1
|
Lunghi C, Cailhol L, Massamba V, Renaud S, David P, Laouan Sidi EA, Biskin R, Koch M, Martineau C, Rahme E, Rochette L, Sirois C, Villeneuve E, Vincent P, Lesage A. Cluster B personality disorders and psychotropic medications: a focused analysis of trends and patterns across sex and age groups. Soc Psychiatry Psychiatr Epidemiol 2024:10.1007/s00127-024-02768-1. [PMID: 39287636 DOI: 10.1007/s00127-024-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE This study investigated sex and age differences in patterns of psychotropic medication use before and after the initial diagnosis of Cluster B personality disorders (PDs) and analyzed trends over time. METHODS Analyzing data from the Quebec Integrated Chronic Disease Surveillance System for individuals newly diagnosed with Cluster B PD (≥ 14 years) between 2002 and 2018 and under the provincial public drug plan, we calculated yearly and monthly proportions of individuals exposed to psychotropic medications during the year before and after their diagnosis by sex and age. Robust Poisson regression models assessed the association between sex and exposure to psychotropic medications after the diagnosis of Cluster B PD. RESULTS Among 87,778 individuals with a first Cluster B PD diagnosis (mean age: 44.5 years; 57.5% women), the proportion of users increased post-diagnosis. Notably, after diagnosis, females were more likely to receive psychiatric medications (between 78.9% and 83.7% during the study period vs. 72.8% and 76.8%). Males were less likely than females to receive antidepressants (adjusted prevalence ratio (aPR): 0.83; 99% confidence interval (CI): 0.82-0.85) and anxiolytics (aPR: 0.86; 99%CI: 0.84-0.88), whereas they had higher exposure to antipsychotics (aPR: 1.04; 99%CI: 1.02-1.06) and ADHD medications (aPR: 1.14; 99%CI: 1.07-1.2). Age-specific trends showed increased ADHD medication use among younger patients (14-24 years), and anxiolytic use predominated in those aged ≥ 65 years. CONCLUSIONS Psychotropic medication use was high among Cluster B PD patients, with differences in medication classes according to age and sex. The marked sex and age differences in psychotropic medication use among Cluster B PD patients underscore the need for a sex-sensitive and age-specific approach in psychiatric care.
Collapse
Affiliation(s)
- Carlotta Lunghi
- Department of Medical and Surgical Sciences, Alma Mater University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
- Institut National de Santé Publique du Québec, Quebec, QC, Canada.
| | - Lionel Cailhol
- Department of Psychiatry and Research Center, Institut Universitaire de Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Université de Montréal, Montreal, QC, Canada
| | | | - Suzane Renaud
- Department of Psychiatry, Centre Intégré de Santé et de Services Sociaux (CISSS) des Laurentides, Saint-Jérôme, QC, Canada
| | - Pierre David
- Department of Psychiatry and Research Center, Institut Universitaire de Santé Mentale de Montréal, Montreal, QC, Canada
| | | | - Robert Biskin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marion Koch
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Hôpital de Gatineau, Gatineau, QC, Canada
| | - Cathy Martineau
- Department of Health Sciences, Université du Québec à Rimouski, Lévis, QC, Canada
| | - Elham Rahme
- Department of Medicine, Division of Clinical Epidemiology, McGill University, Montreal, QC, Canada
| | - Louis Rochette
- Institut National de Santé Publique du Québec, Quebec, QC, Canada
| | - Caroline Sirois
- Institut National de Santé Publique du Québec, Quebec, QC, Canada
- Faculty of Pharmacy, Université Laval, Quebec, QC, Canada
| | - Evens Villeneuve
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Institut Universitaire en Santé Mentale de Québec, Quebec, QC, Canada
| | - Philippe Vincent
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Alain Lesage
- Institut National de Santé Publique du Québec, Quebec, QC, Canada
