBM). Voxel-based morphometry analysis revealed a schizophrenia vs. control group effect on regional grey matter volume (p < 0.05, familywise error correction) in the right globus pallidus. There was no group effect on white matter volume when correcting for multiple comparisons neither on cortical thickness. Gyrification changes in clinical samples were found in the left supramarginal gyrus (BA40) – increased and reduced gyrification, respectively, in BPD and SCZ patients - and in the right inferior frontal gyrus (BA47), with a reduction in gyrification of the SCZ group when compared with controls. The joint analysis of different morphometric features, namely measures such as gyrification, provides a promising strategy for the elucidation of distinct phenotypes in psychiatric disorders. Different morphological change patterns, highlighting specific disease trajectories, could potentially generate neuroimaging-derived biomarkers, helping to discriminate schizophrenia from bipolar disorder in early phases, such as first-episode psychosis patients.
Collapse
Affiliation(s)
- Nuno Madeira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Gabriel Nascimento Costa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Portugal; Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
13
|
Rodríguez-Ramírez AM, Meza-Urzúa F, Cedillo-Ríos V, Becerra-Palars C, Jiménez-Pavón J, Morales-Cedillo IP, Sanabrais-Jiménez MA, Hernández-Muñoz S, Camarena-Medellín B. CACNA1C Risk Variant and Mood Stabilizers Effects in the Prefrontal Cortical Thickness of Mexican Patients with Bipolar Disorder. Neuropsychiatr Dis Treat 2020; 16:1199-1206. [PMID: 32494139 PMCID: PMC7229798 DOI: 10.2147/ndt.s245911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Bipolar disorder (BD) is a condition associated with structural alterations in the prefrontal cortex (PFC); some genetic variants and mood stabilizer medications like lithium or valproate are associated with these changes. CACNA1C is a gene involved in BD pathology and brain function; carriers of the A allele of rs1006737 are reported to have increased risk for BD and increased cortical thickness (CT) in the PFC compared to non-carriers. Lithium is also associated with increased CT in the PFC of BD subjects compared to the ones on valproate. The influence of these treatments and gene variants over the PFC structure of Mexican subjects has not been explored. Therefore, we evaluate the effects of mood stabilizers and risk A allele of CACNA1C rs1006737 on the prefrontal cortical thickness of Mexican BD patients treated with lithium or valproate. PATIENTS AND METHODS A cross-sectional study of 40 BD type I euthymic adult outpatients (20 treated with lithium and 20 with valproate) who underwent a 3T T1-weighted 3D brain scan and genotyping for CACNA1C risk allele rs1006737 was conducted. We performed a cortical thickness analysis of the dorsolateral and orbitofrontal regions of the prefrontal cortex with BrainVoyager 20.6. The effects of treatment and gene variants were analyzed with a two-way multivariate analysis of covariance. RESULTS There was no association of CACNA1C risk allele rs1006737 with CT measures of both PFCs nor significant interaction between the genetic variant and treatment. Mood stabilizers reported the main effect on the CT measures of the right PFC of our sample. Patients on treatment with lithium showed higher mean CT on the right orbitofrontal cortex. CONCLUSION We did not find any association between the prefrontal CT and CACNA1C risk A allele rs1006737 in BD Mexican patients treated with lithium or valproate. Our results suggest that mood stabilizers had the main effect in the CT of the right PFC.
Collapse
Affiliation(s)
| | - Fátima Meza-Urzúa
- Kinder und Jugend Psychiatrie, Klinikum Idar-Oberstein, Idar-Oberstein, Germany
| | - Valente Cedillo-Ríos
- Departamento de Imágenes Cerebrales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Claudia Becerra-Palars
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Joanna Jiménez-Pavón
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | | | | | - Sandra Hernández-Muñoz
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Beatriz Camarena-Medellín
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
14
|
Birner A, Bengesser SA, Seiler S, Dalkner N, Queissner R, Platzer M, Fellendorf FT, Hamm C, Maget A, Pilz R, Lenger M, Reininghaus B, Pirpamer L, Ropele S, Hinteregger N, Magyar M, Deutschmann H, Enzinger C, Kapfhammer HP, Reininghaus EZ. Total gray matter volume is reduced in individuals with bipolar disorder currently treated with atypical antipsychotics. J Affect Disord 2020; 260:722-727. [PMID: 31563071 DOI: 10.1016/j.jad.2019.09.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND/AIMS Recent evidence indicates that the intake of atypical antipsychotics (AAP) is associated with gray matter abnormalities in patients with psychiatric disorders. We explored if patients with bipolar disorder (BD) who are medicated with AAP exhibit total gray matter volume (TGV) reduction compared to BD individuals not medicated with AAP and healthy controls (HC). METHODS In a cross-sectional design, 124 individuals with BD and 86 HC underwent 3T-MRI of the brain and clinical assessment as part of our BIPFAT-study. The TGV was estimated using Freesurfer. We used univariate covariance analysis (ANCOVA) to test for normalized TGV differences and controlled for covariates. RESULTS ANCOVA results indicated that 75 BD individuals taking AAP had significantly reduced normalized TGV as compared to 49 BD not taking AAP (F = 9.995, p = .002., Eta = 0.084) and 86 HC (F = 7.577, p = .007, Eta = 0.046). LIMITATIONS Our cross-sectional results are not suited to draw conclusions about causality. We have no clear information on treatment time and baseline volumes before drug treatment in the studied subjects. We cannot exclude that patients received different psychopharmacologic medications prior to the study point. We did not included dosages into the calculation. Many BD individuals received combinations of psychopharmacotherapy across drug classes. We did not have records displaying quantitative alcohol consumption and drug abuse in our sample. CONCLUSIONS Our data provide further evidence for the impact of AAP on brain structure in BD. Longitudinal studies are needed to investigate the causal directions of the proposed relationships.
Collapse
Affiliation(s)
- Armin Birner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Susanne A Bengesser
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria.
| | - Stephan Seiler
- Imaging of Dementia and Aging (IDeA), Laboratory Department of Neurology and Center for Neuroscience, University of California, Davis, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicole Hinteregger
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Marton Magyar
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| |
Collapse
|
15
|
Madre M, Canales-Rodríguez EJ, Fuentes-Claramonte P, Alonso-Lana S, Salgado-Pineda P, Guerrero-Pedraza A, Moro N, Bosque C, Gomar JJ, Ortíz-Gil J, Goikolea JM, Bonnin CM, Vieta E, Sarró S, Maristany T, McKenna PJ, Salvador R, Pomarol-Clotet E. Structural abnormality in schizophrenia versus bipolar disorder: A whole brain cortical thickness, surface area, volume and gyrification analyses. Neuroimage Clin 2019; 25:102131. [PMID: 31911343 PMCID: PMC6948361 DOI: 10.1016/j.nicl.2019.102131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The profiles of cortical abnormalities in schizophrenia and bipolar disorder, and how far they resemble each other, have only been studied to a limited extent. The aim of this study was to identify and compare the changes in cortical morphology associated with these pathologies. METHODS A total of 384 subjects, including 128 patients with schizophrenia, 128 patients with bipolar disorder and 127 sex-age-matched healthy subjects, were examined using cortical surface-based morphology. Four cortical structural measures were studied: cortical volume (CV), cortical thickness (CT), surface area (SA) and gyrification index (GI). Group comparisons for each separate cortical measure were conducted. RESULTS At a threshold of P = 0.05 corrected, both patient groups showed significant widespread CV and CT reductions in similar areas compared to healthy subjects. However, the changes in schizophrenia were more pronounced. While CV decrease in bipolar disorder was exclusively explained by cortical thinning, in schizophrenia it was driven by changes in CT and partially by SA. Reduced GI was only found in schizophrenia. The direct comparison between both disorders showed significant reductions in all measures in patients with schizophrenia. CONCLUSIONS Cortical volume and cortical thickness deficits are shared between patients with schizophrenia and bipolar disorder, suggesting that both pathologies may be affected by similar environmental and neurodegenerative factors. However, the exclusive alteration in schizophrenia of metrics related to the geometry and curvature of the brain cortical surface (SA, GI) suggests that this group is influenced by additional neurodevelopmental and genetic factors.
Collapse
Affiliation(s)
- Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain.
