1
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
2
|
Deng X, Zeng Y, Ding D. MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury. Appl Biochem Biotechnol 2024; 196:5235-5248. [PMID: 38153649 DOI: 10.1007/s12010-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.
Collapse
Affiliation(s)
- Xinbo Deng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Ying Zeng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Dan Ding
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China.
| |
Collapse
|
3
|
Du L, He X, Xiong X, Zhang X, Jian Z, Yang Z. Vagus nerve stimulation in cerebral stroke: biological mechanisms, therapeutic modalities, clinical applications, and future directions. Neural Regen Res 2024; 19:1707-1717. [PMID: 38103236 PMCID: PMC10960277 DOI: 10.4103/1673-5374.389365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life. Many stroke victims are left with long-term neurological dysfunction, which adversely affects the well-being of the individual and the broader socioeconomic impact. Currently, post-stroke brain dysfunction is a major and difficult area of treatment. Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autism, refractory depression, epilepsy, and Alzheimer's disease. It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as altering neurotransmitters and the plasticity of central neurons. In animal models of acute ischemic stroke, vagus nerve stimulation has been shown to reduce infarct size, reduce post-stroke neurological damage, and improve learning and memory capacity in rats with stroke by reducing the inflammatory response, regulating blood-brain barrier permeability, and promoting angiogenesis and neurogenesis. At present, vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation. Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in improving upper limb motor and cognitive abilities in stroke patients. Further clinical studies have shown that non-invasive vagus nerve stimulation, including ear/cervical vagus nerve stimulation, can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect. In this paper, we first describe the multiple effects of vagus nerve stimulation in stroke, and then discuss in depth its neuroprotective mechanisms in ischemic stroke. We go on to outline the results of the current major clinical applications of invasive and non-invasive vagus nerve stimulation. Finally, we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends. We believe that vagus nerve stimulation, as an effective treatment for stroke, will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability.
Collapse
Affiliation(s)
- Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuan He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Kang JB, Son HK, Park DJ, Jin YB, Shah FA, Koh PO. Modulation of thioredoxin by chlorogenic acid in an ischemic stroke model and glutamate-exposed neurons. Neurosci Lett 2024; 825:137701. [PMID: 38395190 DOI: 10.1016/j.neulet.2024.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Ischemic stroke increases the production of reactive oxygen species (ROS), which can eventually lead to neuronal death. Thioredoxin is a small reductase protein that acts as an eliminator of ROS and protects neurons from brain damage. Chlorogenic acid is known as a phenolic compound that has a neuroprotective effect. We investigated the change of thioredoxin expression by chlorogenic acid in a middle cerebral artery occlusion (MCAO) animal model. Adult rats were injected intraperitoneally with phosphate buffered saline or chlorogenic acid (30 mg/kg) 2 h after MCAO. MCAO damage induced neurological defects and increased ROS and lipid peroxidation levels, however, chlorogenic acid mitigated these changes. MCAO damage reduced thioredoxin expression, which was mitigated by chlorogenic acid treatment. The interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) was decreased in MCAO animals, chlorogenic acid treatment prevented this decrease. In cultured neurons, chlorogenic acid dose-dependently attenuated glutamate-induced decreases in cell viability and thioredoxin expression. Glutamate toxicity downregulated bcl-2 and upregulated bax, cytochrome c, and caspase-3, however, chlorogenic acid attenuated these changes. The mitigating effect of chlorogenic acid was lower in thioredoxin siRNA-transfected cells than in non-transfected cells. These results provide evidence that chlorogenic acid exerts potent antioxidant and neuroprotective effects through regulation of thioredoxin and modulation of ASK1 and thioredoxin binding in ischemic brain injury. These findings indicate that chlorogenic acid exerts a neuroprotective effect by regulating thioredoxin expression in cerebral ischemia and glutamate exposure conditions.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Hyun-Kyoung Son
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Yeung-Bae Jin
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Fawad-Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea.
| |
Collapse
|
5
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Medeiros R, Rossi S, López E, Miraballes I, Borthagaray G. Development and application of novel ELISA-based analytical tools for assessing nitroxidative distress biomarkers in ischemic stroke: implications for improved diagnosis and clinical management. J Immunoassay Immunochem 2024; 45:122-149. [PMID: 38419307 DOI: 10.1080/15321819.2024.2312812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ischemic cerebrovascular accident (iCVA) is a public health issue, whose subjacent events involve the development of nitroxidative distress. Identifying biomarkers that assist in the diagnosis of this disease has clinically relevant implications. The aim of this study was to develop an analytic tool for measuring nitroxidative distress biomarkers, intended for application in clinical practice to enhance patient healthcare. Three enzyme linked immunosorbent assays (ELISA) were developed, with different detection objectives. One of them, in a sandwich format, quantifies the amount of fibrinogen in human plasma, an important glycoprotein involved in the blood coagulation process, contributing to thrombus formation and thereby participating in the mechanism of ischemic stroke. Another ELISA, also in a sandwich format, detects the presence of nitrotyrosine residues in fibrinogen from human plasma, a nitroxidative posttranslational modification resulting from the attack of peroxynitrite by-products on tyrosine residues present in proteins. The third one, in inhibition format, determines human plasma nitrotyrosine total content and was used to analyze human plasma samples from control and iCVA patients. Those two groups of plasma samples were analyzed using inhibition ELISA, revealing statistically significant differences in their nitrotyrosine content and molar ratios of nitrotyrosine to fibrinogen, which were higher in the iCVA group. This study provides evidence that nitroxidative distress occurs in ischemic stroke, as indicated by the detection of the biomarker nitrotyrosine. This finding supports other studies that also identified nitrotyrosine in ischemic stroke, through several different methods. This specific ELISA method is applicable for the rapid analysis of clinical samples, making it a potential clinical tool for assessing iCVA patients.
