1
|
Meza-Sosa KF, Valle-Garcia D, González-Conchillos H, Blanco-Ayala T, Salazar A, Flores I, Gómez-Manzo S, González Esquivel DF, Pérez de la Cruz G, Pineda B, Pérez de la Cruz V. Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach. Biomolecules 2024; 14:933. [PMID: 39199321 PMCID: PMC11352964 DOI: 10.3390/biom14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.
Collapse
Affiliation(s)
- Karla F. Meza-Sosa
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - David Valle-Garcia
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Hugo González-Conchillos
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Tonali Blanco-Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Mexico City 11350, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| |
Collapse
|
2
|
Ammar AM, Nabi SA, El-Ghani HMA. Correlation between toxoplasmosis and schizophrenia in Egyptian patients and its impact on dopamine serum levels. Acta Trop 2024; 256:107263. [PMID: 38768696 DOI: 10.1016/j.actatropica.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Toxoplasma gondii, a parasite infecting around one-third of the global population, has been linked to neurological disorders like schizophrenia. Abnormal dopamine levels are linked to the pathophysiology of schizophrenia, but their association remains unclear. This study aimed to investigate the relationship between T. gondii seroprevalence and dopamine serum levels in schizophrenic patients in Egypt. This case-control study included 93 patients diagnosed with schizophrenia and 93 individuals as controls. T. gondii seroprevalence was determined using an enzyme-linked immunosorbent assay (ELISA). Dopamine serum levels were measured using ELISA. Sociodemographic and clinical characteristics were also collected. The study found a higher prevalence of T. gondii IgG antibodies in patients with schizophrenia (68 %) compared to controls (46.2 %). Contact with cats, sausage consumption, and undercooked meat were identified as possible risk factors associated with T. gondii infection. The mean level of serum dopamine was significantly (P < 0.001) higher in patients with schizophrenia (115.3 Pg/ml ±31.8) compared to the control group (75.02 Pg/ml ±26.5). The study found that schizophrenic patients with T. gondii seropositivity had significantly higher dopamine serum levels (mean=145.2 ± 32.1 pg/ml) than those without T. gondii seropositivity (mean=122.5 ± 29.7 pg/ml) (p = 0.001). Logistic regression analysis revealed that T. gondii seropositivity was a significant predictor of increased dopamine serum levels in schizophrenic patients (odds ratio=3.4, 95 % confidence interval=1.8-6.4, p < 0.001). The study suggests that T. gondii seroprevalence may increase dopamine serum levels in Egyptian schizophrenic patients, potentially contributing to dopamine dysregulation in schizophrenia, but further research is needed to confirm these findings and investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Asmaa M Ammar
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sohayla Abdel Nabi
- Psychiatry Department- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hamssa M Abd El-Ghani
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
McGrath JJ, Lim CCW, Saha S. Cat Ownership and Schizophrenia-Related Disorders and Psychotic-Like Experiences: A Systematic Review and Meta-Analysis. Schizophr Bull 2024; 50:489-495. [PMID: 38041862 PMCID: PMC11059813 DOI: 10.1093/schbul/sbad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
BACKGROUND It has been proposed that cat ownership may be a risk-modifying factor for schizophrenia-related disorders and psychotic-like experiences (PLE). This study aimed to systematically review and meta-analyze publications that reported the relationship between cat ownership and schizophrenia-related outcomes. METHODOLOGY We searched Medline, Embase, CINAHL, Web of Science, and gray literature for publications between January 1, 1980, and May 30, 2023, regardless of geographical location and language. Backward citation search methods were used to locate additional articles. We included studies that reported original data on cat ownership and schizophrenia-related outcomes. We meta-analyzed estimates based on broad definitions (cat ownership, cat bites, and cat contact) with estimates with or without covariate adjustments. We pooled comparable estimates using random-effects models and assessed the risk of bias, heterogeneity, and study quality. RESULTS We identified 1915 studies, of which 106 were chosen for full-text review, ultimately resulting in the inclusion of 17 studies. We found an association between broadly defined cat ownership and increased odds of developing schizophrenia-related disorders. For the studies reporting unadjusted odds ratios (OR; n = 10), the pooled OR was 2.14 (95% CI: 1.29-3.55). Exclusion of one outlier study resulted in a pooled OR (n = 9) of 1.56 (95% CI: 1.27-1.92). For the studies reporting adjusted estimates (n = 5), the pooled OR was 2.44 (95% CI: 1.59-3.73). After excluding one study with suboptimal exposure/design features, the pooled adjusted OR (n = 4) was 2.40 (95% CI: 1.50-3.86). We were unable to aggregate the estimates for the PLE outcomes because of the broad range of measures. CONCLUSIONS Our findings provide support for the hypothesis that cat exposure is associated with an increased risk of broadly defined schizophrenia-related disorders; however, the findings related to PLE as an outcome are mixed. There is a need for more high-quality studies in this field. PROSPERO REGISTRATION PROSPERO 2023 CRD42023426974. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023426974.