- Department of Psychiatry and Research Center, Institut Universitaire de Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Hong Y, Sourander C, Hackl B, Patton JS, John J, Paatero I, Coffey E. Jnk1 and downstream signalling hubs regulate anxiety-like behaviours in a zebrafish larvae phenotypic screen. Sci Rep 2024; 14:11174. [PMID: 38750129 PMCID: PMC11096340 DOI: 10.1038/s41598-024-61337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Current treatments for anxiety and depression show limited efficacy in many patients, indicating the need for further research into the underlying mechanisms. JNK1 has been shown to regulate anxiety- and depressive-like behaviours in mice, however the effectors downstream of JNK1 are not known. Here we compare the phosphoproteomes from wild-type and Jnk1-/- mouse brains and identify JNK1-regulated signalling hubs. We next employ a zebrafish (Danio rerio) larvae behavioural assay to identify an antidepressant- and anxiolytic-like (AA) phenotype based on 2759 measured stereotypic responses to clinically proven antidepressant and anxiolytic (AA) drugs. Employing machine learning, we classify an AA phenotype from extracted features measured during and after a startle battery in fish exposed to AA drugs. Using this classifier, we demonstrate that structurally independent JNK inhibitors replicate the AA phenotype with high accuracy, consistent with findings in mice. Furthermore, pharmacological targeting of JNK1-regulated signalling hubs identifies AKT, GSK-3, 14-3-3 ζ/ε and PKCε as downstream hubs that phenocopy clinically proven AA drugs. This study identifies AKT and related signalling molecules as mediators of JNK1-regulated antidepressant- and anxiolytic-like behaviours. Moreover, the assay shows promise for early phase screening of compounds with anti-stress-axis properties and for mode of action analysis.
Collapse
Affiliation(s)
- Ye Hong
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Christel Sourander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Benjamin Hackl
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Jedidiah S Patton
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Jismi John
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Eleanor Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| |
Collapse
|
3
|
Yassine S, Almarouk S, Gschwandtner U, Auffret M, Fuhr P, Verin M, Hassan M. Electrophysiological signatures of anxiety in Parkinson's disease. Transl Psychiatry 2024; 14:66. [PMID: 38280864 PMCID: PMC10821912 DOI: 10.1038/s41398-024-02745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024] Open
Abstract
Anxiety is a common non-motor symptom in Parkinson's disease (PD) occurring in up to 31% of the patients and affecting their quality of life. Despite the high prevalence, anxiety symptoms in PD are often underdiagnosed and, therefore, undertreated. To date, functional and structural neuroimaging studies have contributed to our understanding of the motor and cognitive symptomatology of PD. Yet, the underlying pathophysiology of anxiety symptoms in PD remains largely unknown and studies on their neural correlates are missing. Here, we used resting-state electroencephalography (RS-EEG) of 68 non-demented PD patients with or without clinically-defined anxiety and 25 healthy controls (HC) to assess spectral and functional connectivity fingerprints characterizing the PD-related anxiety. When comparing the brain activity of the PD anxious group (PD-A, N = 18) to both PD non-anxious (PD-NA, N = 50) and HC groups (N = 25) at baseline, our results showed increased fronto-parietal delta power and decreased frontal beta power depicting the PD-A group. Results also revealed hyper-connectivity networks predominating in delta, theta and gamma bands against prominent hypo-connectivity networks in alpha and beta bands as network signatures of anxiety in PD where the frontal, temporal, limbic and insular lobes exhibited the majority of significant connections. Moreover, the revealed EEG-based electrophysiological signatures were strongly associated with the clinical scores of anxiety and followed their progression trend over the course of the disease. We believe that the identification of the electrophysiological correlates of anxiety in PD using EEG is conducive toward more accurate prognosis and can ultimately support personalized psychiatric follow-up and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Yassine
- MRC Brain Dynamic Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
- University of Rennes, LTSI - U1099, F-35000, Rennes, France.
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France.