Collapse
Affiliation(s)
- Romina Medeiros
- Unit of Clinical Biochemistry and Hematology, Central Laboratory Hospital Maciel, Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Silvina Rossi
- Unit of Clinical Immunology, Biotechnology Laboratory Instituto Polo Tecnológico Pando, Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Canelones, Uruguay
| | - Elizabeth López
- Unit of Clinical Biochemistry and Hematology, Central Laboratory Hospital Maciel, Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Iris Miraballes
- Unit of Clinical Immunology, Biotechnology Laboratory Instituto Polo Tecnológico Pando, Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Canelones, Uruguay
| | - Graciela Borthagaray
- Clinical Biochemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Zhang L, Zhou X, Zhao J, Wang X. Research hotspots and frontiers of preconditioning in cerebral ischemia: A bibliometric analysis. Heliyon 2024; 10:e24757. [PMID: 38317957 PMCID: PMC10839892 DOI: 10.1016/j.heliyon.2024.e24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Background Preconditioning is a promising strategy against ischemic brain injury, and numerous studies in vitro and in vivo have demonstrated its neuroprotective effects. However, at present there is no bibliometric analysis of preconditioning in cerebral ischemia. Therefore, a comprehensive overview of the current status, hot spots, and emerging trends in this research field is necessary. Materials and methods Studies on preconditioning in cerebral ischemia from January 1999-December 2022 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace was used for data mining and visual analysis. Results A total of 1738 papers on preconditioning in cerebral ischemia were included in the study. The annual publications showed an upwards and then downwards trend but currently remain high in terms of annual publications. The US was the leading country, followed by China, the most active country in recent years. Capital Medical University published the largest number of articles. Perez-Pinzon, Miguel A contributed the most publications, while KITAGAWA K was the most cited author. The focus of the study covered three areas: (1) relevant diseases and experimental models, (2) types of preconditioning and stimuli, and (3) mechanisms of ischemic tolerance. Remote ischemic preconditioning, preconditioning of mesenchymal stem cells (MSCs), and inflammation are the frontiers of research in this field. Conclusion Our study provides a visual and scientific overview of research on preconditioning in cerebral ischemia, providing valuable information and new directions for researchers.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo ,255026, China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingchen Wang
- Division of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| |
Collapse
|
8
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
9
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
10
|
Yu J, Zhu H, Taheri S, Lee JY, Diamond DM, Kirstein C, Kindy MS. Serum amyloid A-dependent inflammasome activation and acute injury in a mouse model of experimental stroke. RESEARCH SQUARE 2023:rs.3.rs-3258406. [PMID: 37720021 PMCID: PMC10503850 DOI: 10.21203/rs.3.rs-3258406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Serum amyloid A (SAA) proteins increase dramatically in the blood following inflammation. Recently, SAAs are increased in humans following stroke and in ischemic animal models. However, the impact of SAAs on whether this signal is critical in the ischemic brain remains unknown. Therefore, we investigated the role of SAA and SAA signaling in the ischemic brain. Wildtype and SAA deficient mice were exposed to middle cerebral artery occlusion and reperfusion, examined for the impact of infarct volumes, behavioral changes, inflammatory markers, TUNEL staining, and BBB changes. The underlying mechanisms were investigated using SAA deficient mice, transgenic mice and viral vectors. SAA levels were significantly increase following MCAo and mice deficient in SAAs showed reduced infarct volumes and improved behavioral outcomes. SAA deficient mice showed a reduction in TUNEL staining, inflammation and decreased glial activation. Mice lacking acute phase SAAs demonstrated a reduction in expression of the NLRP3 inflammasome and SAA/NLRP3 KO mice showed improvement. Restoration of SAA expression via SAA tg mice or adenoviral expression reestablished the detrimental effects of SAA. A reduction in BBB permeability was seen in the SAA KO mice and anti-SAA antibody treatment reduced the effects on ischemic injury. SAA signaling plays a critical role in regulating NLRP3-induced inflammation and glial activation in the ischemic brain. Blocking this signal will be a promising approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Jin Yu
- University of South Florida
| | | | | | | | | | | | | |
Collapse
|
11
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
12
|
Izadi Z, Barzegari E, Iranpanah A, Sajadimajd S, Derakhshankhah H. Gentamycin Rationally Repositioned to Inhibit miR-34a Ameliorates Oxidative Injury to PC12 Cells. ACS OMEGA 2023; 8:771-781. [PMID: 36643496 PMCID: PMC9835649 DOI: 10.1021/acsomega.2c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke accompanies oxidative stress and cell death in the cerebral tissue. The microRNA miR-34a plays a pivotal role in this molecular pathology. This study presents the rational repositioning of aminoglycosidic antibiotics as miR-34a antagonists in order to assess their efficiency in protecting the PC12 stroke model cells from oxidative stress occurring under cerebral ischemic conditions. A library of 29 amino-sugar compounds were screened against anticipated structural models of miR-34a through molecular docking. MiR-ligand interactions were mechanistically studied by molecular dynamics simulations and free-energy calculations. Cultured PC12 cells were treated by H2O2 alone or in combination with gentamycin and neomycin as selected drugs. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and annexin V-FITC/propidium iodate (PI) double staining assays, respectively. The expression levels of key factors involved in cell proliferation, oxidative stress, and apoptosis in treated PC12 cells were measured through a quantitative real-time polymerase chain reaction and flow cytometric annexin V-FITC/PI double staining assays. A stable and energetically favorable binding was observed for miR-34a with gentamycin and neomycin. Gentamycin pretreatments followed by H2O2 oxidative injury led to increased cell viability and protected PC12 cells against H2O2-induced apoptotic events. This study will help in further understanding how the suppression of miR-34a in neural tissue affects the cell viability upon stroke.
Collapse
Affiliation(s)
- Zhila Izadi
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| | - Ebrahim Barzegari
- Medical
Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Amin Iranpanah
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| | - Soraya Sajadimajd
- Department
of Biology, Faculty of Science, Razi University, Kermanshah 67144-14971, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
13
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
14
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
15
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
16
|
Wang Y, Liu J, Yu B, Jin Y, Li J, Ma X, Yu J, Niu J, Liang X. Umbilical cord-derived mesenchymal stem cell conditioned medium reverses neuronal oxidative injury by inhibition of TRPM2 activation and the JNK signaling pathway. Mol Biol Rep 2022; 49:7337-7345. [PMID: 35585377 PMCID: PMC9304044 DOI: 10.1007/s11033-022-07524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Background The mechanism by which MSC-CM protects neuronal cells against ischemic injury remains to be elucidated. In this study, we aimed to clarify the protective effect of umbilical cord-derived mesenchymal stem cell conditioned medium (UC-MSC-CM) on neuronal oxidative injury and its potential mechanism. Methods and Results Neuronal oxidative damage was mimicked by H2O2 treatment of the HT22 cell line. The numbers of cleaved-Caspase-3-positive cells and protein expression of Caspase-9 induced by H2O2 treatment were decreased by UC-MSC-CM treatment. Furthermore, SOD protein expression was increased in the MSC-CM group compared with that in the H2O2 group. The H2O2-induced TRPM2-like currents in HT22 cells were attenuated by MSC-CM treatment. In addition, H2O2 treatment downregulated the expression of p-JNK protein in HT22 cells, and this the downward trend was reversed by incubation with MSC-CM. Conclusions UC-MSC-CM protects neurons against oxidative injury, possibly by inhibiting activation of TRPM2 and the JNK signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China
| | - Jiaxin Liu
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China
| | - Baocong Yu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 750004, Yinchuan, China
| | - Yiran Jin
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China
| | - Jiahui Li
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China
| | - Xiaona Ma
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China
| | - Jianqiang Yu
- School of Pharmacology, Ningxia Medical University, 750004, Yinchuan, China.