Collapse
Affiliation(s)
- John J McGrath
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Carmen C W Lim
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Sukanta Saha
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| |
Collapse
|
4
|
Abdoli A, Ghaffarifar F, Sharifi Z, Taghipour A. Toxoplasma gondii infection and testosterone alteration: A systematic review and meta-analyses. PLoS One 2024; 19:e0297362. [PMID: 38568993 PMCID: PMC10990213 DOI: 10.1371/journal.pone.0297362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/03/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a worldwide distributed protozoan parasite which has infected a wide range of warm-blooded animals and humans. The most common form of T. gondii infection is asymptomatic (latent); nevertheless, latent toxoplasmosis can induce various alterations of sex hormones, especially testosterone, in infected humans and animals. On the other hand, testosterone is involved in behavioral traits and reproductive functions in both sexes. Hence, the purpose of this systematic review is to summarize the available evidence regarding the association between T. gondii infection and testosterone alteration. METHODS In the setting of a systematic review, an electronic search (any date to 10 January 2023) without language restrictions was performed using Science Direct, Web of Science, PubMed, Scopus, and Google Scholar. The PRISMA guidelines were followed. Following the initial search, a total of 12,306 titles and abstracts were screened initially; 12,281 were excluded due to the lack of eligibility criteria or duplication. Finally, 24 articles met the included criteria. A mean±standard deviation (SD) was calculated to assess the difference of testosterone between T. gondii positive and T. gondii negative humans. The possibility of publication bias was assessed using Egger's regression. P-value < 0.05 was considered statistically significant. RESULTS This systematic review identified 24 articles (18 studies in humans and six studies in animals). Most human studies (13 out of 19) reported an increased level of testosterone following latent toxoplasmosis in males, while three studies reported decreased levels and two studies reported an insignificant change. Eleven articles (seven datasets in males and seven datasets in females) were eligible to be included in the data synthesis. Based on the random-effects model, the pooled mean± SD of testosterone in T. gondii positive than T. gondii negative was increased by 0.73 and 0.55 units in males and females, respectively. The Egger's regression did not detect a statistically significant publication bias in males and females (p = value = 0.95 and 0.71), respectively. Three studies in male animals (rats, mice, and spotted hyenas) and two studies in female animals (mice and spotted hyenas) reported a decline in testosterone in infected compared with non-infected animals. While, one study in female rats reported no significant changes of testosterone in infected than non-infected animals. Moreover, two studies in male rats reported an increased level of testosterone in infected than non-infected animals. CONCLUSIONS This study provides new insights about the association between T. gondii infection and testosterone alteration and identifies relevant data gaps that can inform and encourage further studies. The consequence of increased testosterone levels following T. gondii infection could partly be associated with increased sexual behavior and sexual transmission of the parasite. On the other hand, declining testosterone levels following T. gondii infection may be associated with male reproductive impairments, which were observed in T. gondii-infected humans and animals. Furthermore, these findings suggest the great need for more epidemiological and experimental investigations in depth to understand the relationship between T. gondii infection and testosterone alteration alongside with future consequences of testosterone alteration.