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Silvia Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Noemí Moro
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Clara Bosque
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; The Litwin-Zucker Alzheimer's Research Center, NY, USA
| | - Jordi Ortíz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital General de Granollers, Granollers, Catalonia, Spain
| | - José M Goikolea
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Caterina M Bonnin
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Bipolar Disorder Program, Institute of Neuroscience, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Fundació de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
16
|
Poletti S, Melloni E, Aggio V, Colombo C, Valtorta F, Benedetti F, Comai S. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J Affect Disord 2019; 259:404-412. [PMID: 31610997 DOI: 10.1016/j.jad.2019.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/21/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental illness characterised by reduced grey matter (GM) volumes and cortical thickness, and disrupted white matter (WM) microstructure. Activation of indoleamine 2,3-dioxygenase following a pro-inflammatory state could increase the amount of tryptophan (Trp) converted to kynurenine (Kyn) possibly leading to the production of detrimental catabolites of the Kyn pathway with neurotoxic effects. We investigated if peripheral levels of Trp-and Kyn and the breakdown of Trp-into Kyn (Kyn/Trp-ratio) are related to WM and GM integrity in BD. METHODS Peripheral levels of Trp-and Kyn were analysed in 72 patients with BD and 33 controls. Patients also underwent MRI in a Philips 3T scanner. RESULTS Patients showed higher Kyn levels and Kyn/Trp-ratio compared to controls. MRI analyses performed in patients with BD showed a negative association between the Kyn/Trp-ratio and the integrity of corpus callosum microstructure, the volume of the amygdala and cortical thickness in fronto-parietal regions. LIMITATION The lack of information on the levels of downstream metabolites of Kyn prevent us to confirm the possible unbalance between quinolinic and kynurenic acids as well as their possible relationship with changes in GM and WM markers. The activation of the Kyn pathway as suggested by the increased Kyn/Trp-ratio may lead to an imbalance of the neurotoxic vs the neuroprotective arm of the biochemical pathway, resulting in significant changes in GM and WM regions of brain areas strongly implicated in the pathophysiology of BD, such as amygdala and corpus callosum.
Collapse
Affiliation(s)
- Sara Poletti
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy.
| | - Elisa Melloni
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Veronica Aggio
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Cristina Colombo
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Francesco Benedetti
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| |
Collapse
|
17
|
Zak N, Bøen E, Boye B, Andreassen OA, Doan NT, Malt UF, Westlye LT, Elvsåshagen T. Mood episodes are associated with increased cortical thinning: A longitudinal study of bipolar disorder type II. Bipolar Disord 2019; 21:525-538. [PMID: 30864260 DOI: 10.1111/bdi.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Previous studies found evidence for thinner frontotemporal cortices in bipolar disorder (BD), yet whether this represents a stable disease trait or an effect of mood episodes remains unknown. Here, we assessed the reproducibility of thinner frontotemporal cortices in BD type II, compared longitudinal changes in cortical thickness between individuals with BD type II and healthy controls (HCs), and examined the effect of mood episodes on cortical thickness change. METHODS Thirty-three HCs and 29 individuals with BD type II underwent 3T magnetic resonance imaging at baseline, as published previously, and 2.4 years later, at follow-up. Cross-sectional and longitudinal analyses of cortical thickness were performed using Freesurfer, and relationships with mood episodes from baseline to follow-up were assessed. RESULTS Individuals with BD type II had thinner left and right prefrontal and left temporal cortex clusters at follow-up (all corrected P < 0.001), consistent with baseline results. Both groups showed widespread longitudinal cortical thinning, and patients had increased thinning in a left temporal cortex cluster compared to HCs (corrected P < 0.001). Patients with more (>2) depressive episodes between baseline and follow-up had greater left temporal cortical thinning than patients with fewer depressive episodes (corrected P < 0.05). In addition, patients with more depressive episodes had greater thinning in bilateral ventromedial prefrontal clusters relative to HCs (uncorrected P < 0.05), yet these results did not survive correction for multiple comparisons. CONCLUSIONS Together, these findings support reduced frontotemporal cortical thickness in BD type II and provide the first preliminary evidence for an association between depressive episodes and increased cortical thinning.
Collapse
Affiliation(s)
- Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erlend Bøen
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Birgitte Boye
- Section of Psychosocial Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Department of Behavioural Sciences in Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Toma S, Islam AH, Metcalfe AWS, Mitchell RHB, Fiksenbaum L, MacIntosh BJ, Goldstein BI. Cortical Volume and Thickness Across Bipolar Disorder Subtypes in Adolescents: A Preliminary Study. J Child Adolesc Psychopharmacol 2019; 29:141-151. [PMID: 30359542 DOI: 10.1089/cap.2017.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Neuroimaging studies of adults with bipolar disorder (BD) have identified several BD subtype distinctions, including greater deficits in prefrontal gray matter volumes in BD-I (bipolar I disorder) compared to BD-II (bipolar II disorder). We sought to investigate BD subtype differences in brain structure among adolescents and young adults. METHODS Forty-four youth with BD (14 BD-I, 16 BD-II, and 14 BD-not otherwise specified [NOS], mean age 17) underwent 3T-MRI and images were analyzed using FreeSurfer software. Cortical volume and thickness were analyzed for region of interest (ROI): ventrolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex (ACC), subgenual cingulate cortex, and amygdala, controlling for age, sex, and total intracranial volume. ROIs were selected as found to be implicated in BD in prior studies. A whole brain vertex-wise exploratory analysis was also performed. Uncorrected results are presented. RESULTS There were group differences in ACC thickness (F = 3.88, p = 0.03, η2 = 0.173 uncorrected), which was reduced in BD-II in comparison to BD-I (p = 0.027 uncorrected) and BD-NOS (p = 0.019 uncorrected). These results did not survive correction for multiple comparisons and no other group differences were observed. The exploratory vertex-wise analysis found a similar pattern of lower cortical thickness in BD-II in the left and right superior frontal gyrus and left caudal middle frontal gyrus. CONCLUSIONS This study found reduced cortical thickness for youth with BD-II, relative to BD-I, in regions associated with cognitive control. Further neurostructural differences between subtypes may emerge later during the course of illness.
Collapse
Affiliation(s)
- Simina Toma
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Alvi H Islam
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Arron W S Metcalfe
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Rachel H B Mitchell
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Lisa Fiksenbaum
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- 3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Canada .,6 Department of Physical Sciences, Sunnybrook Health Sciences Centre , Toronto, Canada
| | - Benjamin I Goldstein
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,7 Department of Pharmacology, University of Toronto , Toronto, Canada
| |
Collapse
|
19
|
Sehmbi M, Rowley CD, Minuzzi L, Kapczinski F, Kwiecien JM, Bock NA, Frey BN. Age-related deficits in intracortical myelination in young adults with bipolar disorder type I. J Psychiatry Neurosci 2019; 44:79-88. [PMID: 30525334 PMCID: PMC6397039 DOI: 10.1503/jpn.170220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have implicated white-matter-related changes in the pathophysiology of bipolar disorder. However, most of what is known is derived from in vivo subcortical white-matter imaging or postmortem studies. In this study, we investigated whole-brain intracortical myelin (ICM) content in people with bipolar disorder type I and controls. METHODS Between Sept. 1, 2014, and Jan. 31, 2017, we used a 3 T General Electric scanner to collect T1-weighted images in 45 people with bipolar disorder type I and 60 controls aged 17 to 45 years using an optimized sequence that was sensitive to ICM content. We analyzed images using a surfacebased approach. We used general linear models with quadratic age terms to examine the signal trajectory of ICM across the age range. RESULTS In healthy controls, the T1-weighted signal followed an inverted-U trajectory over age; in people with bipolar disorder type I, the association between ICM and age followed a flat trajectory (p < 0.05, Bonferroni corrected). Exploratory analyses showed that ICM signal intensity was associated with duration of illness, age of onset, and anticonvulsant and antipsychotic use in people with bipolar disorder type I (p < 0.05, uncorrected). LIMITATIONS Because of the cross-sectional nature of the study, we were unable to comment on whether the effects were due to dysmyelination or demyelination in bipolar disorder. CONCLUSION This foundational study is, to our knowledge, the first to show global age-related deficits in ICM maturation throughout the cortex in bipolar disorder. Considering the impact of myelination on the maintenance of neural synchrony and the integrity of neural connections, this work may help us better understand the cognitive and behavioural deficits seen in bipolar disorder.
