1
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Okimura T, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable and transportable resting-state neural signatures characterized by functional networks, neurotransmitters, and clinical symptoms in autism. Mol Psychiatry 2024:10.1038/s41380-024-02759-3. [PMID: 39342041 DOI: 10.1038/s41380-024-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Drug Discovery Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Quantum Life Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan.
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
2
|
Bedford SA, Lai MC, Lombardo MV, Chakrabarti B, Ruigrok A, Suckling J, Anagnostou E, Lerch JP, Taylor M, Nicolson R, Stelios G, Crosbie J, Schachar R, Kelley E, Jones J, Arnold PD, Courchesne E, Pierce K, Eyler LT, Campbell K, Barnes CC, Seidlitz J, Alexander-Bloch AF, Bullmore ET, Baron-Cohen S, Bethlehem RAI. Brain-Charting Autism and Attention-Deficit/Hyperactivity Disorder Reveals Distinct and Overlapping Neurobiology. Biol Psychiatry 2024:S0006-3223(24)01513-0. [PMID: 39128574 DOI: 10.1016/j.biopsych.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Autism and attention-deficit/hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology that is still poorly understood. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together and sex differences are often overlooked. Population modeling, often referred to as normative modeling, provides a unified framework for studying age-specific and sex-specific divergences in brain development. METHODS Here, we used population modeling and a large, multisite neuroimaging dataset (N = 4255 after quality control) to characterize cortical anatomy associated with autism and ADHD, benchmarked against models of average brain development based on a sample of more than 75,000 individuals. We also examined sex and age differences and relationship with autistic traits and explored the co-occurrence of autism and ADHD. RESULTS We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume that was localized to the superior temporal cortex, whereas individuals with ADHD showed more global increases in cortical thickness but lower cortical volume and surface area across much of the cortex. The co-occurring autism+ADHD group showed a unique pattern of widespread increases in cortical thickness and certain decreases in surface area. We also found that sex modulated the neuroanatomy of autism but not ADHD, and there was an age-by-diagnosis interaction for ADHD only. CONCLUSIONS These results indicate distinct cortical differences in autism and ADHD that are differentially affected by age and sex as well as potentially unique patterns related to their co-occurrence.
Collapse
Affiliation(s)
- Saashi A Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Amber Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, Canada
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Margot Taylor
- Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer Crosbie
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell Schachar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eric Courchesne
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Karen Pierce
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kathleen Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge Lifetime Autism Spectrum Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Bomatter P, Paillard J, Garces P, Hipp J, Engemann DA. Machine learning of brain-specific biomarkers from EEG. EBioMedicine 2024; 106:105259. [PMID: 39106531 DOI: 10.1016/j.ebiom.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING All authors have been working for F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Philipp Bomatter
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joseph Paillard
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
4
|
Mello M, Fusaro M, Aglioti SM, Minio-Paluello I. Exploring social touch in autistic and non-autistic adults via a self-report body-painting task: The role of sex, social context and body area. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1985-2001. [PMID: 38179707 DOI: 10.1177/13623613231218314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
LAY ABSTRACT What is already known about the topic?At least in neurotypical individuals, social touch represents an important channel for emotional communication associated with social bonding and pain/anxiety modulation. Autistic adults report to avoid social touch more and to have different tactile sensitivity than their non-autistic comparisons.What this paper adds?Few studies specifically investigated social touch in autistic individuals, and none of them examined the role of participants' sex, social context in which social touch occurs, and specific body areas being touched. In our study, adult participants reported how pleasant, erogenous and appropriate they would consider touches delivered by another person over their entire body in intimate (date), friendly (dance class) and professional (physiotherapy-massage session) social contexts. Autistic adults reported social touch to be less pleasant, erogenous and appropriate specifically in intimate and friendly social contexts and in body areas typically touched in these situations. Importantly, autistic females seem more at risk to experience unpleasant social touch as, although they considered it more unpleasant than non-autistic females and autistic males, they did consider it similarly appropriate in professional social contexts where touch is normed to be socially appropriate.Implications for practice, research or policyOur results might improve awareness and understanding about autistic adults' different, and often more discomforting, experience of social touch and thus help consider and respect it during everyday social interactions. Our results might also benefit future research investigating, for instance, the neural underpinnings of social touch differences in autism or aiming at developing support for autistic individuals seeking help in the diverse spheres of social touch.
Collapse
Affiliation(s)
- Manuel Mello
- Sapienza University of Rome, and Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Salvatore Maria Aglioti
- Sapienza University of Rome, and Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ilaria Minio-Paluello
- National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy
| |
Collapse
|
5
|
Gurr C, Splittgerber M, Puonti O, Siemann J, Luckhardt C, Pereira HC, Amaral J, Crisóstomo J, Sayal A, Ribeiro M, Sousa D, Dempfle A, Krauel K, Borzikowsky C, Brauer H, Prehn-Kristensen A, Breitling-Ziegler C, Castelo-Branco M, Salvador R, Damiani G, Ruffini G, Siniatchkin M, Thielscher A, Freitag CM, Moliadze V, Ecker C. Neuroanatomical Predictors of Transcranial Direct Current Stimulation (tDCS)-Induced Modifications in Neurocognitive Task Performance in Typically Developing Individuals. J Neurosci 2024; 44:e1372232024. [PMID: 38548336 PMCID: PMC11140687 DOI: 10.1523/jneurosci.1372-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 05/31/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.