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Taghipour
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
5
|
Liu J, Lustberg DJ, Galvez A, Liles LC, McCann KE, Weinshenker D. Genetic disruption of dopamine β-hydroxylase dysregulates innate responses to predator odor in mice. Neurobiol Stress 2024; 29:100612. [PMID: 38371489 PMCID: PMC10873756 DOI: 10.1016/j.ynstr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
In rodents, exposure to predator odors such as cat urine acts as a severe stressor that engages innate defensive behaviors critical for survival in the wild. The neurotransmitters norepinephrine (NE) and dopamine (DA) modulate anxiety and predator odor responses, and we have shown previously that dopamine β-hydroxylase knockout (Dbh -/-), which reduces NE and increases DA in mouse noradrenergic neurons, disrupts innate behaviors in response to mild stressors such as novelty. We examined the consequences of Dbh knockout on responses to predator odor (bobcat urine) and compared them to Dbh-competent littermate controls. Over the first 10 min of predator odor exposure, controls exhibited robust defensive burying behavior, whereas Dbh -/- mice showed high levels of grooming. Defensive burying was potently suppressed in controls by drugs that reduce NE transmission, while excessive grooming in Dbh -/- mice was blocked by DA receptor antagonism. In response to a cotton square scented with a novel "neutral" odor (lavender), most control mice shredded the material, built a nest, and fell asleep within 90 min. Dbh -/- mice failed to shred the lavender-scented nestlet, but still fell asleep. In contrast, controls sustained high levels of arousal throughout the predator odor test and did not build nests, while Dbh -/- mice were asleep by the 90-min time point, often in shredded bobcat urine-soaked nesting material. Compared with controls exposed to predator odor, Dbh -/- mice demonstrated decreased c-fos induction in the anterior cingulate cortex, lateral septum, periaqueductal gray, and bed nucleus of the stria terminalis, but increased c-fos in the locus coeruleus and medial amygdala. These data indicate that relative ratios of central NE and DA signaling coordinate the type and valence of responses to predator odor.
Collapse
Affiliation(s)
| | | | - Abigail Galvez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Beaumont E, Brodeur J, Thomas F, Dujon AM, Lupien SJ. Toxoplasma gondii infection in people with schizophrenia is related to higher hair glucocorticoid levels. Front Psychiatry 2024; 15:1286135. [PMID: 38435971 PMCID: PMC10904596 DOI: 10.3389/fpsyt.2024.1286135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Toxoplasma gondii (TG) is a common protozoan parasite infecting approximately one third of the human population. Animal studies have shown that this parasite can manipulate its host behavior. Based on this, human studies have assessed if TG can be involved in mental health disorders associated with important behavioral modifications such as schizophrenia. However, results have been discrepant. Given that TG has a strong impact on fear and risk-taking processes in animal studies and that fear and risk-taking behaviors are associated with the human stress response, we tested whether glucocorticoid biomarkers (salivary and hair) differ in people with schizophrenia and controls as a function of TG status. Methods We measured TG antibodies in blood samples, as well as salivary and hair glucocorticoid levels in 226 people with schizophrenia (19.9% women, mean age = 39 years old) and 129 healthy individuals (controls) (45.7% women, mean age = 41 years old). Results The results showed that people with schizophrenia infected with TG presented significantly higher hair glucocorticoid concentrations than non-infected people with schizophrenia. This effect was not found in control participants. No effect was observed for salivary glucocorticoid levels. Additionally, there were no associations between TG infection and positive psychotic symptoms nor impulsivity. Discussion These results show that people with schizophrenia present high levels of hair glucocorticoid levels only when they are infected with TG. Further studies performed in populations suffering from other mental health disorders are needed to determine if this effect is specific to schizophrenia, or whether it is generalized across mental health disorders.