| | - Sourour Almarouk
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Neuroscience Research Centre, Lebanese University, Faculty of Medicine, Beirut, Lebanon
| | - Ute Gschwandtner
- Dept. of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Manon Auffret
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- France Développement Electronique, Monswiller, France
| | - Peter Fuhr
- Dept. of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Marc Verin
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Mahmoud Hassan
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- MINDIG, F-35000, Rennes, France
| |
Collapse
|
4
|
Groenink L, Verdouw PM, Zhao Y, Ter Heegde F, Wever KE, Bijlsma EY. Pharmacological modulation of conditioned fear in the fear-potentiated startle test: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2023; 240:2361-2401. [PMID: 36651922 PMCID: PMC10593622 DOI: 10.1007/s00213-022-06307-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Fear conditioning is an important aspect in the pathophysiology of anxiety disorders. The fear-potentiated startle test is based on classical fear conditioning and over the years, a broad range of drugs have been tested in this test. Synthesis of the available data may further our understanding of the neurotransmitter systems that are involved in the expression of conditioned fear. METHODS Following a comprehensive search in Medline and Embase, we included 68 research articles that reported on 103 drugs, covering 56 different drug classes. The systematic review was limited to studies using acute, systemic drug administration in naive animals. RESULTS Qualitative data synthesis showed that most clinically active anxiolytics, but not serotonin-reuptake inhibitors, reduced cued fear. Anxiogenic drugs increased fear potentiation in 35% of the experiments, reduced fear potentiation in 29% of the experiments, and were without effect in 29% of the experiments. Meta-analyses could be performed for five drug classes and showed that benzodiazepines, buspirone, 5-HT1A agonists, 5-HT1A antagonists, and mGluR2,3 agonists reduced cued conditioned fear. The non-cued baseline startle response, which may reflect contextual anxiety, was only significantly reduced by benzodiazepines and 5-HT1A antagonists. No associations were found between drug effects and methodological characteristics, except for strain. CONCLUSIONS The fear-potentiated startle test appears to have moderate to high predictive validity and may serve as a valuable tool for the development of novel anxiolytics. Given the limited available data, the generally low study quality and high heterogeneity additional studies are warranted to corroborate the findings of this review.
Collapse
Affiliation(s)
- Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Freija Ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Maphanga VB, Skalicka-Wozniak K, Budzynska B, Skiba A, Chen W, Agoni C, Enslin GM, Viljoen AM. Mesembryanthemum tortuosum L. alkaloids modify anxiety-like behaviour in a zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115068. [PMID: 35134486 DOI: 10.1016/j.jep.2022.115068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesembryanthemum tortuosum L. (previously known as Sceletium tortuosum (L.) N.E. Br.) is indigenous to South Africa and traditionally used to alleviate anxiety, stress and depression. Mesembrine and its alkaloid analogues such as mesembrenone, mesembrenol and mesembranol have been identified as the key compounds responsible for the reported effects on the central nervous system. AIM OF THE STUDY To investigate M. tortuosum alkaloids for possible anxiolytic-like effects in the 5-dpf in vivo zebrafish model by assessing thigmotaxis and locomotor activity. MATERIALS AND METHODS Locomotor activity and reverse-thigmotaxis, recognised anxiety-related behaviours in 5-days post fertilization zebrafish larvae, were analysed under simulated stressful conditions of alternating light-dark challenges. Cheminformatics screening and molecular docking were also performed to rationalize the inhibitory activity of the alkaloids on the serotonin reuptake transporter, the accepted primary mechanism of action of selective serotonin reuptake inhibitors. Mesembrine has been reported to have inhibitory effects on serotonin reuptake, with consequential anti-depressant and anxiolytic effects. RESULTS All four alkaloids assessed decreased the anxiety-related behaviour of zebrafish larvae exposed to the light-dark challenge. Significant increases in the percentage of time spent in the central arena during the dark phase were also observed when larvae were exposed to the pure alkaloids (mesembrenone, mesembrenol, mesembrine and mesembrenol) compared to the control. However, mesembrenone and mesembranol demonstrated a greater anxiolytic-like effect than the other alkaloids. In addition to favourable pharmacokinetic and physicochemical properties revealed via in silico predictions, high-affinity interactions characterized the binding of the alkaloids with the serotonin transporter. CONCLUSIONS M. tortuosum alkaloids demonstrated an anxiolytic-like effect in zebrafish larvae providing evidence for its traditional and modern day use as an anxiolytic.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Wozniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Behavioral Studies Laboratory, Department of Medicinal Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093, Lublin, Poland
