1
|
Bächinger D, O’Malley JT, Wolf M, Bérnhard S, Liberman MC, Tibbitt MW, Eckhard AH. Poly(Ethylene Glycols) to Facilitate Celloidin Removal for Immunohistochemical Studies on Archival Human Brain and Temporal Bone Sections. J Histochem Cytochem 2024; 72:419-433. [PMID: 39054648 PMCID: PMC11308191 DOI: 10.1369/00221554241266287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Pathology repositories worldwide store millions of celloidin-processed human brain and temporal bone (TB) sections vital for studying central nervous system diseases and sensory organs. However, accessing these sections for modern molecular-pathological research, like immunohistochemistry, is hindered by the challenge of removing celloidin without damaging tissue. In this study, we explored the use of polyethylene glycols (PEGs), a class of non-hazardous, ethylene glycol oligomers, combined with an improved section mounting technique, to gently and effectively dissolve celloidin from sections archived for up to 40 years. Optimizing our protocol involved exploring celloidin dissolution kinetics in PEGs of varying molecular weights and terminations, as well as different temperatures. Low molecular weight PEGs, particularly PEG 200, were the most efficient celloidin solvent. Nuclear magnetic resonance (NMR) spectroscopy of celloidin-PEG 200 dissolution products revealed no chemical alterations, suggesting pure solvation without chemical modification. Because the solvation of celloidin in PEG was inhibited by proteins, we further developed a protein-free mounting protocol allowing complete celloidin removal in 30 to 60 minutes by immersing in PEG 200. In summary, our approach overcomes major methodological hurdles, rendering decades-old archival celloidin sections viable for immunohistochemical and other molecular biological techniques, while enhancing safety and workflow efficiency.
Collapse
Affiliation(s)
- David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Jennifer T. O’Malley
- Otopathology Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Stephane Bérnhard
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - M. Charles Liberman
- Otopathology Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Andreas H. Eckhard
- Otopathology Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
O'Malley JT, Wu PZ, Kaur C, Gantz BJ, Hansen MR, Quesnel AM, Liberman MC. Delayed hearing loss after cochlear implantation: Re-evaluating the role of hair cell degeneration. Hear Res 2024; 447:109024. [PMID: 38735179 PMCID: PMC11134194 DOI: 10.1016/j.heares.2024.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Delayed loss of residual acoustic hearing after cochlear implantation is a common but poorly understood phenomenon due to the scarcity of relevant temporal bone tissues. Prior histopathological analysis of one case of post-implantation hearing loss suggested there were no interaural differences in hair cell or neural degeneration to explain the profound loss of low-frequency hearing on the implanted side (Quesnel et al., 2016) and attributed the threshold elevation to neo-ossification and fibrosis around the implant. Here we re-evaluated the histopathology in this case, applying immunostaining and improved microscopic techniques for differentiating surviving hair cells from supporting cells. The new analysis revealed dramatic interaural differences, with a > 80 % loss of inner hair cells in the cochlear apex on the implanted side, which can account for the post-implantation loss of residual hearing. Apical degeneration of the stria further contributed to threshold elevation on the implanted side. In contrast, spiral ganglion cell survival was reduced in the region of the electrode on the implanted side, but apical counts in the two ears were similar to that seen in age-matched unimplanted control ears. Almost none of the surviving auditory neurons retained peripheral axons throughout the basal half of the cochlea. Relevance to cochlear implant performance is discussed.