Collapse
Affiliation(s)
- Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Julia Siemann
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Helena C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Amaral
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Mário Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Daniela Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena- Magdeburg, Magdeburg 39120, Germany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | | | | | | | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| |
Collapse
|
6
|
Gu Y, Maria-Stauffer E, Bedford SA, Romero-Garcia R, Grove J, Børglum AD, Martin H, Baron-Cohen S, Bethlehem RA, Warrier V. Polygenic scores for autism are associated with neurite density in adults and children from the general population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.10.24305539. [PMID: 38645251 PMCID: PMC11030520 DOI: 10.1101/2024.04.10.24305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genetic variants linked to autism are thought to change cognition and behaviour by altering the structure and function of the brain. Although a substantial body of literature has identified structural brain differences in autism, it is unknown whether autism-associated common genetic variants are linked to changes in cortical macro- and micro-structure. We investigated this using neuroimaging and genetic data from adults (UK Biobank, N = 31,748) and children (ABCD, N = 4,928). Using polygenic scores and genetic correlations we observe a robust negative association between common variants for autism and a magnetic resonance imaging derived phenotype for neurite density (intracellular volume fraction) in the general population. This result is consistent across both children and adults, in both the cortex and in white matter tracts, and confirmed using polygenic scores and genetic correlations. There were no sex differences in this association. Mendelian randomisation analyses provide no evidence for a causal relationship between autism and intracellular volume fraction, although this should be revisited using better powered instruments. Overall, this study provides evidence for shared common variant genetics between autism and cortical neurite density.
Collapse
Affiliation(s)
- Yuanjun Gu
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | | | - Saashi A. Bedford
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | | | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, 41013, Sevilla, Spain, 41013
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 8210, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, 8000, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, 8000, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark, 8000
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 8210, Denmark
- Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, 8000, Denmark
- Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, 8000, Denmark
| | - Hilary Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Varun Warrier
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
7
|
Wilkes BJ, Archer DB, Farmer AL, Bass C, Korah H, Vaillancourt DE, Lewis MH. Cortico-basal ganglia white matter microstructure is linked to restricted repetitive behavior in autism spectrum disorder. Mol Autism 2024; 15:6. [PMID: 38254158 PMCID: PMC10804694 DOI: 10.1186/s13229-023-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Restricted repetitive behavior (RRB) is one of two behavioral domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding brain alterations linked to RRB. METHODS We utilized neuroimaging data from the National Institute of Mental Health Data Archive to assess basal ganglia and cerebellum structure in a cohort of children and adolescents with ASD compared to typically developing (TD) controls. We evaluated regional gray matter volumes from T1-weighted anatomical scans and assessed diffusion-weighted scans to quantify white matter microstructure with free-water imaging. We also investigated the interaction of biological sex and ASD diagnosis on these measures, and their correlation with clinical scales of RRB. RESULTS Individuals with ASD had significantly lower free-water corrected fractional anisotropy (FAT) and higher free-water (FW) in cortico-basal ganglia white matter tracts. These microstructural differences did not interact with biological sex. Moreover, both FAT and FW in basal ganglia white matter tracts significantly correlated with measures of RRB. In contrast, we found no significant difference in basal ganglia or cerebellar gray matter volumes. LIMITATIONS The basal ganglia and cerebellar regions in this study were selected due to their hypothesized relevance to RRB. Differences between ASD and TD individuals that may occur outside the basal ganglia and cerebellum, and their potential relationship to RRB, were not evaluated. CONCLUSIONS These new findings demonstrate that cortico-basal ganglia white matter microstructure is altered in ASD and linked to RRB. FW in cortico-basal ganglia and intra-basal ganglia white matter was more sensitive to group differences in ASD, whereas cortico-basal ganglia FAT was more closely linked to RRB. In contrast, basal ganglia and cerebellar volumes did not differ in ASD. There was no interaction between ASD diagnosis and sex-related differences in brain structure. Future diffusion imaging investigations in ASD may benefit from free-water estimation and correction in order to better understand how white matter is affected in ASD, and how such measures are linked to RRB.
Collapse
Affiliation(s)
- Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA.
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt School of Medicine, Nashville, TN, USA
- Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Carly Bass
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Korah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Pretzsch CM, Floris DL, Schäfer T, Bletsch A, Gurr C, Lombardo MV, Chatham CH, Tillmann J, Charman T, Arenella M, Jones E, Ambrosino S, Bourgeron T, Dumas G, Cliquet F, Leblond CS, Loth E, Oakley B, Buitelaar JK, Baron-Cohen S, Beckmann CF, Persico AM, Banaschewski T, Durston S, Freitag CM, Murphy DGM, Ecker C. Cross-sectional and longitudinal neuroanatomical profiles of distinct clinical (adaptive) outcomes in autism. Mol Psychiatry 2023; 28:2158-2169. [PMID: 36991132 PMCID: PMC10575772 DOI: 10.1038/s41380-023-02016-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/31/2023]
Abstract
Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.
Collapse
Affiliation(s)
- Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anke Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Chris H Chatham
- F. Hoffmann La Roche, Innovation Center Basel, Basel, Switzerland
| | - Julian Tillmann
- F. Hoffmann La Roche, Innovation Center Basel, Basel, Switzerland
| | - Tony Charman
- Clinical Child Psychology, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martina Arenella
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Emily Jones
- Centre for Brain & Cognitive Development, University of London, London, UK
| | - Sara Ambrosino
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sarah Durston
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|