Collapse
Affiliation(s)
- Manpreet Sehmbi
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Christopher D. Rowley
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Luciano Minuzzi
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Flavio Kapczinski
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Jacek M. Kwiecien
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Nicholas A. Bock
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Benicio N. Frey
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| |
Collapse
|
20
|
Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, He M, Wang H, Duan M, Jia Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 2019; 44:89-101. [PMID: 30354038 PMCID: PMC6397036 DOI: 10.1503/jpn.180002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The literature on grey-matter volume alterations in bipolar disorder is heterogeneous in its findings. METHODS Using effect-size differential mapping, we conducted a meta-analysis of grey-matter volume alterations in patients with bipolar disorder compared with healthy controls. RESULTS We analyzed data from 50 studies that included 1843 patients with bipolar disorder and 2289 controls. Findings revealed lower grey-matter volumes in the bilateral superior frontal gyri, left anterior cingulate cortex and right insula in patients with bipolar disorder and in patients with bipolar disorder type I. Patients with bipolar disorder in the euthymic and depressive phases had spatially distinct regions of altered grey-matter volume. Meta-regression revealed that the proportion of female patients with bipolar disorder or bipolar disorder type I was negatively correlated with regional grey-matter alteration in the right insula; the proportion of patients with bipolar disorder or bipolar disorder type I taking lithium was positively correlated with regional grey-matter alterations in the left anterior cingulate/paracingulate gyri; and the proportion of patients taking antipsychotic medications was negatively correlated with alterations in the anterior cingulate/paracingulate gyri. LIMITATIONS This study was cross-sectional; analysis techniques, patient characteristics and clinical variables in the included studies were heterogeneous. CONCLUSION Structural grey-matter abnormalities in patients with bipolar disorder and bipolar disorder type I were mainly in the prefrontal cortex and insula. Patients' mood state might affect grey-matter alterations. Abnormalities in regional grey-matter volume could be correlated with patients' specific demographic and clinical features.
Collapse
Affiliation(s)
- Xiuli Wang
- From the Department of Psychiatry, the Fourth People’s Hospital of Chengdu, Chengdu, China (Duan, He, H. Wang, S. Wang, X. Wang); the Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China (Luo, Jia); the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China (Tian, Jia); the Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China (Cheng); and the Department of Radiology, the Second People’s Hospital of Yibin, Yibin, China (Qiu)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|
22
|
Versace A, Ladouceur CD, Graur S, Acuff HE, Bonar LK, Monk K, McCaffrey A, Yendiki A, Leemans A, Travis MJ, Diwadkar VA, Holland SK, Sunshine JL, Kowatch RA, Horwitz SM, Frazier TW, Arnold LE, Fristad MA, Youngstrom EA, Findling RL, Goldstein BI, Goldstein T, Axelson D, Birmaher B, Phillips ML. Diffusion imaging markers of bipolar versus general psychopathology risk in youth at-risk. Neuropsychopharmacology 2018; 43:2212-2220. [PMID: 29795244 PMCID: PMC6135796 DOI: 10.1038/s41386-018-0083-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Thus, studies in first-degree relatives of individuals with BD could lead to the discovery of objective risk markers of BD. Abnormalities in white matter structure reported in at-risk individuals could play an important role in the pathophysiology of BD. Due to the lack of studies with other at-risk offspring, however, it remains unclear whether such abnormalities reflect BD-specific or generic risk markers for future psychopathology. Using a tract-profile approach, we examined 18 major white matter tracts in 38 offspring of BD parents, 36 offspring of comparison parents with non-BD psychopathology (depression, attention-deficit/hyperactivity disorder), and 41 offspring of healthy parents. Both at-risk groups showed significantly lower fractional anisotropy (FA) in left-sided tracts (cingulum, inferior longitudinal fasciculus, forceps minor), and significantly greater FA in right-sided tracts (uncinate fasciculus and inferior longitudinal fasciculus), relative to offspring of healthy parents (P < 0.05). These abnormalities were present in both healthy and affected youth in at-risk groups. Only offspring (particularly healthy offspring) of BD parents showed lower FA in the right superior longitudinal fasciculus relative to healthy offspring of healthy parents (P < 0.05). We show, for the first time, important similarities, and some differences, in white matter structure between offspring of BD and offspring of non-BD parents. Findings suggest that lower left-sided and higher right-sided FA in tracts important for emotional regulation may represent markers of risk for general, rather than BD-specific, psychopathology. Lower FA in the right superior longitudinal fasciculus may protect against development of BD in offspring of BD parents.
Collapse
Affiliation(s)
- A Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C D Ladouceur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - H E Acuff
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L K Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - K Monk
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A McCaffrey
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Travis
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - S K Holland
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - R A Kowatch
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - S M Horwitz
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - T W Frazier
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - L E Arnold
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - M A Fristad
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | | | - B I Goldstein
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - T Goldstein
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Axelson
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - B Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - M L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Li L, Ji E, Han X, Tang F, Bai Y, Peng D, Fang Y, Zhang S, Zhang Z, Yang H. Cortical thickness and subcortical volumes alterations in euthymic bipolar I patients treated with different mood stabilizers. Brain Imaging Behav 2018; 13:1255-1264. [DOI: 10.1007/s11682-018-9950-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Wang X, Tian F, Wang S, Cheng B, Qiu L, He M, Wang H, Duan M, Dai J, Jia Z. Gray matter bases of psychotic features in adult bipolar disorder: A systematic review and voxel-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2018; 39:4707-4723. [PMID: 30096212 DOI: 10.1002/hbm.24316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
Psychotic bipolar disorder (P-BD) is a specific subset that presents greater risk of relapse and worse outcomes than nonpsychotic bipolar disorder (NP-BD). To explore the neuroanatomical bases of psychotic dimension in bipolar disorder (BD), a systematic review was carried out based on the gray matter volume (GMV) among P-BD and NP-BD patients and healthy controls (HC). Further, we conducted a meta-analysis of GMV differences between P-BD patients and HC using a whole-brain imaging approach. Our review revealed that P-BD patients exhibited smaller GMVs mainly in the prefronto-temporal and cingulate cortices, the precentral gyrus, and insula relative to HC both qualitatively and quantitatively. Qualitatively the comparison between P-BD and NP-BD patients suggested inconsistent GMV alterations mainly involving the prefrontal cortex, while NP-BD patients showed GMV deficits in local regions compared with HC. The higher proportions of female patients and patients taking psychotropic medication in P-BD and P-BD type I were associated with smaller GMV in the right precentral gyrus, and the right insula, respectively. In conclusions, psychosis in BD might be associated with specific cortical GMV deficits. Gender and psychotropic medication might have effects on the regional GMVs in P-BD patients. It is necessary to distinguish psychotic dimension in neuroimaging studies of BD.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, China
| | - Manxi He
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Hongming Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Jing Dai
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, van Haren NEM, Horn NR, Freimer NB, Gruber O, Schofield PR, Mitchell PB, Kahn RS, Lenroot R, Machado-Vieira R, Ophoff RA, Sarró S, Frangou S, Satterthwaite TD, Hajek T, Dannlowski U, Malt UF, Arolt V, Gattaz WF, Drevets WC, Caseras X, Agartz I, Thompson PM, Andreassen OA. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018; 23:932-942. [PMID: 28461699 PMCID: PMC5668195 DOI: 10.1038/mp.2017.73] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen's d=-0.293; P=1.71 × 10-21), left fusiform gyrus (d=-0.288; P=8.25 × 10-21) and left rostral middle frontal cortex (d=-0.276; P=2.99 × 10-19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
Collapse
Affiliation(s)
- D P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA, USA
| | - L T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - N T Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - N Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - J W Cheung
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - C R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA,Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A C Bilderbeck
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - A Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - B Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - B Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - B Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - C B Hartberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Abé
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - D Dima
- Department of Psychology, City University London, London, UK,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - E Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - E Jimenez
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - G Delvecchio
- IRCCS "E. Medea" Scientific Institute, San Vito al Tagliamento, Italy
| | - H Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J Starke
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J R C Almeida
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - J M Goikolea
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - J Houenou
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif Sur Yvette, France
| | - L M Beard
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - L Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - L Abramovic
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Bonnin
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - M F Ponteduro
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Keil
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - M M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - N Yao
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - N Yalin
- Centre for Affective Disorders, King’s College London, London, UK
| | - P Najt
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - P G Rosa
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - S Trost
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - S Hagenaars
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S C Fears
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA,West Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - S Alonso-Lana