Collapse
Affiliation(s)
- Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce J Gantz
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA, 52242, USA; Department of Neurosurgery, University of Iowa, Iowa City, IA, 52242
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA, 52242, USA; Department of Neurosurgery, University of Iowa, Iowa City, IA, 52242
| | - Alicia M Quesnel
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Otopathology Laboratory, Massachusetts Eye and Ear, Boston, MA, 02114, USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Kaur C, Wu PZ, O'Malley JT, Liberman MC. Predicting Atrophy of the Cochlear Stria Vascularis from the Shape of the Threshold Audiogram. J Neurosci 2023; 43:8801-8811. [PMID: 37863653 PMCID: PMC10727192 DOI: 10.1523/jneurosci.1138-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Several lines of evidence have suggested that steeply sloping audiometric losses are caused by hair cell degeneration, while flat audiometric losses are caused by strial atrophy, but this concept has never been rigorously tested in human specimens. Here, we systematically compare audiograms and cochlear histopathology in 160 human cases from the archival collection of celloidin-embedded temporal bones at the Massachusetts Eye and Ear. The dataset included 106 cases from a prior study of normal-aging ears, and an additional 54 cases selected by combing the database for flat audiograms. Audiogram shapes were classified algorithmically into five groups according to the relation between flatness (i.e., SD of hearing levels across all frequencies) and low-frequency pure-tone average (i.e., mean at 0.25, 0.5, and 1.0 kHz). Outer and inner hair cell losses, neural degeneration, and strial atrophy were all quantified as a function of cochlear location in each case. Results showed that strial atrophy was worse in the apical than the basal half of the cochlea and was worse in females than in males. The degree of strial atrophy was uncorrelated with audiogram flatness. Apical atrophy was correlated with low-frequency thresholds and basal atrophy with high-frequency thresholds, and the former correlation was higher. However, a multivariable regression with all histopathological measures as predictors and audiometric thresholds as the outcome showed that strial atrophy was a significant predictor of threshold shift only in the low-frequency region, and, even there, the contribution of outer hair cell damage was larger.SIGNIFICANCE STATEMENT Cochlear pathology can only be assessed postmortem; thus, human cochlear histopathology is critical to our understanding of the mechanisms of hearing loss. Dogma holds that relative damage to sensory cells, which transduce mechanical vibration into electrical signals, versus the stria vascularis, the cellular battery that powers transduction, can be inferred by the shape of the audiogram, that is, down-sloping (hair cell damage) versus flat (strial atrophy). Here we quantified hair cell and strial atrophy in 160 human specimens to show that it is the degree of low-frequency hearing loss, rather than the audiogram slope, that predicts strial atrophy. Results are critical to the design of clinical trials for hearing-loss therapeutics, as current drugs target only hair cell, not strial, regeneration.
Collapse
Affiliation(s)
- Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts 02115
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts 02115
| | - Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts 02114
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114
- Otopathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts 02114
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Sagi V, Kosaraju N, Moore LS, Mulders JY, Solyali M, Ma X, Regula DP, Hooper JE, Stankovic KM. Mortui vivos docent: a modern revival of temporal bone plug harvests. Front Neurosci 2023; 17:1242831. [PMID: 37886674 PMCID: PMC10598599 DOI: 10.3389/fnins.2023.1242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023] Open
Abstract
Human temporal bones (HTBs) are invaluable resources for the study of otologic disorders and for evaluating novel treatment approaches. Given the high costs and technical expertise required to collect and process HTBs, there has been a decline in the number of otopathology laboratories. Our objective is to encourage ongoing study of HTBs by outlining the necessary steps to establish a pipeline for collection and processing of HTBs. In this methods manuscript, we: (1) provide the design of a temporal bone plug sawblade that can be used to collect specimens from autopsy donors; (2) establish that decalcification time can be dramatically reduced from 9 to 3 months if ethylenediaminetetraacetic acid is combined with microwave tissue processing and periodic bone trimming; (3) show that serial sections of relatively-rapidly decalcified HTBs can be successfully immunostained for key inner ear proteins; (4) demonstrate how to drill down a HTB to the otic capsule within a few hours so that subsequent decalcification time can be further reduced to only weeks. We include photographs and videos to facilitate rapid dissemination of the developed methods. Collected HTBs can be used for many purposes, including, but not limited to device testing, imaging studies, education, histopathology, and molecular studies. As new technology develops, it is imperative to continue studying HTBs to further our understanding of the cellular and molecular underpinnings of otologic disorders.