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 750004, Yinchuan, China.
| | - Xueyun Liang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, 750001, Yinchuan, China.
| |
Collapse
|
17
|
Wu G, Zhang X, Li S, Wang L, Bai J, Wang H, Shu Q. Silencing ATF4 inhibits JMJD3‐dependent JUNB/ETS1 axis and mitigates cerebral ischemic injury. J Biochem Mol Toxicol 2022; 36:e23070. [PMID: 35403324 DOI: 10.1002/jbt.23070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gang Wu
- Department of Anesthesiology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Xi'an Zhang
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| | - Shijun Li
- Department of Pharmacy Wuhan Union Hospital Wuhan China
| | - Lina Wang
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| | - Jie Bai
- Department of Anesthesiology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Hanxiang Wang
- Department of Pharmacy Wuhan Union Hospital Wuhan China
| | - Qing Shu
- Department of Translational Medicine center Ninth Hospital of Xi'an Affiliated to Xi'an Jiaotong University Xi'an China
| |
Collapse
|
18
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
19
|
circDlgap4 Alleviates Cerebral Ischaemic Injury by Binding to AUF1 to Suppress Oxidative Stress and Neuroinflammation. Mol Neurobiol 2022; 59:3218-3232. [PMID: 35294732 DOI: 10.1007/s12035-022-02796-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Ischaemic stroke is one of the most common causes of mortality and morbidity.circDlgap4 has been implicated in ischemia/reperfusion injury through an unknown mechanism. Here, we studied the function of circDlgap4/AUF1 in ischaemic stroke and its underlying molecular mechanism. N2a cells and primary mouse cortical neurons were subjected to OGD to mimic neuronal injury during ischemia. BV-2 cells were treated with LPS to mimic neuroinflammation. The MTT assay was used to assess cell viability, while flow cytometry was used to measure cell apoptosis. qRT-PCR, western blotting, immunohistochemistry, and immunostaining were employed to determine the levels of circDlgap4, AUF1, NRF2/HO-1, proinflammatory cytokines, NF-κB pathway-related proteins, and IBA-1. RIP and RNA pulldown assays were employed to validate the interactions of circDlgap4/AUF1, AUF1/NRF2, and AUF1/cytokine mRNAs. mRNA degradation was used to determine the effects on mRNA stability. The tMCAO model was used as an in vivo model of ischaemic stroke. TCC staining and neurological scoring were performed to evaluate ischaemic injury. circDlgap4 was decreased following OGD and during tMCAO. circDlgap4 overexpression inhibited OGD-induced cell death and oxidative stress and LPS-induced increases in proinflammatory cytokines by increasing NRF2/HO-1. Knockdown of AUF1 blocked the effects of circDlgap4 overexpression. Mechanistically, RIP, RNA pulldown, and mRNA degradation assay results showed circDlgap4/AUF1/NRF2 mRNA formed a complex to stabilize NRF2 mRNA. Furthermore, AUF1 directly interacted with TNF-α, IL-1β, and COX-2 mRNAs, and circDlgap4/AUF1 binding promoted the degradation of these mRNAs. Finally, circDlgap4 ameliorated ischaemic injury in vivo. circDlgap4 alleviates ischaemic stroke injury by suppressing oxidative stress and neuroinflammation by binding to AUF1.
Collapse
|
20
|
The Overexpression of Sonic Hedgehog Associates with Collateral Development and Amelioration of Oxidative Stress in Stroke Patients. J Stroke Cerebrovasc Dis 2022; 31:106408. [PMID: 35245826 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Sonic hedgehog (SHH) signaling pathway in oxidative stress condition has been acknowledged as a key trigger for angiogenesis and collateral vessel growth in the ischemic brain, and it exerts a protective effect on neuronal cells during oxidative stress. METHODS A total of sixty patients (n = 30 good collateral profile and n = 30 poor collateral profile) diagnosed with acute cerebral ischemia were enrolled in this study. qRT-PCR was performed to analyze the expression levels of SHH, Gli1, and superoxide dismutase (SOD), genes. Also, the serum levels of oxidative stress markers were determined in experimental groups. RESULTS The expression levels of SHH and Gli1 genes were significantly (p < 0.05) higher in stroke patients with good collateral circulation compared with those with poor collateral circulation, while SOD gene expression was similar between two groups (p > 0.05). A significantly positive correlation was found between the gene expression of SHH and Gli1 (r = 0.604, p < 0.001), SOD and Gli1 (r = 0.372, p < 0.003) genes. Our findings showed that the serum level of total antioxidant capacity (TAC) and Glutathione (GSH) and SOD enzyme activity was significantly (p < 0.05) increased, while serum total oxidant status (TOS) and malondialdehyde (MDA) levels were significantly (p < 0.05) decreased in patients with good collateral circulation as compared with those with poor collateral circulation. CONCLUSION Our observations shed light on the association of the SHH/Gli1 signaling pathway with cerebral collateral vessel development following ischemia. Oxidative stress in stroke patients with poor collateral circulation may result in the overexpression of SHH/Gli1 signaling pathway which possibly contribute to oxidative stress attenuation, as well as modulate angiogenesis and collateral vessels development.
Collapse
|
21
|
Panic A, Stanimirovic J, Sudar-Milovanovic E, Isenovic ER. Oxidative stress in obesity and insulin resistance. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since obesity is one of the main factors in the development of insulin resistance (IR) and is also associated with increased oxidative stress (OxS) rate, this study aims to review the published literature to collate and provide a comprehensive summary of the studies related to the status of the OxS in the pathogenesis of obesity and related IR. OxS represents an imbalance between the production of reactive oxygen and nitrogen
species (RONS) and the capacity of the antioxidant defense system (AOS) to neutralize RONS. A steady-state of RONS level is maintained through endogenous enzymatic and non-enzymatic AOS components. Three crucial enzymes, which suppress the formation of free radicals, are superoxide dismutases, catalases, and glutathione peroxidases. The second line of AOS includes non-enzymatic components such as vitamins C and E, coenzyme Q, and glutathione which neutralizes free radicals by donating electrons to RONS. Emerging evidence suggests that high RONS levels contribute to the progression of OxS in obesity by activating inflammatory pathways and thus leading to the development of pathological states, including IR. In addition, decreased level of AOS
components in obesity increases the susceptibility to oxidative tissue damage and further progression of its comorbidities. Increased OxS in accumulated adipose tissue should be an imperative target for developing new therapies in obesity-related IR.
Collapse
Affiliation(s)
- Anastasija Panic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julijana Stanimirovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Radovanovic J, Banjac K, Obradovic M, Isenovic ER. Antioxidant enzymes and vascular diseases. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a fundamental role in regulating endothelial function and vascular tone in the physiological conditions of a vascular system. However, oxidative stress has detrimental effects on human health, and numerous studies confirmed that high ROS/RNS production contributes to the initiation and progression of cardiovascular diseases. The antioxidant defense has an essential role in the homeostatic functioning of the vascular endothelial system. Endogenous antioxidative defense includes various molecules and enzymes such as superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. Together all these antioxidative enzymes are essential for defense against harmful ROS features. ROS are mainly generated from redox-active compounds involved in the mitochondrial respiratory chain. Thus, targeting antioxidative enzymes and mitochondria oxidative balance may be a promising approach for vascular diseases occurrence and treatment. This review summarized the most recent research on the regulation of antioxidative enzymes in vascular diseases.