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - T G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - T Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - T M Chaim-Avancini
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - T B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA,Laureate Institute for Brain Research, Tulsa, OK, USA
| | - T Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - U K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Adult Psychiatry, University of Oslo, Oslo, Norway
| | - W H Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A H Schene
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - A J Lloyd
- Academic Psychiatry and Northern Centre for Mood Disorders, Newcastle University/Northumberland Tyne & Wear NHS Foundation Trust, Newcastle, UK
| | - A H Young
- Centre for Affective Disorders, King’s College London, London, UK
| | - A Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - A M Dale
- MMIL, Department of Radiology, University of California San Diego, San Diego, CA, USA,Department of Cognitive Science, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - B Lafer
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - B T Baune
- Department of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - C J Ekman
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Henry
- INSERM U955 Team 15 ‘Translational Psychiatry’, University Paris East, APHP, CHU Mondor, Fondation FondaMental, Créteil, France,Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - C Simhandl
- Bipolar Center Wiener Neustadt, Wiener Neustadt, Austria
| | - C McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - C Bourne
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Department of Psychology & Counselling, Newman University, Birmingham, UK
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa,MRC Unit on Anxiety and Stress Disorders, Groote Schuur Hospital (J-2), University of Cape Town, Cape Town, South Africa
| | - D H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - D M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - D C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - D J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - E Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - E Vieta
- Hospital Clinic, IDIBAPS, University of Barcelona, CIBERSAM, Barcelona, Spain
| | - E J Canales-Rodriguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - F G Nery
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - F L S Duran
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G F Busatto
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - G Roberts
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - G D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - G M Goodwin
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK
| | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H G Ruhe
- University Department of Psychiatry and Oxford Health NHS Foundation Trust, University of Oxford, Oxford, UK,Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - J K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - J Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA,Faculty of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - K T Chaim
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - M G Soeiro-de-Souza
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - M P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M V Zanetti
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M C G Otaduy
- Department of Radiology, University of São Paulo, São Paulo, Brazil,LIM44-Laboratory of Magnetic Resonance in Neuroradiology, University of São Paulo, São Paulo, Brazil
| | - M S Schaufelberger
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - M Ingvar
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M J Kempton
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Landén
- Department of Clinical Neuroscience, Osher Centre, Karolinska Institutet, Stockholm, Sweden,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Goteborg, Sweden
| | - N S Lawrence
- Department of Psychology, University of Exeter, Exeter, UK
| | - N E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N R Horn
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - N B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - O Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - P R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - P B Mitchell
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Lenroot
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - R Machado-Vieira
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada,National Institute of Mental Health, Klecany, Czech Republic
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - U F Malt
- Division of Clinical Neuroscience, Department of Research and Education, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W F Gattaz
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - W C Drevets
- Janssen Research & Development, Titusville, NJ, USA
| | - X Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - I Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - P M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - O A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,NORMENT, KG Jebsen Centre for Psychosis Research—TOP Study, Oslo University Hospital, Ullevål, Building 49, Kirkeveien 166, PO Box 4956, Nydalen, 0424, Oslo, Norway. E-mail:
| |
Collapse
|
26
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Anterior Cingulate Cortex Glutamatergic Metabolites and Mood Stabilizers in Euthymic Bipolar I Disorder Patients: A Proton Magnetic Resonance Spectroscopy Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:985-991. [PMID: 29789269 DOI: 10.1016/j.bpsc.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bipolar disorder is a chronic and recurrent illness characterized by depressive and manic episodes. Proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated glutamate (Glu) system abnormalities in BD, but it is unclear how Glu varies among mood states and how medications modulate it. The objective of this study was to investigate the influence of mood stabilizers on anterior cingulate cortex Glu levels using 1H-MRS during euthymia. METHODS One hundred twenty-eight bipolar I disorder (BDI) euthymic subjects and 80 healthy control subjects underwent 3T brain 1H-MRS imaging examination including acquisition of an anterior cingulate cortex single voxel (8 cm3) 1H-MRS, based on a point resolved spectroscopy (PRESS) sequence with an echo time of 80 ms and a repetition time of 1500 ms (BIPUSP MRS study). The Glu system was described by measuring Glu and the sum of Glu and glutamine (Glx) using creatine (Cre) as a reference. RESULTS Euthymic BDI subjects presented with higher ratios of Glu/Cre and Glx/Cre compared to healthy control subjects. Glu/Cre ratios were lower among patients using anticonvulsants, while Glx/Cre did not differ between the two groups. Lithium, antipsychotics, and antidepressants did not influence Glu/Cre or Glx/Cre. CONCLUSIONS We reported Glu/Cre and Glx abnormalities in the largest sample of euthymic BDI patients studied by 1H-MRS to date. Our data indicate that both Glu/Cre and Glx/Cre are elevated in BDI during euthymia regardless of medication effects, reinforcing the hypothesis of glutamatergic abnormalities in BD. Furthermore, we found an effect of anticonvulsants on Glu/Cre during euthymia, which might indicate a mechanism of mood stabilization in BD.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Genetics and Pharmacogenetics Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | - Ricardo Alberto Moreno
- Mood Disorders Unit, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claudia Leite
- Laboratory of Magnetic Resonance, Department and Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Bipolar Disorders Program, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
|
28
|
The CACNA1C risk allele rs1006737 is associated with age-related prefrontal cortical thinning in bipolar I disorder. Transl Psychiatry 2017; 7:e1086. [PMID: 28398341 PMCID: PMC5416698 DOI: 10.1038/tp.2017.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022] Open
Abstract
Calcium channels control the inflow of calcium ions into cells and are involved in diverse cellular functions. The CACNA1C gene polymorphism rs1006737 A allele has been strongly associated with increased risk for bipolar disorder (BD) and with modulation of brain morphology. The medial prefrontal cortex (mPFC) has been widely associated with mood regulation in BD, but the role of this CACNA1C polymorphism in mPFC morphology and brain aging has yet to be elucidated. One hundred seventeen euthymic BD type I subjects were genotyped for CACNA1C rs1006737 and underwent 3 T three-dimensional structural magnetic resonance imaging scans to determine cortical thickness of mPFC components (superior frontal cortex (sFC), medial orbitofrontal cortex (mOFC), caudal anterior cingulate cortex (cACC) and rostral anterior cingulate cortex (rACC)). Carriers of the CACNA1C allele A exhibited greater left mOFC thickness compared to non-carriers. Moreover, CACNA1C A carriers showed age-related cortical thinning of the left cACC, whereas among A non-carriers there was not an effect of age on left cACC cortical thinning. In the sFC, mOFC and rACC (left or right), a negative correlation was observed between age and cortical thickness, regardless of CACNA1C rs1006737 A status. Further studies investigating the direct link between cortical thickness, calcium channel function, apoptosis mechanism and their underlying relationship with aging-associated cognitive decline in BD are warranted.
Collapse
|
29
|
Niu M, Wang Y, Jia Y, Wang J, Zhong S, Lin J, Sun Y, Zhao L, Liu X, Huang L, Huang R. Common and Specific Abnormalities in Cortical Thickness in Patients with Major Depressive and Bipolar Disorders. EBioMedicine 2017; 16:162-171. [PMID: 28109831 PMCID: PMC5474436 DOI: 10.1016/j.ebiom.2017.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are severe psychiatric diseases with overlapping symptomatology. Although previous studies reported abnormal brain structures in MDD or BD patients, the disorder-specific underlying neural mechanisms remain poorly understood. The purpose of this study was to investigate the whole-brain gray matter morphological patterns in unmedicated patients with MDD or BD and to identify the shared and disease-specific brain morphological alterations in these two disorders. We acquired high-resolution brain structural MRI data from a sample of 36 MDD patients, 32 BD patients, and 30 healthy controls. Using FreeSurfer, we estimated their brain cortical thickness (CT) and compared between-group difference in multiple locations across the continuous cortical surface. Compared to the healthy controls, both the MDD and BD patient groups showed significantly reduced CT in the left inferior temporal cortex (ITC). However, compared to the MDD patients, the BD patients showed a significantly thinner CT in the left rostral middle frontal region. In addition, compared to the healthy controls, the BD patients displayed thinner CT in the left ITC, left frontal pole (FPO), left superior frontal, right lateral occipital, right pars triangularis (PTRI) and right lateral orbitofrontal regions. Further analysis revealed a significantly positive correlation between the mean CT in the left FPO and the onset age, but a negative correlation between the mean CT in the right PTRI and the number of episodes, in the BD patients. Our findings revealed that the BD and MDD patients had variations in CT that were in common, but many more that were distinct, suggesting potential differences in their neural mechanisms. We found thinner CT in the left ITC in both MDD and BD groups compared to controls. We detected thinner CT in the left rMFC in the BD group compared to the MDD group. The BD group had more pronounced abnormality in CT primarily in the PFC than the MDD group. Clinical variables of BD group were associated with decreased CT in the left FPO and right PTRI.