Collapse
Affiliation(s)
- Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Nikitha Kosaraju
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Lindsay S. Moore
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Jip Y. Mulders
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Mehmet Solyali
- Department of Physics, Stanford University School of Humanities and Sciences, Stanford, CA, United States
| | - Xiaojie Ma
- Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Donald P. Regula
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jody E. Hooper
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Eggink MC, Frijns JHM, Sagers JE, O'Malley JT, Liberman MC, Stankovic KM. Human vestibular schwannoma reduces density of auditory nerve fibers in the osseous spiral lamina. Hear Res 2022; 418:108458. [PMID: 35334332 PMCID: PMC11181009 DOI: 10.1016/j.heares.2022.108458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
Hearing loss in patients with vestibular schwannoma (VS) is commonly attributed to mechanical compression of the auditory nerve, though recent studies suggest that this retrocochlear pathology may be augmented by cochlear damage. Although VS-associated loss of inner hair cells, outer hair cells, and spiral ganglion cells has been reported, it is unclear to what extent auditory-nerve peripheral axons are damaged in VS patients. Understanding the degree of damage VSs cause to auditory nerve fibers (ANFs) is important for accurately modeling clinical outcomes of cochlear implantation, which is a therapeutic option to rehabilitate hearing in VS-affected ears. A retrospective analysis of human temporal-bone histopathology was performed on archival specimens from the Massachusetts Eye and Ear collection. Seven patients met our inclusion criteria based on the presence of sporadic, unilateral, untreated VS. Tangential sections of five cochlear regions were stained with hematoxylin and eosin, and adjacent sections were stained to visualize myelinated ANFs and efferent fibers. Following confocal microscopy, peripheral axons of ANFs within the osseous spiral lamina were quantified manually, where feasible, and with a "pixel counting" method, applicable to all sections. ANF density was substantially reduced on the VS side compared to the unaffected contralateral side. In the upper basal turn, a significant difference between the VS side and unaffected contralateral side was found using both counting methods, corresponding to the region tuned to 2000 Hz. Even spiral ganglion cells (SGCs) contralateral to VS were affected by the tumor as the majority of contralateral SGC counts were below average for age. This observation provides histological insight into the clinical observation that unilateral vestibular schwannomas pose a long-term risk of progression of hearing loss in the contralateral ear as well. Our pixel counting method for ANF quantification in the osseous spiral lamina is applicable to other pathologies involving sensorineural hearing loss. Future research is needed to classify ANFs into morphological categories, accurately predict their electrical properties, and use this knowledge to inform optimal cochlear implant programming strategies.
Collapse
Affiliation(s)
- Maura C Eggink
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands; Department of Otorhinolaryngology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, the Netherlands
| | - Johan H M Frijns
- Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, the Netherlands; The Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Jessica E Sagers
- Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jennifer T O'Malley
- Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - M Charles Liberman
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Abstract
HYPOTHESIS In temporal bones with otitis media, fibrin and neutrophil extracellular traps (NETs) form a fibrous network with bacteria, which is involved in growth of bacterial clusters/biofilms and chronicity of disease. BACKGROUND NETs and fibrin are important in host defense against pathogens; however, their role in otitis media is not well understood. METHODS Eight human temporal bones with serous otitis media, 30 with serous-purulent otitis media, 7 with mucoid otitis media, 23 with mucoid-purulent otitis media (OM), 30 with purulent OM, and 30 with chronic otitis media were selected based on histopathologic findings. Fibrous material with bacteria was detected with hematoxylin-eosin, Gram-Weigert, and propidium iodide stains; and its composition was analyzed with immunohistochemistry. RESULTS Extensive formations of fibrous material with bacteria were observed in 30% of temporal bones with serous-purulent otitis media, 29% with mucoid otitis media, 50% with mucoid-purulent OM, 57% with purulent OM, and 67% of temporal bones with histological evidence of chronic otitis media. Some of these formations showed large bacterial clusters or biofilms. Immunohistochemical analysis showed that fibrous structures were composed of fibrin or NETs. CONCLUSIONS Formations of fibrous material with bacteria were detected in human temporal bones with different types of otitis media. Inflammatory cells were observed mostly in areas with low presence of fibrous structures. The network of fibrous material seems to prevent clearance of bacteria by phagocytic cells and thus influences growth of bacterial clusters or biofilms. Fibrin and NETs may be important for the recurrences and chronicity of disease, and contribute to clogging of tympanostomy tubes in children.