Collapse
Affiliation(s)
- Emy Beaumont
- Institut Universitaire en Santé Mentale de Montréal, Center for Studies on Human Stress, Montréal, QC, Canada
- Research Center, Institut Universitaire en Santé Mentale de Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Jacques Brodeur
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Frédéric Thomas
- Center for Ecological and Evolutionary Research on Cancer (CREEC), Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- Center for Ecological and Evolutionary Research on Cancer (CREEC), Université de Montpellier, Montpellier, France
- Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | | - Sonia J. Lupien
- Institut Universitaire en Santé Mentale de Montréal, Center for Studies on Human Stress, Montréal, QC, Canada
- Research Center, Institut Universitaire en Santé Mentale de Montréal, Montréal, QC, Canada
- Depatment of Psychiatry and Addiction, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Montalbano G, Kung VM, Franco-Paredes C, Vargas Barahona L, Chastain DB, Tuells J, Henao-Martínez AF, Montoya JG, Reno E. Positive Toxoplasma IgG Serology Is Associated with Increased Overall Mortality - A Propensity Score-Matched Analysis. Am J Trop Med Hyg 2024; 110:238-245. [PMID: 38109768 PMCID: PMC10859811 DOI: 10.4269/ajtmh.23-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/20/2023] Open
Abstract
Toxoplasma gondii is a prevalent parasitic disease with significant morbidity and mortality in immunocompromised populations. We lack long-term outcomes for latent infections. We aimed to elucidate the relationship between latent T. gondii infection and mortality risk. We queried TriNetX, a international multicenter network, to validate mortality risk differences among patients with positive or negative toxoplasma IgG through propensity score matching (PSM). We excluded patients with toxoplasmosis disease by International Classification of Diseases codes or polymerase chain reaction testing. We found 28,138 patients with available toxoplasma IgG serology. Seropositive patients were older and had a male preponderance. More seropositive patients identified as Hispanic, Latino, or Black persons. Patients who were positive for T. gondii IgG serology were slightly more likely to have underlying heart failure, a transplanted organ or tissue, malignant neoplasms of lymphoid or hematopoietic tissues, and diseases of the nervous system than seronegative controls. After PSM of patients with positive (N = 6,475) and negative (N = 6,475) toxoplasma IgG serologies, toxoplasmosis-positive patients were more likely to have long-term drug use but less likely to suffer from behavioral disorders. The overall PSM 1- and 5-year mortality was higher among patients with a positive toxoplasma IgG serology. The risk of schizophrenia was increased at 5 years. We found a prevalence of toxoplasma IgG positivity of 0.03% during the last 3 years. Latent T. gondii associates with a higher overall mortality risk. The study of social determinants of health and follow-up studies are necessary to corroborate the findings and find possible causal mechanisms.