This study aims to detect abnormal cortical thickness in patients with major depressive disorder (MDD) or bipolar disorder (BD), and to identify the shared and disease-specific brain morphological alterations in these two disorders. The two patient groups showed several common but more distinct variation patterns in cortical thickness, and the BD patients had lower cortical thickness in widespread brain areas than the MDD and the controls. These findings may have potential clinical implications for distinguishing BD from MDD patients.
Collapse
Affiliation(s)
- Meiqi Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junjing Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiabao Lin
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ling Zhao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China
| | - Xiaojin Liu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Brain Study Institute, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
30
|
Landin-Romero R, Canales-Rodríguez EJ, Kumfor F, Moreno-Alcázar A, Madre M, Maristany T, Pomarol-Clotet E, Amann BL. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder. Aust N Z J Psychiatry 2017; 51:42-54. [PMID: 26883570 DOI: 10.1177/0004867416631827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. METHODS Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. RESULTS At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. CONCLUSION The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.
Collapse
Affiliation(s)
- Ramón Landin-Romero
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.,3 Neuroscience Research Australia, Sydney, NSW, Australia.,4 School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,5 ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - Erick J Canales-Rodríguez
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Fiona Kumfor
- 3 Neuroscience Research Australia, Sydney, NSW, Australia.,4 School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,5 ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - Ana Moreno-Alcázar
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Mercè Madre
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,6 Departament de Psiquiatria i Medicina Legal, Doctorat de Psiquiatria i Psicologia Clínica, Universitat Autònoma de Barcelona, Barcelona, Spain.,7 Benito Menni CASM, Sant Boi de Llobregat, Spain
| | - Teresa Maristany
- 8 Department of Radiology, Hospital San Juan de Déu, Barcelona, Spain
| | - Edith Pomarol-Clotet
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Benedikt L Amann
- 1 FIDMAG Research Foundation Germanes Hospitalàries, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
31
|
Joshi SH, Vizueta N, Foland-Ross L, Townsend JD, Bookheimer SY, Thompson PM, Narr KL, Altshuler LL. Relationships Between Altered Functional Magnetic Resonance Imaging Activation and Cortical Thickness in Patients With Euthymic Bipolar I Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:507-517. [PMID: 27990494 PMCID: PMC5157843 DOI: 10.1016/j.bpsc.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Performance during cognitive control functional magnetic resonance imaging (fMRI) tasks are associated with frontal lobe hypoactivation in patients with bipolar disorder, even while euthymic. Here, we study the structural underpinnings for this functional abnormality simultaneously with brain activation data. METHODS In a sample of ninety adults (45 with inter-episode Bipolar I disorder and 45 healthy controls), we explored whether abnormal functional activation patterns in bipolar euthymic subjects during a Go-NoGo fMRI task are associated with regional deficits in cortical gray matter thickness in the same regions. Cross-sectional differences in fMRI activation were used to form a-priori hypotheses for region-of-interest cortical gray matter thickness analyses. fMRI BOLD to structural magnetic resonance imaging (sMRI) thickness correlations were conducted across the sample and within patients and controls separately. RESULTS During response inhibition (NoGo minus Go), bipolar subjects showed significant hypoactivation and reduced thickness in the inferior frontal cortex (IFC), superior frontal gyrus and cingulate compared to controls. Cingulate hypoactivation corresponded with reduced regional thickness. A significant activation by disease state interaction was observed with thickness in left prefrontal areas. CONCLUSIONS Reduced cingulate fMRI activation is associated with reduced cortical thickness. In the left frontal lobe, a thinner cortex was associated with increased fMRI activation in patients, but showed a reverse trend in controls. These findings suggest that reduced activation in the IFC and cingulate during a response inhibition task may have an underlying structural etiology, which may explain task-related functional hypoactivation that persists even when patients are euthymic.
Collapse
Affiliation(s)
- Shantanu H. Joshi
- Ahmanson Lovelace Brain Mapping Center, Department of
Neurology, University of California, Los Angeles, CA
| | - Nathalie Vizueta
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
| | | | - Jennifer D. Townsend
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
| | - Paul M. Thompson
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
- Imaging Genetics Center, University of Southern California,
Marina del Rey, CA
| | - Katherine L. Narr
- Ahmanson Lovelace Brain Mapping Center, Department of
Neurology, University of California, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Bootsman F, Brouwer RM, Schnack HG, Kemner SM, Hillegers MHJ, Sarkisyan G, van der Schot AC, Vonk R, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. A study of genetic and environmental contributions to structural brain changes over time in twins concordant and discordant for bipolar disorder. J Psychiatr Res 2016; 79:116-124. [PMID: 27218817 DOI: 10.1016/j.jpsychires.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/13/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
This is the first longitudinal twin study examining genetic and environmental contributions to the association between liability to bipolar disorder (BD) and changes over time in global brain volumes, and global and regional measures of cortical surface area, cortical thickness and cortical volume. A total of 50 twins from pairs discordant or concordant for BD (monozygotic: 8 discordant and 3 concordant pairs, and 1 patient and 3 co-twins from incomplete pairs; dizygotic: 6 discordant and 2 concordant pairs, and 1 patient and 7 co-twins from incomplete pairs) underwent magnetic resonance imaging twice. In addition, 57 twins from healthy twin pairs (15 monozygotic and 10 dizygotic pairs, and 4 monozygotic and 3 dizygotic subjects from incomplete pairs) were also scanned twice. Mean follow-up duration for all twins was 7.5 years (standard deviation: 1.5 years). Data were analyzed using structural equation modeling software OpenMx. The liability to BD was not associated with global or regional structural brain changes over time. Although we observed a subtle increase in cerebral white matter in BD patients, this effect disappeared after correction for multiple comparisons. Heritability of brain changes over time was generally low to moderate. Structural brain changes appear to follow similar trajectories in BD patients and healthy controls. Existing brain abnormalities in BD do not appear to progressively change over time, but this requires additional confirmation. Further study with large cohorts is recommended to assess genetic and environmental influences on structural brain abnormalities in BD, while taking into account the influence of lithium on the brain.
Collapse
Affiliation(s)
- F Bootsman
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands.
| | - R M Brouwer
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - H G Schnack
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - S M Kemner
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - M H J Hillegers
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - G Sarkisyan
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | | | - R Vonk
- Reinier van Arkel, 's-Hertogenbosch, The Netherlands
| | - H E Hulshoff Pol
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - W A Nolen
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - R S Kahn
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - N E M van Haren
- University Medical Center Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
33
|
Guo Z, Liu X, Jia X, Hou H, Cao Y, Wei F, Li J, Chen X, Zhang Y, Shen Y, Wei L, Xu L, Chen W. Regional Coherence Changes in Alzheimer's Disease Patients with Depressive Symptoms: A Resting-State Functional MRI Study. J Alzheimers Dis 2016; 48:603-11. [PMID: 26445159 DOI: 10.3233/jad-150460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline along with neuropsychiatric symptoms including depression and psychosis. Depression is a common psychiatric disorder occurring in people across the lifespan. Accumulating evidence indicates that depression may be a prodrome and/or a "risk factor" for AD. However, whether AD and depression share a common pathophysiological pathway is still unclear. The aim of this study was to identify regional alterations in brain function associated with depressive symptoms in mild AD patients. Thirty-two mild AD patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale, and were divided into two groups: 15 AD patients with depressive symptoms (D-AD) and 17 non-depressed AD (nD-AD) patients. Using the approach of regional homogeneity (ReHo), we characterized resting-state regional brain activity in D-AD and nD-AD patients. Compared with nD-AD patients, D-AD patients showed decreased ReHo in the right precentral gyrus, right superior frontal gyrus, right middle frontal gyrus, and right inferior frontal cortex. Our findings show regional brain activity alterations in D-AD patients. Thus, D-AD pathogenesis may be attributed to abnormal neural activity in multiple brain regions.