Collapse
Affiliation(s)
- Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| |
Collapse
|
23
|
Zhou F, Wang YK, Zhang CG, Wu BY. miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway. J Neuroinflammation 2021; 18:122. [PMID: 34051800 PMCID: PMC8164774 DOI: 10.1186/s12974-021-02172-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Stroke affects 3–4% of adults and kills numerous people each year. Recovering blood flow with minimal reperfusion-induced injury is crucial. However, the mechanisms underlying reperfusion-induced injury, particularly inflammation, are not well understood. Here, we investigated the function of miR-19a/b-3p/SIRT1/FoxO3/SPHK1 axis in ischemia/reperfusion (I/R). Methods MCAO (middle cerebral artery occlusion) reperfusion rat model was used as the in vivo model of I/R. Cultured neuronal cells subjected to OGD/R (oxygen glucose deprivation/reperfusion) were used as the in vitro model of I/R. MTT assay was used to assess cell viability and TUNEL staining was used to measure cell apoptosis. H&E staining was employed to examine cell morphology. qRT-PCR and western blot were performed to determine levels of miR-19a/b-3p, SIRT1, FoxO3, SPHK1, NF-κB p65, and cytokines like TNF-α, IL-6, and IL-1β. EMSA and ChIP were performed to validate the interaction of FoxO3 with SPHK1 promoter. Dual luciferase assay and RIP were used to verify the binding of miR-19a/b-3p with SIRT1 mRNA. Results miR-19a/b-3p, FoxO3, SPHK1, NF-κB p65, and cytokines were elevated while SIRT1 was reduced in brain tissues following MCAO/reperfusion or in cells upon OGD/R. Knockdown of SPHK1 or FoxO3 suppressed I/R-induced inflammation and cell death. Furthermore, knockdown of FoxO3 reversed the effects of SIRT1 knockdown. Inhibition of the miR-19a/b-3p suppressed inflammation and this suppression was blocked by SIRT1 knockdown. FoxO3 bound SPHK1 promoter and activated its transcription. miR-19a/b-3p directly targeted SIRT1 mRNA. Conclusion miR-19a/b-3p promotes inflammatory responses during I/R via targeting SIRT1/FoxO3/SPHK1 axis.
Collapse
Affiliation(s)
- Feng Zhou
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
| | - Yu-Kai Wang
- Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
| | - Cheng-Guo Zhang
- Department of Neurology, First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China.
| | - Bing-Yi Wu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
24
|
Ren JX, Li C, Yan XL, Qu Y, Yang Y, Guo ZN. Crosstalk between Oxidative Stress and Ferroptosis/Oxytosis in Ischemic Stroke: Possible Targets and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643382. [PMID: 34055196 PMCID: PMC8133868 DOI: 10.1155/2021/6643382] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress is a key cause of ischemic stroke and an initiator of neuronal dysfunction and death, mainly through the overproduction of peroxides and the depletion of antioxidants. Ferroptosis/oxytosis is a unique, oxidative stress-induced cell death pathway characterized by lipid peroxidation and glutathione depletion. Both oxidative stress and ferroptosis/oxytosis have common molecular pathways. This review summarizes the possible targets and the mechanisms underlying the crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke. This knowledge might help to further understand the pathophysiology of ischemic stroke and open new perspectives for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jia-Xin Ren
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Chao Li
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Xiu-Li Yan
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yang Qu
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
| | - Yi Yang
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhen-Ni Guo
- Stroke Center & Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
- China National Comprehensive Stroke Center, No. 1 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, No. 1 Xinmin Street, Changchun 130021, China
| |
Collapse
|
25
|
La Russa D, Montesano D, Pellegrino D, Frisina M, Bagetta G, Fallarino F, Amantea D. Systemic administration of sunflower oil exerts neuroprotection in a mouse model of transient focal cerebral ischaemia. J Pharm Pharmacol 2021; 74:1776-1783. [PMID: 33749789 DOI: 10.1093/jpp/rgab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Natural products are valuable sources of nutraceuticals for the prevention or treatment of ischemic stroke, a major cause of death and severe disability worldwide. Among the mechanisms implicated in cerebral ischemia-reperfusion damage, oxidative stress exerts a pivotal role in disease progression. Given the high antioxidant potential of most components of sunflower oil, we have explored its effects on ischemic brain injury produced in the mouse by transient occlusion of the middle cerebral artery (MCAo). KEY FINDINGS Intraperitoneal (i.p.) administration of sunflower oil at doses of 3 ml/kg (48 h, 24 h and 1 h before MCAo) significantly reduced brain infarct volume and oedema assessed 24 h after the insult. This neuroprotective treatment schedule also prevented the elevation of brain lipid peroxidation produced by MCAo-reperfusion injury. By contrast, doses of 0.03 ml/kg of sunflower oil resulted ineffective on both cerebral damage and lipid peroxidation. Although sunflower oil did not affect serum levels of Diacron-reactive oxygen metabolites (d-ROMs), both 0.03 and 3 ml/kg dosing regimens resulted in the preservation of serum biological antioxidant potential (BAP) that was otherwise dramatically reduced 24 h after MCAo. CONCLUSIONS Sunflower oil represents a promising source of neuroprotective extracts/compounds that can be exploited for the prevention and/or treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Perugia, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Marialaura Frisina
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | | | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| |
Collapse
|
26
|
[D-Ala 2, D-Leu 5] Enkephalin Inhibits TLR4/NF- κB Signaling Pathway and Protects Rat Brains against Focal Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6661620. [PMID: 33628116 PMCID: PMC7895595 DOI: 10.1155/2021/6661620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury is the main cause of acute brain injury, which is a life-threatening disease due to the lack of effective treatments. [D-Ala2, D-Leu5] enkephalin (DADLE) is a synthetic delta-opioid receptor agonist that is reported to confer neuroprotective effect; however, the underlying mechanism is still being explored. The purpose of the present study is to determine whether DADLE administrated intracerebroventricularly could attenuate the cerebral I/R injury, to determine if this is through inhibiting the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway and therefore inhibiting neuroinflammation in an ischemic stroke model. Methods Rats were subjected to 120 minutes of ischemia by transient middle cerebral artery occlusion (MCAO). At 45 minutes after ischemia, DADLE or control vehicle (artificial cerebrospinal fluid, ACSF) was given to the rats intracerebroventricularly. Neurological deficit, cerebral infarct volume, and histopathological changes were assessed at 24 hours after reperfusion. Brain inflammation was assessed by measuring tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the ischemic penumbra by ELISA. The expression of TLR4 was determined by immunohistochemistry staining and western blotting. The expression of NF-κB was investigated by western blotting. Results Compared with the vehicle-treatment (ACSF), DADEL improved neurological deficit (9.6 ± 2.1 versus 13.8 ± 1.9), reduced cerebral infarct volume (18.74 ± 3.30% versus 10.57 ± 2.50%), and increased the number of normal neurons (29.72 ± 8.53% versus 51.37 ± 9.18%) after cerebral I/R injury in rats (all P < 0.05). Expressions of inflammatory molecules including TNF-α and IL-6 were highly expressed in the vehicle-treated rats, whereas treatment with DADLE downregulated these expressions (P < 0.05). Additionally, cerebral I/R injury significantly increased the TLR4 and NF-κB expression in vehicle-control group, which was markedly inhibited by DADLE (P < 0.05). Conclusions DADLE, administrated intracerebroventricularly at 45 minutes after cerebral ischemia, significantly ameliorated I/R-induced brain damage in rats. This kind of neuroprotective effect appears to be related to the downregulation of TLR4-mediated inflammatory responses.