Collapse
Affiliation(s)
- Gabrielle Montalbano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Vanessa M. Kung
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Franco-Paredes
- Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Lilian Vargas Barahona
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel B. Chastain
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, Georgia
| | - Jose Tuells
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, Spain
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - José G. Montoya
- Jack S. Remington Laboratory for Specialty Diagnostics, National Reference Center for the Study and Diagnosis of Toxoplasmosis, Palo Alto, California
| | - Elaine Reno
- Department of Emergency Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
8
|
Percelay S, Lahogue C, Billard JM, Freret T, Boulouard M, Bouet V. The 3-hit animal models of schizophrenia: Improving strategy to decipher and treat the disease? Neurosci Biobehav Rev 2024; 157:105526. [PMID: 38176632 DOI: 10.1016/j.neubiorev.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| |
Collapse
|
9
|
Liu J, Lustberg DJ, Galvez A, Liles LC, McCann KE, Weinshenker D. Genetic disruption of dopamine β-hydroxylase dysregulates innate responses to predator odor in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.545975. [PMID: 38234825 PMCID: PMC10793432 DOI: 10.1101/2023.06.21.545975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In rodents, exposure to predator odors such as cat urine acts as a severe stressor that engages innate defensive behaviors critical for survival in the wild. The neurotransmitters norepinephrine (NE) and dopamine (DA) modulate anxiety and predator odor responses, and we have shown previously that dopamine β-hydroxylase knockout (Dbh -/-), which reduces NE and increases DA in mouse noradrenergic neurons, disrupts innate behaviors in response to mild stressors such as novelty. We examined the consequences of Dbh knockout (Dbh -/-) on responses to predator odor (bobcat urine) and compared them to Dbh-competent littermate controls. Over the first 10 min of predator odor exposure, controls exhibited robust defensive burying behavior, whereas Dbh -/- mice showed high levels of grooming. Defensive burying was potently suppressed in controls by drugs that reduce NE transmission, while excessive grooming in Dbh -/- mice was blocked by DA receptor antagonism. In response to a cotton square scented with a novel "neutral" odor (lavender), most control mice shredded the material, built a nest, and fell asleep within 90 min. Dbh -/- mice failed to shred the lavender-scented nestlet, but still fell asleep. In contrast, controls sustained high levels of arousal throughout the predator odor test and did not build nests, while Dbh -/- mice were asleep by the 90-min time point, often in shredded bobcat urine-soaked nesting material. Compared with controls exposed to predator odor, Dbh -/- mice demonstrated decreased c-fos induction in the anterior cingulate cortex, lateral septum, periaqueductal gray, and bed nucleus of the stria terminalis, but increased c-fos in the locus coeruleus and medial amygdala. These data indicate that relative ratios of central NE and DA signaling coordinate the type and valence of responses to predator odor.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Daniel J. Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Abigail Galvez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Katharine E. McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
10
|
Brito RMDM, da Silva MCM, Vieira-Santos F, de Almeida Lopes C, Souza JLN, Bastilho AL, de Barros Fernandes H, de Miranda AS, de Oliveira ACP, de Almeida Vitor RW, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice. Brain Behav Immun Health 2023; 30:100652. [PMID: 37396335 PMCID: PMC10308216 DOI: 10.1016/j.bbih.2023.100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023] Open
Abstract
Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Carolina Machado da Silva
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Heliana de Barros Fernandes
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Laboratory of Toxoplasmosis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Parija SC. Neuroparasitology- A New Horizon. Trop Parasitol 2023; 13:71-72. [PMID: 37860606 PMCID: PMC10583784 DOI: 10.4103/tp.tp_52_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Subhash Chandra Parija
- Editor-in-Chief, and Ex-Vice-Chancellor Sri Balaji Vidyapeeth, Puducherry, India. E-mail:
| |
Collapse
|
12
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
13
|
Social interaction, psychotic disorders and inflammation: A triangle of interest. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110697. [PMID: 36521587 DOI: 10.1016/j.pnpbp.2022.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Social interaction difficulties are a hallmark of psychotic disorders, which in some cases can be definitely traced back to autoimmunological causes. Interestingly, systemic and intrathecal inflammation have been shown to significantly influence social processing by increasing sensitivity to threatening social stimuli, which bears some resemblance to psychosis. In this article, we review evidence for the involvement of systemic and intrathecal inflammatory processes in psychotic disorders and how this might help to explain some of the social impairments associated with this group of disorders. Vice versa, we also discuss evidence for the immunomodulatory function of social interactions and their potential role for therapeutic interventions in psychotic disorders.