Collapse
Affiliation(s)
- Zhongwei Guo
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China.,Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Xiaozheng Liu
- Center for Cognitive Brain Disorders & Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Xize Jia
- Center for Cognitive Brain Disorders & Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Hongtao Hou
- Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Yulin Cao
- Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Jiapeng Li
- Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Xingli Chen
- Tongde Hospital of Zhejiang Provence, Hangzhou, Zhejiang, China
| | - Yingchun Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China
| | - Yuedi Shen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lili Wei
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China
| | - Luoyi Xu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang, China.,Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Roberts G, Lenroot R, Frankland A, Yeung PK, Gale N, Wright A, Lau P, Levy F, Wen W, Mitchell PB. Abnormalities in left inferior frontal gyral thickness and parahippocampal gyral volume in young people at high genetic risk for bipolar disorder. Psychol Med 2016; 46:2083-2096. [PMID: 27067698 DOI: 10.1017/s0033291716000507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fronto-limbic structural brain abnormalities have been reported in patients with bipolar disorder (BD), but findings in individuals at increased genetic risk of developing BD have been inconsistent. We conducted a study in adolescents and young adults (12-30 years) comparing measures of fronto-limbic cortical and subcortical brain structure between individuals at increased familial risk of BD (at risk; AR), subjects with BD and controls (CON). We separately examined cortical volume, thickness and surface area as these have distinct neurodevelopmental origins and thus may reflect differential effects of genetic risk. METHOD We compared fronto-limbic measures of grey and white matter volume, cortical thickness and surface area in 72 unaffected-risk individuals with at least one first-degree relative with bipolar disorder (AR), 38 BD subjects and 72 participants with no family history of mental illness (CON). RESULTS The AR group had significantly reduced cortical thickness in the left pars orbitalis of the inferior frontal gyrus (IFG) compared with the CON group, and significantly increased left parahippocampal gyral volume compared with those with BD. CONCLUSIONS The finding of reduced cortical thickness of the left pars orbitalis in AR subjects is consistent with other evidence supporting the IFG as a key region associated with genetic liability for BD. The greater volume of the left parahippocampal gyrus in those at high risk is in line with some prior reports of regional increases in grey matter volume in at-risk subjects. Assessing multiple complementary morphometric measures may assist in the better understanding of abnormal developmental processes in BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - R Lenroot
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P K Yeung
- Neuroscience Research Australia,Sydney,Australia
| | - N Gale
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - A Wright
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P Lau
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - F Levy
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - W Wen
- School of Psychiatry, University of New South Wales,Sydney,Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales,Sydney,Australia
| |
Collapse
|
35
|
Buoli M, Caldiroli A, Cumerlato Melter C, Serati M, de Nijs J, Altamura AC. Biological aspects and candidate biomarkers for psychotic bipolar disorder: A systematic review. Psychiatry Clin Neurosci 2016; 70:227-44. [PMID: 26969211 DOI: 10.1111/pcn.12386] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/24/2016] [Accepted: 03/06/2016] [Indexed: 12/23/2022]
Abstract
AIM We carried out a systematic review of the available literature about potential biomarkers of psychotic bipolar disorder (BD-P), a specific subset presenting worse outcome and greater risk of relapse than non-psychotic bipolar disorder (BD-NP). METHODS We searched the main psychiatric databases (PubMed, ISI Web of Knowledge, PsychInfo). Only original articles with the main topic of BD-P compared to schizophrenia/BD-NP/healthy controls (HC) written in English from 1994 to 2015 were included. RESULTS BD-P patients presented higher kynurenic acid levels in the cerebrospinal fluid, elevated anti- S accharomyces cerevisiae antibodies levels, and lower serum levels of dehydroepiandrosterone sulfate and progesterone than BD-NP/HC. Event-related potentials abnormalities have been identified in BD-P with respect to BD-NP. BD-P patients also presented bigger ventricles but similar hippocampal volumes compared to BD-NP/HC. Although the results are contrasting, some cognitive deficits seemed to be related to the psychotic dimension of bipolar affective disorder, such as impairment in verbal/logical memory, working memory, verbal and semantic fluency and executive functioning. Finally, polymorphisms of genes, such as NRG1, 5HTTLPR (s), COMT, DAOA and some chromosome regions (16p12 and 13q), were positively associated with BD-P. CONCLUSION Data about the identification of specific biomarkers for BD-P are promising, but most of them have not yet been replicated. They could lead the clinicians to an early diagnosis and proper treatment, thus ameliorating outcome of BD-P and reducing the biological changes associated with a long duration of illness. Further studies with bigger samples are needed to detect more specific biological markers of the psychotic dimension of bipolar affective disorder.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Psychiatry, University Medical Center Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - Alice Caldiroli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cumerlato Melter
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Serati
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica de Nijs
- Department of Psychiatry, University Medical Center Utrecht - Brain Centre Rudolf Magnus, Utrecht, The Netherlands
| | - A Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Knöchel C, Reuter J, Reinke B, Stäblein M, Marbach K, Feddern R, Kuhlmann K, Alves G, Prvulovic D, Wenzler S, Linden DEJ, Oertel-Knöchel V. Cortical thinning in bipolar disorder and schizophrenia. Schizophr Res 2016; 172:78-85. [PMID: 26876312 DOI: 10.1016/j.schres.2016.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
Abstract
Although schizophrenia (SZ) and bipolar disorder (BD) share some clinical features such as psychotic symptoms and cognitive dysfunctions, little is known about possible pathophysiological similarities between both diseases. Therefore, we investigated the potential topographical overlap and segregation of cortical thickness abnormalities in SZ and BD patients. We analyzed 3D-anatomical magnetic resonance imaging datasets with the FreeSurfer 5.1.0 software to examine cortical thickness and volumes in three groups of participants: n=34 BD patients, n=32 SZ patients and n=38 healthy controls. We observed similar bilateral cortical thickness reductions in BD and SZ patients predominantly in the pars opercularis of the inferior frontal gyrus and in the anterior and posterior cingulate. We also found disease-specific cortical reductions in the orbitofrontal cortex for BD patients and in dorsal frontal and temporal areas for SZ. Furthermore, inferior frontal gyrus cortical thinning was associated with deficits in psychomotor speed and executive functioning in SZ patients and with age at onset in both groups. Our findings support the hypothesis that thinning of the frontal cortex may represent a biological feature shared by both disease groups. The associations between cognitive deficits and the reported findings in SZ and to a lesser degree in BD patients add to the functional relevance of our results. However, further studies are needed to corroborate a model of shared pathophysiological disease features across BD and SZ.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Michael Stäblein
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Kristina Kuhlmann
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer's Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Sofia Wenzler
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
37
|
Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 2016; 53:39-48. [PMID: 26546831 PMCID: PMC4783304 DOI: 10.1016/j.bbi.2015.11.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0.05). Consistent with our previous findings in an overlapping sample, the KynA/3HK ratio and the log KynA/QA were reduced in the MDD group relative to the HC group (p's<0.05) and symptoms of anhedonia were negatively correlated with log KynA/QA in the MDD group (p<0.05). Both KynA/3HK and log KynA/QA at least partially mediated the relationship between diagnosis and cortical thickness of right BA32 (p's<0.05). CRP was inversely associated with BA32 thickness (p<0.01) and KynA/3HK partially mediated the relationship between CRP and the thickness of right BA32 (p<0.05). The results raise the possibility that the relative imbalance between KynA and neurotoxic kynurenine metabolites may partially explain the reductions in mPFC thickness observed in MDD, and further that these changes are more strongly linked to the putative effects of neuroactive kynurenine metabolites than those of inflammatory mediators.