Collapse
|
27
|
Rocchi D, Blázquez-Barbadillo C, Agamennone M, Laghezza A, Tortorella P, Vicente-Zurdo D, Rosales-Conrado N, Moyano P, Pino JD, González JF, Menéndez JC. Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity. Eur J Med Chem 2020; 210:113061. [PMID: 33310289 DOI: 10.1016/j.ejmech.2020.113061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies. A kinetic study revealed inhibition to be noncompetitive. Some of the compounds showed some degree of selectivity for the MMP-2 and MMP-9 enzymes, which are crucial for brain damage associated to ischemic stroke. Furthermore, some compounds also had a high neuroprotective activity against oxidative stress, which is also very relevant aspect of ischaemic stroke pathogenesis, both decreasing lipid peroxidation and protecting against the oxidative stress-induced reduction in cell viability. One of the compounds, bearing a 2-thienyl substituent at C-9 and a 4-methoxyphenylamino at C-7, had the best-balanced multitarget profile and was selected as a lead on which to base future structural manipulation.
Collapse
Affiliation(s)
- Damiano Rocchi
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Mariangela Agamennone
- Dipartamento di Farmacia, Università degli Studi G. d'Annunzio di Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
28
|
Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, Yan B. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. J Biochem Mol Toxicol 2020; 35:e22658. [PMID: 33118292 DOI: 10.1002/jbt.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been seen in the pathological states of many disorders such as ischemic diseases and cancers. Many natural compounds (NCs) have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. The modulation of oxidative stress by NCs via activating the Nrf2 signaling pathway is summarized in the review. Three NCs, ursolic acid, betulinic acid, and curcumin, and the mechanisms of their cytoprotective effects are investigated in myocardial ischemia, cerebral ischemia, skin cancer, and prostate cancer. To promote the therapeutic performance of NCs with poor water solubility, the formulation approach, such as the nano drug delivery system, is elaborated as well in this review.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Chen
- China National Intellectual Property Administration Patent Re-examination and Invalidation Department Pharmaceutical Division, Beijing, China
| | - Xing Zhang
- Departments of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu, China
| | - Fuxing Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
29
|
He J, Wu H, Zhou Y, Zheng C. Tomentosin inhibit cerebral ischemia/reperfusion induced inflammatory response via TLR4/ NLRP3 signalling pathway - in vivo and in vitro studies. Biomed Pharmacother 2020; 131:110697. [PMID: 32919189 DOI: 10.1016/j.biopha.2020.110697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stoke is a global threat, leading to 50 % of deaths worldwide and it causes permanent disability to about 5 million individuals globally each year. In this study, we assessed the potency of tomentosin to inhibit the neuroinflammation in in vivo and in vitro models. The Sprague Dawley rats were pretreated with 25 mg/kg bodyweight (b.wt) and 50 mg/kg b.wt of tomentosin for seven days followed by induction of cerebral ischemic reperfusion. The brain edema and cerebral infractions were analyzed. The levels of antioxidants and the interleukins were measured by standard methods. The NLRP3 signaling proteins expression was evaluated using qPCR analysis. In vitro studies were performed in SH-SY5Y-cells pretreated with tomentosin and subjected to OGD-R treatment. Our results depicts tomentosin scavenges the free radicals, enhances antioxidant system, inhibits the NLRP3 signaling. In vitro results substantiates with in vivo results. To conclude, our in vivo and in vitro results confirm tomentosin may be potent alternative for existing antistroke drugs.
Collapse
Affiliation(s)
- Jianguo He
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China
| | - Haitao Wu
- Department of Neurosurgery, The First Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - YanYan Zhou
- Kuming Medical University Haiyuan College, Kunming, Yunnan, 651700, China
| | - Chao Zheng
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China.
| |
Collapse
|
30
|
Zhang S, Wang X, Cheng F, Ma C, Fan S, Xu W, Jin N, Liu S, Lv K, Wang Q. Network Pharmacology-Based Approach to Revealing Biological Mechanisms of Qingkailing Injection against IschemicStroke: Focusing on Blood-Brain Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2914579. [PMID: 32908557 PMCID: PMC7474352 DOI: 10.1155/2020/2914579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is the most common type of cerebrovascular accident worldwide. It causes long-term disability and death. Qingkailing (QKL) injection is a traditional Chinese patent medicine which has been clinically applied in the treatment of ischemic stroke for nearly thirty years. In the present study, network pharmacology combined with experimentation was used to elucidate the mechanisms of QKL. ADME screening and target prediction identified 62 active compounds and 275 targets for QKL. Topological screening of the protein-protein interaction (PPI) network was used to build a core PPI network consisting of 408 nodes and 17,830 edges. KEGG enrichment indicated that the main signaling pathway implicated in ischemic stroke involved hypoxia-inducible factor-1 (HIF-1). Experimentation showed that QKL alleviated neurological deficits, brain infraction, blood-brain barrier (BBB) leakage, and tight junction degeneration in a mouse ischemic stroke model. Two-photon laser scanning microscopy was used to evaluate BBB permeability and cerebral microvessel structure in living mice. HIF-1α, matrix metalloproteinase-9 (MMP-9), and tight junction proteins such as occludin, zonula occludins-1 (ZO-1), claudin-5, and VE-Cadherin were measured by western blotting. QKL upregulated ZO-1 and downregulated HIF-1α and MMP-9. QKL has a multiapproach, multitarget, and synergistic effect against ischemic stroke.