Collapse
|
14
|
Veleva I, Stoychev K, Stoimenova-Popova M, Stoyanov L, Mineva-Dimitrova E, Angelov I. Toxoplasma gondii seropositivity and cognitive function in adults with schizophrenia. Schizophr Res Cogn 2022; 30:100269. [PMID: 36065435 PMCID: PMC9440062 DOI: 10.1016/j.scog.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Introduction and methods Based on the limited research focusing on the severity of cognitive deterioration in schizophrenia with preceding toxoplasmosis, we sampled 89 demographically matched paranoid schizophrenia patients (mean age 38.97 years) with (n = 42) and without (n = 47) seroprevalence of IgG type anti T. gondii antibodies as marker of past infection. They underwent examination of verbal memory (10 words Luria test), logical memory and visual memory (BVRT), processing speed (TMT-A/DSST) and executive functions (TMT-B/verbal fluency). We compared the results of both groups, taking into account the normative values for the Bulgarian population where available. We also compared the two groups in terms of clinical severity as evidenced by positive, negative and disorganization sub-scores of the PANSS. Results While both groups were expectedly under the population norms for verbal and logical memory, seropositive patients showed significantly bigger impairment in verbal memory (Luria Smax = 72.85 vs 78.51; p = 0.029), psychomotor speed (TMT-A 50.98 s vs 44.64 s; p = 0.017), semantic verbal fluency (27.12 vs 30.02; p = 0.011) and literal verbal fluency (17.17 vs 18.78; p = 0.014) compared to the seronegative ones. In addition to that, they gave less correct answers on the BVRT (2.98 vs 4.09; p = 0.006) while making markedly more errors (13.95 vs 10.21; p = 0.002). Despite not reaching statistical significance, past toxoplasmosis was associated with higher score on the PANSS disorganization sub-scale (16.50 points vs 14.72 points) and with lower educational attainment. Conclusion Our results suggest a more profound neuropathological insult(s) resulting in greater cognitive impairment in schizophrenia cases that are exposed to T. gondii infection.
Collapse
Affiliation(s)
- Ivanka Veleva
- Department of Psychiatry and Medical Psychology, Medical University Pleven, Bulgaria
| | - Kaloyan Stoychev
- Department of Psychiatry and Medical Psychology, Medical University Pleven, Bulgaria
| | | | - Lyudmil Stoyanov
- Department of Infectious Diseases, Epidemiology, Parasitology and Tropical Medicine, Medical University Pleven, Bulgaria
| | | | - Ivelin Angelov
- Department of Infectious Diseases, Epidemiology, Parasitology and Tropical Medicine, Medical University Pleven, Bulgaria
| |
Collapse
|
15
|
Rantala MJ, Luoto S, Borráz-León JI, Krams I. Schizophrenia: the new etiological synthesis. Neurosci Biobehav Rev 2022; 142:104894. [PMID: 36181926 DOI: 10.1016/j.neubiorev.2022.104894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 10/31/2022]
Abstract
Schizophrenia has been an evolutionary paradox: it has high heritability, but it is associated with decreased reproductive success. The causal genetic variants underlying schizophrenia are thought to be under weak negative selection. To unravel this paradox, many evolutionary explanations have been suggested for schizophrenia. We critically discuss the constellation of evolutionary hypotheses for schizophrenia, highlighting the lack of empirical support for most existing evolutionary hypotheses-with the exception of the relatively well supported evolutionary mismatch hypothesis. It posits that evolutionarily novel features of contemporary environments, such as chronic stress, low-grade systemic inflammation, and gut dysbiosis, increase susceptibility to schizophrenia. Environmental factors such as microbial infections (e.g., Toxoplasma gondii) can better predict the onset of schizophrenia than polygenic risk scores. However, researchers have not been able to explain why only a small minority of infected people develop schizophrenia. The new etiological synthesis of schizophrenia indicates that an interaction between host genotype, microbe infection, and chronic stress causes schizophrenia, with neuroinflammation and gut dysbiosis mediating this etiological pathway. Instead of just alleviating symptoms with drugs, the parasite x genotype x stress model emphasizes that schizophrenia treatment should focus on detecting and treating possible underlying microbial infection(s), neuroinflammation, gut dysbiosis, and chronic stress.
Collapse
Affiliation(s)
- Markus J Rantala
- Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| | - Severi Luoto
- School of Population Health, University of Auckland, 1023 Auckland, New Zealand
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, 1004, Rīga, Latvia
| |
Collapse
|