Collapse
|
38
|
Hanford LC, Nazarov A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord 2016; 18:4-18. [PMID: 26851067 DOI: 10.1111/bdi.12362] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a debilitating illness, the psychopathology of which is associated with aberrant structural and functional differences in the brain. Despite the many advances in psychiatric research, our understanding of the complex neurobiological underpinnings of BD remains incomplete. The aim of this review was to critically examine all available published magnetic resonance imaging (MRI) research reporting cortical thickness in BD with respect to a healthy population and/or other psychiatric samples. METHODS The systematic search encompassed all relevant studies published until November 2014. Relevant papers were identified through an online search of select databases (MEDLINE and EMBASE) using key terms bipolar disorder or mania, and cortical thickness. Two independent raters determined the eligibility of papers and performed separate data extraction to ensure quality and accuracy of reporting. RESULTS A total of 17 papers met the criteria and were included in this review. Compared to a healthy population, the majority of studies reported decreased cortical thickness in the left anterior cingulate/paracingulate and the left superior temporal gyrus, as well as several prefrontal regions bilaterally in patients with BD. Studies also show consistency of cortical thinning in individuals with BD and schizophrenia in frontal and temporal regions, suggesting some common neuropathology. CONCLUSIONS This systematic review further supports a link between specific structural brain abnormalities and BD. Future studies should investigate cortical thickness with respect to at-risk populations to determine whether these neuropathologies develop before or after the onset of BD.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Anthony Nazarov
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Roberto B Sassi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Mood Disorders Outpatient Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
39
|
Savitz J, Morris HM, Drevets WC. Neuroimaging Studies of Bipolar Depression: Therapeutic Implications. BIPOLAR DEPRESSION: MOLECULAR NEUROBIOLOGY, CLINICAL DIAGNOSIS, AND PHARMACOTHERAPY 2016. [DOI: 10.1007/978-3-319-31689-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Cortical Thickness in Individuals at High Familial Risk of Mood Disorders as They Develop Major Depressive Disorder. Biol Psychiatry 2015; 78:58-66. [PMID: 25534753 DOI: 10.1016/j.biopsych.2014.10.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Frontal and temporal cortical thickness abnormalities have been observed in mood disorders. However, it is unknown whether cortical thickness abnormalities reflect early adverse effects of genetic and environmental risk factors predisposing to mood disorders or emerge at illness onset. METHODS Magnetic resonance imaging was conducted at baseline and after a 2-year follow-up interval in 111 initially unaffected young adults at high familial risk of mood disorders and 93 healthy control subjects (HC). During the follow-up period, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the remainder remaining well (HR-well). Cortical surface reconstruction was applied to measure cortical thickness of frontal and temporal regions of interest. Mixed-effects models were used to investigate differences and longitudinal changes in cortical thickness. RESULTS Reduced cortical thickness in the right parahippocampal and fusiform gyrus across both time points was found in both high-risk groups. HR-MDD also had thinner parahippocampi than HR-well individuals. Over time, HR-well and HC individuals had progressive thickness reductions in the left inferior frontal and precentral gyrus, which were greater in HR-well subjects. HR-MDD showed left inferior frontal gyrus thickening relative to HR-well subjects and left precentral gyrus thickening relative to HR-well and HC individuals. CONCLUSIONS Reduced right parahippocampal and fusiform gyrus thickness are familial trait markers for vulnerability to mood disorders. Increased risk for mood disorders is associated with progressive cortical thinning in the left inferior frontal and precentral gyri in subjects who remain well. In contrast, onset of depression is associated with increasing left inferior frontal and precentral thickness.
Collapse
|
41
|
Jørgensen KN, Psychol C, Skjærvø I, Mørch-Johnsen L, Haukvik UK, Lange EH, Melle I, Andreassen OA, Agartz I. Cigarette smoking is associated with thinner cingulate and insular cortices in patients with severe mental illness. J Psychiatry Neurosci 2015; 40:241-9. [PMID: 25672482 PMCID: PMC4478057 DOI: 10.1503/jpn.140163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/07/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies show reduced cortical thickness in patients with schizophrenia and bipolar disorder. These subtle brain abnormalities may provide insight into illness mechanisms. However, environmental and lifestyle-related factors, such as cigarette smoking, may contribute to brain structure changes. Cigarette smoking is highly prevalent in patients with severe mental illness. In nonpsychiatric samples, smoking has been associated with reduced thickness in the anterior (ACC) and posterior cingulate cortices, the insular cortex (INS), the dorsolateral prefrontal cortex and the orbitofrontal cortex. METHODS We examined MRI scans from patients with schizophrenia, other psychotic disorders or bipolar disorder and healthy controls using FreeSurfer. RESULTS We included 506 patients (49% smokers) and 237 controls (20% smokers) in our study. We found reduced cortical thickness in the left rostral ACC and the left INS in smoking patients compared with nonsmoking patients, but this difference was not found among healthy controls. No dose-response relationship was found between amount of smoking and cortical thickness in these regions. Among patients, maps of thickness along the whole cortical surface revealed reduced insular thickness but no effects in other regions. Among healthy controls, similar analyses revealed increased age-related cortical thinning in the left occipital lobe among smokers compared with nonsmokers. LIMITATIONS The causal direction could not be determined owing to the cross-sectional design and lack of detailed data on smoking addiction and smoking history. CONCLUSION The effect of cigarette smoking should be considered in MRI studies of patients with severe mental illness.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | | | | | - Lynn Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | - Unn Kristin Haukvik
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | - Elisabeth Heffermehl Lange
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | - Ingrid Melle
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | - Ole Andreas Andreassen
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, (Jørgensen, Skjærvø, Mørch-Johnsen, Haukvik, Lange, Agartz); NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo (Jørgensen, Mørch-Johnsen, Haukvik, Lange, Melle, Andreassen, Agartz); the Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo (Skjærvø); and the Division of Mental Health and Addiction, Oslo University Hospital (Melle, Andreassen), Oslo, Norway
| |
Collapse
|
42
|
Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition. Psychiatry Res 2015; 231:202-9. [PMID: 25555505 DOI: 10.1016/j.pscychresns.2014.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022]
Abstract
In executive function, specifically in response inhibition, numerous studies support the essential role for the inferior frontal cortex (IFC). Hypoactivation of the IFC during response-inhibition tasks has been found consistently in subjects with bipolar disorder during manic and euthymic states. The aim of this study was to examine whether reduced IFC activation also exists in unmedicated subjects with bipolar disorder during the depressed phase of the disorder. Participants comprised 19 medication-free bipolar II (BP II) depressed patients and 20 healthy control subjects who underwent functional magnetic resonance imaging (fMRI) while performing a Go/NoGo response-inhibition task. Whole-brain analyses were conducted to assess activation differences within and between groups. The BP II depressed group, compared with the control group, showed significantly reduced activation in right frontal regions, including the IFC (Brodmann's area (BA) 47), middle frontal gyrus (BA 10), as well as other frontal and temporal regions. IFC hypoactivation may be a persistent deficit in subjects with bipolar disorder in both acute mood states as well as euthymia, thus representing a trait feature of bipolar disorder.
Collapse
|
43
|
Oertel-Knöchel V, Reuter J, Reinke B, Marbach K, Feddern R, Alves G, Prvulovic D, Linden DEJ, Knöchel C. Association between age of disease-onset, cognitive performance and cortical thickness in bipolar disorders. J Affect Disord 2015; 174:627-35. [PMID: 25577157 DOI: 10.1016/j.jad.2014.10.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neuroimaging studies in patients with bipolar disorder (BD) have indicated a number of structural brain changes, including reduced cortical thickness. However, the effects of the course of illness, clinical and cognitive variables on cortical thickness in BD patients have not yet been evaluated. METHODS A total of 67 individuals (32 patients with euthymic BD and 35 healthy and age-matched controls) underwent 3D-anatomical magnetic resonance imaging (MRI). Whole-brain cortical thickness and group differences were assessed using the Freesurfer software. Course of disease variables, clinical and cognitive parameters were correlated with cortical thickness measures. RESULTS We found reduced cortical thickness in BD patients compared with controls in the frontal and temporal lobes and in several limbic areas. We also report significant associations between cortical thickness and age of disease-onset, speed of cognitive processing, executive function and depression severity in BD patients. CONCLUSIONS Cortical thickness reduction across frontal and limbic areas is a structural correlate of affective symptom severity and cognitive impairments in BD as well of age of disease-onset. We may assume that frontal lobe structural abnormalities are present in bipolar disorder, and might lead to dysfunctional cognitive functioning. The causality and functional relevance beyond mere correlation, however, is yet to be established. Our findings encourage further longitudinal studies in BD patients and in healthy at-risk subjects in order to discern the temporal order and development of morphological changes and clinical symptoms.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer׳s Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - David E J Linden
- School of Psychology, Cardiff University, United Kingdom; MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Christian Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
44
|
All the world's a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective. Mol Psychiatry 2015; 20:23-31. [PMID: 25048003 PMCID: PMC4303542 DOI: 10.1038/mp.2014.71] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/13/2014] [Accepted: 06/06/2014] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders have traditionally been classified using a static, categorical approach. However, this approach falls short in facilitating understanding of the development, common comorbid diagnoses, prognosis and treatment of these disorders. We propose a 'staging' model of bipolar disorder that integrates genetic and neural information with mood and activity symptoms to describe how the disease progresses over time. From an early, asymptomatic, but 'at-risk' stage to severe, chronic illness, each stage is described with associated neuroimaging findings as well as strategies for mapping genetic risk factors. Integrating more biologic information relating to cardiovascular and endocrine systems, refining methodology for modeling dimensional approaches to disease and developing outcome measures will all be crucial in examining the validity of this model. Ultimately, this approach should aid in developing targeted interventions for each group that will reduce the significant morbidity and mortality associated with bipolar disorder.