Collapse
Affiliation(s)
- Shuang Zhang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Xueqian Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Fafeng Cheng
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Chongyang Ma
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Shuning Fan
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Wenxiu Xu
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Na Jin
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Shuling Liu
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| | - Kai Lv
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, 51 An Wai Xiaoguan Street, Chaoyang District, Beijing 100029, China
| | - Qingguo Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
31
|
Wang X, Wu D, Zhong P. Serum bilirubin and ischaemic stroke: a review of literature. Stroke Vasc Neurol 2020; 5:198-204. [PMID: 32606087 PMCID: PMC7337366 DOI: 10.1136/svn-2019-000289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bilirubin, a product of heme metabolism, is the most potent endogenous antioxidant which increases in many oxidative stress conditions such as stroke. It has been widely known to exert neuroprotective effect on stroke through mechanisms involved in development, therefore, it can influence the occurrence and prognosis of ischaemic stroke (IS). In this review, studies were identified by a comprehensive search of Pubmed, Embase, the Cochrane Library (Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Methodology Register) and Web of Science to examine the correlation between serum bilirubin levels and risks of developing IS as well as IS outcomes. Additional studies were identified by reviewing references and contacting authors.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
Serum Uric Acid Level and Outcome of Patients With Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurologist 2019; 24:121-131. [PMID: 31246721 DOI: 10.1097/nrl.0000000000000234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The issue of whether serum uric acid (SUA) is associated with the outcome of acute ischemic stroke is controversial. This study aimed to evaluate the correlation between the SUA level and outcome of patients with ischemic stroke by performing a meta-analysis. MATERIALS AND METHODS Studies were included by a systematic search of several databases through December 01, 2018, followed by reviewing reference lists of obtained articles. Studies that included odds ratios (ORs) for ischemic stroke outcome per unit SUA level with 95% confidence intervals (95% CIs) were eligible for the meta-analysis. A random-effects model was used to calculate the pooled risk estimate. Publication bias was detected by Begg's test. RESULTS Fifteen studies with a total of 12,739 cases of stroke were included. Overall, higher SUA levels were associated with a significantly better outcome of ischemic stroke (OR, 1.13; 95% CI, 1.07-1.18; P<0.00001). For patients receiving thrombolytic therapy, a subgroup meta-analysis showed a positive association between SUA level and patient outcome (OR, 1.26; 95% CI, 1.14-1.40; P<0.00001). In addition, the pooled estimate of patients with a modified Rankin Scale score ≤2 at 90 days also showed a positive association (OR, 1.07; 95% CI, 1.01-1.133; P<0.00001). Furthermore, we found that the average SUA level in patients with a good outcome was higher than in those with a poor outcome (mean difference, 0.24 µmol/L; 95% CI, 0.16-0.32; P<0.00001). CONCLUSIONS This meta-analysis suggested that there was a significant positive association between SUA level and the outcome of ischemic stroke.
Collapse
|
34
|
Pavón-Fuentes N, Marín-Prida J, Llópiz-Arzuaga A, Falcón-Cama V, Campos-Mojena R, Cervantes-Llanos M, Piniella-Matamoros B, Pentón-Arias E, Pentón-Rol G. Phycocyanobilin reduces brain injury after endothelin-1- induced focal cerebral ischaemia. Clin Exp Pharmacol Physiol 2019; 47:383-392. [PMID: 31732975 DOI: 10.1111/1440-1681.13214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/27/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Pharmacological therapies for interrupting biochemical events of the ischaemic cascade and protecting against stroke in humans are as yet unavailable. Up to now, the neuroprotective activity in cerebral ischaemia of phycocyanobilin (PCB), a tetrapyrrolic natural antioxidant, has not been fully examined. Here, we evaluated if PCB protects PC12 neuronal cells against oxygen and glucose deprivation plus reperfusion, and its protective effects in a rat model of endothelin-1-induced focal brain ischaemia. PCB was purified from the cyanobacteria Spirulina platensis and characterized by spectrophotometric, liquid and gas chromatography and mass spectrometry techniques. In Wistar rats, PCB at 50, 100 and 200 μg/kg or phosphate-buffered saline (vehicle) was administered intraperitoneally at equal subdoses in a therapeutic schedule (30 minutes, 1, 3 and 6 hours after the surgery). Brain expression of myelin basic protein (MBP) and the enzyme CNPase was determined by immunoelectron microscopy. PCB was obtained with high purity (>95%) and the absence of solvent contaminants and was able to ameliorate PC12 cell ischaemic injury. PCB treatment significantly decreased brain infarct volume, limited the exploratory behaviour impairment and preserved viable cortical neurons in ischaemic rats in a dose-dependent manner, compared to the vehicle group. Furthermore, PCB at high doses restored the MBP and CNPase expression levels in ischaemic rats. An improved PCB purification method from its natural source is reported, obtaining PCB that is suitable for pharmacological trials showing neuroprotective effects against experimental ischaemic stroke. Therefore, PCB could be a therapeutic pharmacological alternative for ischaemic stroke patients.
Collapse
Affiliation(s)
| | - Javier Marín-Prida
- Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
36
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
37
|
The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2491927. [PMID: 32148646 PMCID: PMC7044480 DOI: 10.1155/2019/2491927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The public health sector faces a huge challenge as a result of the high prevalence and burden of disability caused by ischemic cardio-cerebrovascular disease (CVD) and depression. Although studies have explored the underlying mechanisms and potential therapies to address conditions, there is no treatment breakthrough, especially for depression which is highly influenced by social stressors. However, accumulating evidence reveals that CVD and depression are correlated and share common risk factors, particularly obesity, diabetes, and hypertension. They also share common mechanisms, including oxidative stress (OS), inflammation and immune response, cell death signaling pathway, and microbiome-gut-brain axis. This review summarizes the relationship between ischemic CVD and depression and describes the interactions among common risk factors and mechanisms for these two diseases. In addition, we propose that OS mediates the crosstalk between these diseases. We also reveal the potential of antioxidants to ameliorate OS-related injuries.
Collapse
|
38
|
Obradovic M, Zafirovic S, Essack M, Dimitrov J, Zivkovic L, Spremo-Potparevic B, Radak D, Bajic VB, Isenovic ER. Antioxidant enzymes expression in lymphocytes of patients undergoing carotid endarterectomy. Med Hypotheses 2019; 134:109419. [PMID: 31622925 DOI: 10.1016/j.mehy.2019.109419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
To remedy carotid artery stenosis and prevent stroke surgical intervention is commonly used, and the gold standard being carotid endarterectomy (CEA). During CEA cerebrovascular hemoglobin oxygen saturation decreases and when this decrease reaches critical levels it leads to cerebral hypoxia that causes neuronal damage. One of the proposed mechanism that affects changes during CEA and contribute to acute brain ischemia (ABI) is oxidative stress. The increased production of reactive oxygen species and reactive nitrogen species during ABI may cause an unregulated inflammatory response and further lead to structural and functional injury of neurons. Antioxidant activity are involved in the protection against neuronal damage after cerebral ischemia. We hypothesized that neuronal injury and poor outcomes in patients undergoing CEA may be results of oxidative stress that disturbed function of antioxidant enzymes and contributed to the DNA damage in lymphocytes.