| | - Andriana Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clement Agoni
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
6
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
7
|
Yeon PS, Jeon JY, Jung MS, Min GM, Kim GY, Han KM, Shin MJ, Jo SH, Kim JG, Shin WS. Effect of Forest Therapy on Depression and Anxiety: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312685. [PMID: 34886407 PMCID: PMC8657257 DOI: 10.3390/ijerph182312685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
This systematic review and meta-analysis aimed to summarize the effects of forest therapy on depression and anxiety using data obtained from randomized controlled trials (RCTs) and quasi-experimental studies. We searched SCOPUS, PubMed, MEDLINE(EBSCO), Web of science, Embase, Korean Studies Information Service System, Research Information Sharing Service, and DBpia to identify relevant studies published from January 1990 to December 2020 and identified 20 relevant studies for the synthesis. The methodological quality of eligible primary studies was assessed by ROB 2.0 and ROBINS-I. Most primary studies were conducted in the Republic of Korea except for one study in Poland. Overall, forest therapy significantly improved depression (Hedges’s g = 1.133; 95% confidence interval (CI): −1.491 to −0.775) and anxiety (Hedges’s g = 1.715; 95% CI: −2.519 to −0.912). The quality assessment resulted in five RCTs that raised potential concerns in three and high risk in two. Fifteen quasi-experimental studies raised high for nine quasi-experimental studies and moderate for six studies. In conclusion, forest therapy is preventive management and non-pharmacologic treatment to improve depression and anxiety. However, the included studies lacked methodological rigor and required more comprehensive geographic application. Future research needs to determine optimal forest characteristics and systematic activities that can maximize the improvement of depression and anxiety.
Collapse
Affiliation(s)
- Poung-Sik Yeon
- Department of Forest Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Jin-Young Jeon
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Myeong-Seo Jung
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Gyeong-Min Min
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Ga-Yeon Kim
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Kyung-Mi Han
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Min-Ja Shin
- Graduated Department of Forest Therapy, Chungbuk National University, Cheongju 28644, Korea; (J.-Y.J.); (M.-S.J.); (G.-M.M.); (G.-Y.K.); (K.-M.H.); (M.-J.S.)
| | - Seong-Hee Jo
- National Center for Forest Therapy, Yeongju 36043, Korea;
| | - Jin-Gun Kim
- Korea Forest Therapy Forum Incorporated Association, Cheongju 28644, Korea
- Correspondence: (J.-G.K.); (W.-S.S.); Tel.: +82-10-6480-4171 (J.-G.K.); +82-43-261-2536 (W.-S.S.)
| | - Won-Sop Shin
- Department of Forest Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence: (J.-G.K.); (W.-S.S.); Tel.: +82-10-6480-4171 (J.-G.K.); +82-43-261-2536 (W.-S.S.)
| |
Collapse
|
8
|
Jeon Y, Lim Y, Yeom J, Kim EK. Comparative metabolic profiling of posterior parietal cortex, amygdala, and hippocampus in conditioned fear memory. Mol Brain 2021; 14:153. [PMID: 34615530 PMCID: PMC8493686 DOI: 10.1186/s13041-021-00863-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
Fear conditioning and retrieval are suitable models to investigate the biological basis of various mental disorders. Hippocampus and amygdala neurons consolidate conditioned stimulus (CS)-dependent fear memory. Posterior parietal cortex is considered important for the CS-dependent conditioning and retrieval of fear memory. Metabolomic screening among functionally related brain areas provides molecular signatures and biomarkers to improve the treatment of psychopathologies. Herein, we analyzed and compared changes of metabolites in the hippocampus, amygdala, and posterior parietal cortex under the fear retrieval condition. Metabolite profiles of posterior parietal cortex and amygdala were similarly changed after fear memory retrieval. While the retrieval of fear memory perturbed various metabolic pathways, most metabolic pathways that overlapped among the three brain regions had high ranks in the enrichment analysis of posterior parietal cortex. In posterior parietal cortex, the most perturbed pathways were pantothenate and CoA biosynthesis, purine metabolism, glutathione metabolism, and NAD+ dependent signaling. Metabolites of posterior parietal cortex including 4'-phosphopantetheine, xanthine, glutathione, ADP-ribose, ADP-ribose 2'-phosphate, and cyclic ADP-ribose were significantly regulated in these metabolic pathways. These results point to the importance of metabolites of posterior parietal cortex in conditioned fear memory retrieval and may provide potential biomarker candidates for traumatic memory-related mental disorders.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yun Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jiwoo Yeom
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|