Collapse
|
45
|
Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61:180-7. [PMID: 25563516 PMCID: PMC4859940 DOI: 10.1016/j.jpsychires.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.
Collapse
|
46
|
Occipital bending (Yakovlevian torque) in bipolar depression. Psychiatry Res 2015; 231:8-14. [PMID: 25480522 DOI: 10.1016/j.pscychresns.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/25/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022]
Abstract
Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness.
Collapse
|
47
|
Bootsman F, Brouwer RM, Schnack HG, van Baal GCM, van der Schot AC, Vonk R, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. Genetic and environmental influences on cortical surface area and cortical thickness in bipolar disorder. Psychol Med 2015; 45:193-204. [PMID: 25065711 DOI: 10.1017/s0033291714001251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The risk of developing bipolar disorder (BD) has been linked to structural brain abnormalities. The degree to which genes and environment influence the association of BD with cortical surface area remains to be elucidated. In this twin study, genetic and environmental contributions to the association between liability to develop BD and surface area, thickness and volume of the cortex were examined. METHOD The study cohort included 44 affected monozygotic (nine concordant, 12 discordant) and dizygotic (four concordant, 19 discordant) twin pairs, and seven twins from incomplete discordant monozygotic and dizygotic discordant twin pairs. In addition, 37 monozygotic and 24 dizygotic healthy control twin pairs, and six twins from incomplete monozygotic and dizygotic control pairs were included. RESULTS Genetic liability to develop BD was associated with a larger cortical surface in limbic and parietal regions, and a thicker cortex in central and parietal regions. Environmental factors related to BD were associated with larger medial frontal, parietal and limbic, and smaller orbitofrontal surfaces. Furthermore, thinner frontal, limbic and occipital cortex, and larger frontal and parietal, and smaller orbitofrontal volumes were also associated with environmental factors related to BD. CONCLUSIONS Our results suggest that unique environmental factors play a prominent role in driving the associations between liability to develop BD and cortical measures, particularly those involving cortical thickness. Further evaluation of their influence on the surface and thickness of the cortical mantle is recommended. In addition, cortical volume appeared to be primarily dependent on surface and not thickness.
Collapse
Affiliation(s)
- F Bootsman
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R M Brouwer
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - H G Schnack
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - G C M van Baal
- Julius Center, University Medical Center Utrecht,Utrecht,The Netherlands
| | - A C van der Schot
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R Vonk
- Reinier van Arkel Group, 's-Hertogenbosch,The Netherlands
| | - H E Hulshoff Pol
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - W A Nolen
- Department of Psychiatry,University Medical Center Groningen,Groningen,The Netherlands
| | - R S Kahn
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - N E M van Haren
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| |
Collapse
|
48
|
Li M, Metzger CD, Li W, Safron A, van Tol MJ, Lord A, Krause AL, Borchardt V, Dou W, Genz A, Heinze HJ, He H, Walter M. Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 2014; 169:91-100. [PMID: 25173431 DOI: 10.1016/j.jad.2014.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/08/2014] [Accepted: 08/03/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) plays an important role in the neuropathology of major depressive disorder (MDD). So far, the effect of local cortical alteration on metabolites in multiple subdivisions of ACC has not been studied. We aimed to investigate structural and biochemical changes and their relationship in the pregenual ACC (pgACC), dorsal ACC (dACC) in MDD. METHODS We obtained magnetic resonance spectroscopy (MRS) in two investigated regions for 24 depressed patients and matched controls. In each region, cortical thickness (CTh) was calculated within a template mask based on its MRS voxel. We investigated neurotransmitter concentrations of Glx, N-acetyl aspartate (NAA), and myo-inositol (m-Ins) in two investigated regions, as well as their relationships with CTh in depressed individuals and healthy controls. RESULTS Patients showed significantly lower cortical thickness in dACC compared to controls. Glx in dACC significantly correlated with CTh in healthy controls but not MDD patients, while NAA and CTh in dACC significantly correlated in both groups. A marginal decrease of Glx in pgACC was found in the subgroup of more severely depressive patients, compared to the mildly depressed patients. LIMITATIONS Modest sample size and lack of episodes of depression may limit the generalizability of our findings. CONCLUSION Our results indicate an abolished CTh-MRS relation in dACC-associated with structural decline-but not in pgACC, where acute MRS alterations prevailed. Our study provides the first evidence of a neurochemical basis explaining some of the inter-individual variability in CTh in MDD.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenjing Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
| | - Adam Safron
- Department of Psychology, Northwestern University, United States
| | - Marie-José van Tol
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton Lord
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna Linda Krause
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Weiqiang Dou
- Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel Genz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Huiguang He
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Martin Walter
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
49
|
Janssen J, Alemán-Gómez Y, Schnack H, Balaban E, Pina-Camacho L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I, Moreno D, Bargalló N, Parellada M, Arango C, Desco M. Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophr Res 2014; 158:91-9. [PMID: 25085384 DOI: 10.1016/j.schres.2014.06.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. METHOD This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. RESULTS Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, p<0.001) with the GI. CONCLUSIONS In adolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis.
Collapse
Affiliation(s)
- Joost Janssen
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Yasser Alemán-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Hugo Schnack
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Evan Balaban
- Behavioral Neurosciences Program, McGill University, N8-15 Stewart Biological Sciences Building, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
| | - Laura Pina-Camacho
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, 16 de Crespigny Park, London SE5 8AF, UK
| | - Fidel Alfaro-Almagro
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Josefina Castro-Fornieles
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Casanovas, 143, Barcelona 08036, Spain
| | - Soraya Otero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Mental Health Unit, Department of Psychiatry and Psychology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla nº 25, 39008 Santander, Spain
| | - Inmaculada Baeza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain
| | - Dolores Moreno
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Nuria Bargalló
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Image Diagnostic Center, Hospital Clínic, Barcelona, Spain
| | - Mara Parellada
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Celso Arango
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
50
|
Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry 2014; 171:829-43. [PMID: 24626773 PMCID: PMC4119497 DOI: 10.1176/appi.ajp.2014.13081008] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE In this critical review, the authors appraise neuroimaging findings in bipolar disorder in emotion-processing, emotion-regulation, and reward-processing neural circuitry in order to synthesize the current knowledge of the neural underpinnings of bipolar disorder and provide a neuroimaging research road map for future studies. METHOD The authors examined findings from all major studies in bipolar disorder that used functional MRI, volumetric analysis, diffusion imaging, and resting-state techniques, integrating findings to provide a better understanding of larger-scale neural circuitry abnormalities in bipolar disorder. RESULTS Bipolar disorder can be conceptualized, in neural circuitry terms, as parallel dysfunction in prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion-processing and emotion-regulation circuits bilaterally, together with an "overactive" left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward-processing circuitry, resulting in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation, and heightened reward sensitivity. A potential structural basis for these functional abnormalities is gray matter volume decreases in the prefrontal and temporal cortices, the amygdala, and the hippocampus and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. CONCLUSIONS Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuits supporting emotion processing, emotion regulation, and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in youths with bipolar disorder or at risk for bipolar disorder; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful individual-level data. Such studies will help identify clinically relevant biomarkers to guide diagnosis and treatment decision making for individuals with bipolar disorder.
Collapse
|