Collapse
Affiliation(s)
- Milan Obradovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Sonja Zafirovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Jelena Dimitrov
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Lada Zivkovic
- Faculty of Pharmacy, Department of Physiology, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Spremo-Potparevic
- Faculty of Pharmacy, Department of Physiology, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Djordje Radak
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
39
|
Lorente L, Martín MM, Abreu-González P, Sabatel R, Ramos L, Argueso M, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. Non-survivor patients with malignant middle cerebral artery infarction showed persistently high serum malondialdehyde levels. BMC Neurol 2019; 19:238. [PMID: 31623565 PMCID: PMC6798363 DOI: 10.1186/s12883-019-1479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Objective Previously there have been found higher circulating malondialdehyde levels during the first week of ischemic stroke in patients with worst neurological functional outcome, and at moment of ischemic stroke in non-survivor patients. Thus, the aim of our study was to determine the potential role of serum malondialdehyde levels during the first week of a severe cerebral infarction to mortality prediction. Methods This study was observational, prospective, and multicenter. We included patients with a severe malignant middle cerebral artery infarction (MMCAI) defined as patients with computed tomography showing acute infarction in more than of 50% of the territory and Glasgow Coma Scale (GCS) lower than 9. We determined serum concentrations of malondialdehyde on days 1, 4 and 8 of MMCAI. Results Serum malondialdehyde concentrations at days 1 (p < 0.001), 4 (p < 0.001), and 8 (p = 0.001) of MMCAI in non-survivor patients (n = 34) were higher than in survivor patients (n = 34). ROC curve analyses showed that serum malondialdehyde concentrations at days 1, 4, and 8 of MMCAI had an AUC (95% CI) to predict 30-day mortality of 0.77 (0.65–0.86; p < 0.001), 0.82 (0.69–0.91; p < 0.001) and 0.84 (0.70–0.93; p < 0.001) respectively. Conclusions The new findings of our study were that serum malondialdehyde levels during the first week of MMCAI could be used as biomarkers to mortality prediction.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, 38010, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Deparment of Phisiology, Faculty of Medicine, University of the La Laguna, 38320, Santa Cruz de Tenerife, La Laguna, Spain
| | - Rafael Sabatel
- Deparment of Radiology, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, 38713, Breña Alta, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, 46004, Valencia, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, ia-35016, Las Palmas de Gran Canar, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Deparment of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
40
|
Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice. Neurotox Res 2019; 36:736-745. [PMID: 31222673 DOI: 10.1007/s12640-019-00075-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Fullerene is a family of carbon materials widely applied in modern medicine and ecosystem de-contamination. Its wide application makes human bodies more and more constantly exposed to fullerene particles. Since fullerene particles are able to cross the blood-brain barrier (BBB) (Yamago et al. 1995), if and how fullerene would affect brain functions need to be investigated for human health consideration. For this purpose, we administered fullerene on subcortical ischemic vascular dementia (SIVD) model mice and sham mice, two types of mice with distinct penetration properties of BBB and hence possibly distinct vulnerabilities to fullerene. We studied the spatial learning and memory abilities of mice with Morris water maze (MWM) and the neuroplasticity properties of the hippocampus. Results showed that fullerene administration suppressed outcomes of MWM in sham mice, along with suppressed long-term potentiation (LTP) and dendritic spine densities. Oppositely, recoveries of MWM outcomes and neuroplasticity properties were observed in fullerene-treated SIVD mice. To further clarify the mechanism of the impact of fullerene on neuroplasticity, we measured the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) by western blot assay. Results suggest that the distinct impacts of fullerene on behavior test and neuroplasticity may be conducted through postsynaptic regulations that were mediated by BDNF.
Collapse
|
41
|
Metoprolol and Nebivolol Prevent the Decline of the Redox Status of Low-Molecular-Weight Aminothiols in Blood Plasma of Rats During Acute Cerebral Ischemia. J Cardiovasc Pharmacol 2019; 72:195-203. [PMID: 30188870 DOI: 10.1097/fjc.0000000000000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia has previously been shown to cause a systemic decrease in levels of the reduced forms of low-molecular-weight aminothiols [cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)] in blood plasma. In this study, we examined the effect of beta-adrenergic receptor (β-AR) antagonists metoprolol (Met) and nebivolol (Neb) on the redox status of these aminothiols during acute cerebral ischemia in rats. We used a model of global cerebral ischemia (bilateral occlusion of common carotid arteries with hypotension lasting for 10 minutes). The antagonists were injected 1 hour before surgery. Total and reduced Cys, Hcy, and GSH levels were measured 40 minutes after the start of reperfusion. Neb (0.4 and 4 mg/kg) and Met (8 and 40 mg/kg) treatment increased the levels of reduced aminothiols and the global methylation index in the hippocampus. The treatments also prevented any decrease in reduced aminothiol levels in blood plasma during ischemia. Although both of these drugs eliminated delayed postischemic hypoperfusion, only Neb reduced neuronal damage in the hippocampus. The results indicate an essential role of β1-AR blockage in the maintenance of redox homeostasis of aminothiols in the plasma and brain during acute cerebral ischemia.
Collapse
|
42
|
Popova TN, Safonova OA, Stolyarova AO, Verevkin AN. [The effect of the biologically active additive epiphamine on antioxidant and NADPH-generating enzymes activity under experimental cerebral ischemia/reperfusion in rats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:31-37. [PMID: 29460832 DOI: 10.18097/pbmc20186401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of biologically active additive with immunomodulator properties epiphamine on the activity of antioxidant (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase) and NADPH-generating (glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) enzymes has been investigated at experimental cerebral ischemia/reperfusion in rats. The results obtained indicate epiphamine-induced changes of these enzymes activities towards control values. Changes in the content of lactate, a marker of the pathology development, have also been found in experimental animals under ischemia and epiphamine administration caused changes similar to those observed in the case of enzyme activities studied. In most cases, the changes were dose-dependent. Thus, epiphamine can be of considerable interest from the point of view of metabolic changes pharmacological correction at the development of the pathology accompanied by oxidative stress.
Collapse
Affiliation(s)
- T N Popova
- Voronezh State University, Voronezh, Russia
| | | | | | | |
Collapse
|
43
|
MLN4924 Exerts a Neuroprotective Effect against Oxidative Stress via Sirt1 in Spinal Cord Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7283639. [PMID: 31178972 PMCID: PMC6501157 DOI: 10.1155/2019/7283639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro. However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against oxidative stress in SCIR injury via Sirt1.