Collapse
|
7
|
Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. J Neurosci 2021; 41:4439-4447. [PMID: 33883202 DOI: 10.1523/jneurosci.3238-20.2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 11/21/2022] Open
Abstract
Animal studies suggest that cochlear nerve degeneration precedes sensory cell degeneration in both noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL), producing a hearing impairment that is not reflected in audiometric thresholds. Here, we investigated the histopathology of human ARHL and NIHL by comparing loss of auditory nerve fibers (ANFs), cochlear hair cells and the stria vascularis in a group of 52 cases with noise-exposure history against an age-matched control group. Although strial atrophy increased with age, there was no effect of noise history. Outer hair cell (OHC) loss also increased with age throughout the cochlea but was unaffected by noise history in the low-frequency region (<2 kHz), while greatly exacerbated at high frequencies (≥2 kHz). Inner hair cell (IHC) loss was primarily seen at high frequencies but was unaffected by noise at either low or high frequencies. ANF loss was substantial at all cochlear frequencies and was exacerbated by noise throughout. According to a multivariable regression model, this loss of neural channels contributes to poor word discrimination among those with similar audiometric threshold losses. The histopathological patterns observed also suggest that, whereas the low-frequency OHC loss may be an unavoidable consequence of aging, the high-frequency loss, which produces the classic down-sloping audiogram of ARHL, may be partially because of avoidable ear abuse, even among those without a documented history of acoustic overexposure.SIGNIFICANCE STATEMENT As regenerative therapeutics in sensorineural hearing loss enter clinical trials, it becomes critical to infer which cochlear pathologies are present in addition to hair cell loss. Here, by analyzing human autopsy material, we show that acoustic injury accelerates age-related primary neural degeneration, but not strial degeneration, neither of which can be inferred from audiometric thresholds. It exacerbates outer hair cell (OHC) loss only in the high-frequency half of the cochlea, suggesting that the apical loss is age-related, whereas the basal loss is partially noise induced, and therefore avoidable. Statistical analysis suggests that neural loss helps explain differences in word-recognition ability among individuals with similar audiometric thresholds. The surprising correlation between neural loss and OHC loss in the cochlea's speech region also implicates neural loss in the well-known decline in word scores as thresholds deteriorate with age.
Collapse
|
8
|
Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them. J Neurosci 2020; 40:6357-6366. [PMID: 32690619 DOI: 10.1523/jneurosci.0937-20.2020] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss arises from irreversible damage in the inner ear, where sound is transduced into electrical signals. Prior human studies suggested that sensory-cell loss is rarely the cause; correspondingly, animal work has implicated the stria vascularis, the cellular "battery" driving the amplification of sound by hair cell "motors." Here, quantitative microscopic analysis of hair cells, auditory nerve fibers, and strial tissues in 120 human inner ears obtained at autopsy, most of whom had recent audiograms in their medical records, shows that the degree of hearing loss is well predicted from the amount of hair cell loss and that inclusion of strial damage does not improve the prediction. Although many aging ears showed significant strial degeneration throughout the cochlea, our statistical models suggest that, by the time strial tissues are lost, hair cell death is so extensive that the loss of battery is no longer important to pure-tone thresholds and that audiogram slope is not diagnostic for strial degeneration. These data comprise the first quantitative survey of hair cell death in normal-aging human cochleas, and reveal unexpectedly severe hair cell loss in low-frequency cochlear regions, and dramatically greater loss in high-frequency regions than seen in any aging animal model. Comparison of normal-aging ears to an age-matched group with acoustic-overexposure history suggests that a lifetime of acoustic overexposure is to blame.SIGNIFICANCE STATEMENT This report upends dogma about the causes of age-related hearing loss. Our analysis of over 120 autopsy specimens shows that inner-ear sensory cell loss can largely explain the audiometric patterns in aging, with minimal contribution from the stria vascularis, the "battery" that powers the inner ear, previously viewed as the major locus of age-related hearing dysfunction. Predicting inner ear damage from the audiogram is critical, now that clinical trials of therapeutics designed to regrow hair cells are underway. Our data also show that hair cell degeneration in aging humans is dramatically worse than that in aging animals, suggesting that the high-frequency hearing losses that define human presbycusis reflect avoidable contributions of chronic ear abuse to which aging animals are not exposed.
Collapse
|
9
|
Hoa M, Olszewski R, Li X, Taukulis I, Gu S, DeTorres A, Lopez IA, Linthicum FH, Ishiyama A, Martin D, Morell RJ, Kelley MW. Characterizing Adult Cochlear Supporting Cell Transcriptional Diversity Using Single-Cell RNA-Seq: Validation in the Adult Mouse and Translational Implications for the Adult Human Cochlea. Front Mol Neurosci 2020; 13:13. [PMID: 32116546 PMCID: PMC7012811 DOI: 10.3389/fnmol.2020.00013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hearing loss is a problem that impacts a significant proportion of the adult population. Cochlear hair cell (HC) loss due to loud noise, chemotherapy and aging is the major underlying cause. A significant proportion of these individuals are dissatisfied with available treatment options which include hearing aids and cochlear implants. An alternative approach to restore hearing would be to regenerate HCs. Such therapy would require a recapitulation of the complex architecture of the organ of Corti, necessitating regeneration of both mature HCs and supporting cells (SCs). Transcriptional profiles of the mature cell types in the cochlea are necessary to can provide a metric for eventual regeneration therapies. To assist in this effort, we sought to provide the first single-cell characterization of the adult cochlear SC transcriptome. We performed single-cell RNA-Seq on FACS-purified adult cochlear SCs from the LfngEGFP adult mouse, in which SCs express GFP. We demonstrate that adult cochlear SCs are transcriptionally distinct from their perinatal counterparts. We establish cell-type-specific adult cochlear SC transcriptome profiles, and we validate these expression profiles through a combination of both fluorescent immunohistochemistry and in situ hybridization co-localization and quantitative polymerase chain reaction (qPCR) of adult cochlear SCs. Furthermore, we demonstrate the relevance of these profiles to the adult human cochlea through immunofluorescent human temporal bone histopathology. Finally, we demonstrate cell cycle regulator expression in adult SCs and perform pathway analyses to identify potential mechanisms for facilitating mitotic regeneration (cell proliferation, differentiation, and eventually regeneration) in the adult mammalian cochlea. Our findings demonstrate the importance of characterizing mature as opposed to perinatal SCs.
Collapse
Affiliation(s)
- Michael Hoa
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Xiaoyi Li
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Alvin DeTorres
- Auditory Restoration and Development Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Ivan A Lopez
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Fred H Linthicum
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Akira Ishiyama
- National Temporal Bone Laboratory at UCLA, UCLA School of Medicine, Los Angeles, CA, United States.,Cellular and Molecular Biology of the Inner Ear Laboratory, UCLA School of Medicine, Los Angeles, CA, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| |
Collapse
|
10
|
Nadol JB. Contemporary techniques in human otopathology and promise for the future. Laryngoscope Investig Otolaryngol 2020; 5:145-151. [PMID: 32128441 PMCID: PMC7042644 DOI: 10.1002/lio2.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022] Open
Abstract
Contemporary histopathology of the ear is based on an evolution of equipment and histological techniques over the last 500 years, including the invention of the light microscope and protocols for fixation, embedment, sectioning, and staining of tissue samples, and visual documentation of findings. Several recent techniques which can be utilized in otopathology hold promise for significant improvement in methods and a better understanding of pathologic processes in diseases of the ear.