Collapse
|
44
|
Zhang Z, Xu P, Yu H, Shi L. Luteolin protects PC-12 cells from H2O2-induced injury by up-regulation of microRNA-21. Biomed Pharmacother 2019; 112:108698. [DOI: 10.1016/j.biopha.2019.108698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022] Open
|
45
|
Shi YS, Zhang Y, Liu B, Li CB, Wu J, Li Y. Nomilin protects against cerebral ischemia–reperfusion induced neurological deficits and blood–brain barrier disruption via the Nrf2 pathway. Food Funct 2019; 10:5323-5332. [DOI: 10.1039/c9fo01481k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress is considered to play an important role in the cerebral ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Yan Zhang
- Jiamusi College
- Heilongjiang University of Chinese Medicine
- Jiamusi 154007
- China
| | - Bin Liu
- Jiamusi College
- Heilongjiang University of Chinese Medicine
- Jiamusi 154007
- China
| | - Chun-Bin Li
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Jiao Wu
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Yang Li
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| |
Collapse
|
46
|
Obradovic M, Bogdanovic N, Stanimirovic J, Unic-Stojanovic D, Radak DJ, Isenovic ER. Hypothesis related to the regulation of inducible nitric oxide synthase during carotid endarterectomy. Med Hypotheses 2018; 122:16-18. [PMID: 30593403 DOI: 10.1016/j.mehy.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 01/02/2023]
Abstract
Sudden occlusion of an artery caused by a thrombus or emboli is the most frequent cause of acute brain ischemia (ABI). Carotid endarterectomy (CEA) represents the gold standard for preventing strokes of carotid origin. However, neuronal damage caused by ischemia and/or reperfusion may contribute to a poor clinical outcome after CEA. In response to shear stress caused by hypoxic-ischemic conditions in patients undergoing CEA, stimulation of the hypothalamic-pituitaryadrenal axis leads to biological responses known as hypermetabolic stress, characterized by hemodynamic, metabolic, inflammatory and immunological changes. These changes maintain homeostasis and assist recovery, but an unregulated inflammatory response could lead to further tissue damage and death of neurons. Nitric oxide (NO) is an important signaling molecule involved in several physiological and pathological processes, including ABI. However, an excess of NO could have detrimental effects. We hypothesized that the hypoxic-ischemic state induced by carotid clamping leads to overexpression of inducible NO synthase and that uncontrolled production of NO could adversely affect outcome after CEA.
Collapse
Affiliation(s)
- M Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - N Bogdanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - J Stanimirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - D Unic-Stojanovic
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - D J Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - E R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
47
|
Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W. Activation of the Notch‑Nox4‑reactive oxygen species signaling pathway induces cell death in high glucose‑treated human retinal endothelial cells. Mol Med Rep 2018; 19:667-677. [PMID: 30431086 DOI: 10.3892/mmr.2018.9637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) occurs in almost all patients with diabetes and remains as one of the major causes of vision loss worldwide. Nevertheless, the molecular mechanisms underlying the pathogenesis of DR remain elusive. The present study aimed to investigate the role and association of Notch signaling and NADPH oxidase 4 (Nox4)‑mediated oxidative stress in high glucose (HG)‑treated retinal cells. Human retinal endothelial cells were cultured for various durations in RPMI‑1640 medium containing 30 mM glucose (HG) or 30 mM mannitol (MN) as an osmotic control; apoptotic cell death and reactive oxygen species (ROS) levels were assessed, respectively. Alterations in the expression profiles of Nox and Notch proteins were evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Knockdown of Nox4 and recombination signal‑binding protein J (RBPj) was generated by transfection with specific small interfering (siRNA). Persistent activation of Notch signaling was induced via the overexpression of Notch intracellular domain (NICD). In the present study, time‑dependent increases in ROS production and cell death were detected in HG‑treated cells. Depletion of ROS by diphenyleneiodonium decreased HG‑induced cell death, and suppressed increases in caspase 3 activity and B‑cell lymphoma 2‑associated X protein levels. In HG‑treated cells, Nox4 expression was upregulated at the mRNA and protein levels, and inhibition of Nox4 by GKT137831 or knockdown of expression by siRNA Nox4 significantly reduced ROS levels and cell death. In the presence of HG, Notch1 expression levels were elevated, and increased NICD abundance was detected in whole cell lysates and nuclear fractions. Additionally, HG‑induced cell death was decreased by treatment with γ‑secretase inhibitor (GSI), but increased via the overexpression of NICD. The application of GSI or knockdown of RBPj by siRNA RBPj prevented increases in Nox4 expression within HG‑treated cells. The findings of the present study demonstrated that Nox4‑mediated ROS serves an important role in HG‑induced retinal cell damage, in which the activation of Notch signaling may be responsible for Nox4 upregulation. Therefore, inhibition of Notch signaling or Nox4 expression may be considered as potential therapeutic targets in patients with DR.
Collapse
Affiliation(s)
- Wanzhen Jiao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiafu Ji
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Fengjiao Li
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianlian Guo
- Department of Ophthalmology, Jinan Eighth People's Hospital, Jinan, Shandong 250014, P.R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shangbin Li
- Department of Healthcare, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenwen Xu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
48
|
Wang SW, Liu Z, Shi ZS. Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets. Cell Transplant 2018; 27:1763-1777. [PMID: 30362372 PMCID: PMC6300774 DOI: 10.1177/0963689718806818] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.
Collapse
Affiliation(s)
- Sheng-Wen Wang
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Liu
- 2 Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong-Song Shi
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,3 RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,4 Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Russo E, Nguyen H, Lippert T, Tuazon J, Borlongan CV, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ 2018; 4:84-94. [PMID: 30450413 PMCID: PMC6187947 DOI: 10.4103/bc.bc_14_18] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neural damage. Emerging evidence of mitochondria transfer from stem cells to ischemic-injured cells points to transfer of healthy mitochondria as a viable novel therapeutic strategy for ischemic diseases. Hence, a more in-depth understanding of the cellular and molecular mechanisms involved in mitochondrial impairment may lead to new tools for stroke treatment. In this review, we focus on the current evidence of mitochondrial dysfunction in stroke, investigating favorable approaches of healthy mitochondria transfer in ischemic neurons, and exploring the potential of mitochondria-based cellular therapy for clinical applications. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed.
Collapse
Affiliation(s)
- Eleonora Russo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Julian Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
50
|
Jin X, Pan B, Dang X, Wu H, Xu D. Relationship between short telomere length and stroke: A meta-analysis. Medicine (Baltimore) 2018; 97:e12489. [PMID: 30278538 PMCID: PMC6181515 DOI: 10.1097/md.0000000000012489] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Several epidemiological studies had been carried out in different population cohorts to estimate the relationship between the shortened telomere length and stroke. However, the results still remained dispute. Consequently, we conducted this meta-analysis to estimate the relationship between them. METHODS PubMed, EMBASE, and Web of Science were systematically searched for related articles to evaluate the association between "stroke" and "telomere length. STATA 12.0 software was used to perform the meta-analysis. The Cochran Q test and inconsistency index (I) were used to assess the heterogeneity. Begg funnel plot and Egger test were used to assess publication bias. RESULTS The meta-analysis was composed of 11 studies, consisting of 25,340 participants. We found a significant relationship between shortened telomere length and stroke (OR: 1.50, 95% CI: 1.13-2.0; P = .005); however, in the prospective and retrospective study subgroup, we did not find a statistical significant relationship between shortened telomere length and stroke (the prospective subgroup: OR: 1.41, 95% CI: 1-1.98; P = .051) (the retrospective subgroup: OR: 1.89, 95% CI: 0.96-3.72; P = .067).
Collapse
Affiliation(s)
- Xiao Jin
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Biqi Pan
- GuangDong women and children Hospital
| | - Xiaojing Dang
- Department of Cardiology, Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), China
| | - Huanlin Wu
- Beijing University of Chinese Medicine, Beijing
| | - Danping Xu
- Department of Cardiology, Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), China
| |
Collapse
|