Collapse
Affiliation(s)
- Joseph B. Nadol
- Otopathology Laboratory, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and EarHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
11
|
Preservation of Cells of the Organ of Corti and Innervating Dendritic Processes Following Cochlear Implantation in the Human: An Immunohistochemical Study. Otol Neurotol 2019; 39:284-293. [PMID: 29342037 DOI: 10.1097/mao.0000000000001686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS This study evaluates the degree of preservation of hair cells, supporting cells, and innervating dendritic processes after cochlear implantation in the human using immunohistochemical methods. BACKGROUND Surgical insertion of a cochlear implant electrode induces various pathologic changes within the cochlea including insertional trauma, foreign body response, inflammation, fibrosis, and neo-osteogenesis. These changes may result in loss of residual acoustic hearing, adversely affecting the use of hybrid implants, and may result in loss of putative precursor cells, limiting the success of future regenerative protocols. METHODS Twenty-eight celloidin-embedded temporal bones from 14 patients with bilateral severe to profound sensorineural hearing loss and unilateral cochlear implants were studied. Two sections including the modiolus or basal turn from each temporal bone were stained using antineurofilament, antimyosin-VIIa, and antitubulin antibodies in both the implanted and unimplanted ears. RESULTS Inner and outer hair cells: Immunoreactivity was reduced throughout the implanted cochlea and in the unimplanted cochlea with the exception of the apical turn.Dendritic processes in the osseous spiral lamina: Immunoreactivity was significantly less along the electrode of the implanted cochlea than in the other segments.Inner and outer pillars, inner and outer spiral bundles, and Deiters' cells: Immunoreactivity was similar in the implanted and unimplanted cochleae. CONCLUSION Insertion of a cochlear implant electrode may significantly affect the inner and outer hair cells both along and apical to the electrode, and dendritic processes in the osseous spiral lamina along the electrode. There was less effect on pillar cells, Deiters' cells, and spiral bundles.
Collapse
|
12
|
Wu PZ, Wen WP, O'Malley JT, Liberman MC. Assessing fractional hair cell survival in archival human temporal bones. Laryngoscope 2019; 130:487-495. [PMID: 30963586 DOI: 10.1002/lary.27991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Histopathological analysis of hair cell survival in human temporal bone sections has historically been binarized such that each hair cell row is rated as either present or absent, thereby greatly underestimating the amount of hair cell loss. Here, we describe and validate a technique to reliably assess fractional hair cell survival in archival sections stained with hematoxylin and eosin (H&E) using high-resolution light microscopy and optical sectioning. STUDY DESIGN Technique validation. METHODS Hair cell counts in archival temporal bone slide sets were performed by several observers using either differential interference contrast (DIC) or confocal microscopy of the endogenous eosin fluorescence in hair cells. As a further cross-check, additional decelloidinized sections were immunostained with hair cell markers myosin VI and VIIa. RESULTS Cuticular plates and stereocilia bundles are routinely resolvable in DIC imaging of archival H&E-stained human material using standard research-grade microscopes, allowing highly accurate counts of fractional hair cell survival that are reproducible across observer and can be verified by confocal microscopy. CONCLUSIONS Reanalysis of cases from the classic temporal bone literature on presbycusis suggests that, contrary to prior reports, differences in audiometric patterns may be well explained by the patterns of hair cell loss. LEVEL OF EVIDENCE NA Laryngoscope, 130:487-495, 2020.
Collapse
Affiliation(s)
- Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ping Wen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Eckhard AH, Zhu M, O'Malley JT, Williams GH, Loffing J, Rauch SD, Nadol JB, Liberman MC, Adams JC. Inner ear pathologies impair sodium-regulated ion transport in Meniere's disease. Acta Neuropathol 2019; 137:343-357. [PMID: 30390121 PMCID: PMC6513907 DOI: 10.1007/s00401-018-1927-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022]
Abstract
Meniere's disease (MD), a syndromal inner ear disease, is commonly associated with a pathological accumulation of endolymphatic fluid in the inner ear, termed "idiopathic" endolymphatic hydrops (iEH). Although numerous precipitating/exacerbating factors have been proposed for MD, its etiology remains elusive. Here, using immunohistochemistry and in situ protein-protein interaction detection assays, we demonstrate mineralocorticoid-controlled sodium transport mechanisms in the epithelium of the extraosseous portion of the endolymphatic sac (eES) in the murine and human inner ears. Histological analysis of the eES in an extensive series of human temporal bones consistently revealed pathological changes in the eES in cases with iEH and a clinical history of MD, but no such changes were found in cases with "secondary" EH due to other otological diseases or in healthy controls. Notably, two etiologically different pathologies-degeneration and developmental hypoplasia-that selectively affect the eES in MD were distinguished. Clinical records from MD cases with degenerative and hypoplastic eES pathology revealed distinct intergroup differences in clinical disease presentation. Overall, we have identified for the first time two inner ear pathologies that are consistently present in MD and can be directly linked to the pathogenesis of EH, and which potentially affect the phenotypical presentation of MD.
Collapse
Affiliation(s)
- Andreas H Eckhard
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
- Department of Otorhinolaryngology, University Hospital Zurich, Frauenklinikstrasse 24, 8091, Zurich, Switzerland.
| | - MengYu Zhu
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Jennifer T O'Malley
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Steven D Rauch
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
- Vestibular Division, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Joe B Nadol
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Joe C Adams
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Eckhard AH, O'Malley JT, Nadol JB, Adams JC. Mechanical Compression of Coverslipped Tissue Sections During Heat-induced Antigen Retrieval Prevents Section Detachment and Preserves Tissue Morphology. J Histochem Cytochem 2019; 67:441-452. [PMID: 30694090 PMCID: PMC6542147 DOI: 10.1369/0022155419826940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heat-induced antigen retrieval (HIAR) is routinely employed on aldehyde-fixed tissue sections to enhance the reactivity of antibodies that exhibit weak or no specific interactions with tissue antigens when applied in conventional immunohistochemical protocols. A major drawback of HIAR protocols is, however, the heat-induced detachment of sections from the microscope slide with resultant impaired tissue morphology or loss of the section. We developed a method in which tissue sections mounted on glass slides are temporally coverslipped, and a clamp is used to compress the sections on the microscope slide during HIAR treatment. This "pressurized coverslipping" during HIAR was tested on various formalin-fixed tissues (murine kidneys and temporal bones, human tonsils and temporal bones) that were embedded in paraffin or celloidin. The method reliably kept the sections adherent to the slide, preserved the tissue morphology, and effectively retrieved tissue antigens for improved results in immunohistochemical labeling, even for exceptionally delicate, large, and poorly adhering sections, that is, decalcified human temporal bone sections. In summary, we present a simple method for improved slide adherence and morphological preservation of tissue sections during HIAR treatment that can be combined with all HIAR protocols and that requires only basic lab equipment.
Collapse
Affiliation(s)
- Andreas H Eckhard
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Massachusetts, University Hospital Zürich, Zürich, Switzerland.,Department of Otorhinolaryngology, University Hospital Zürich, Zürich, Switzerland
| | - Jennifer T O'Malley
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Massachusetts, University Hospital Zürich, Zürich, Switzerland
| | - Joseph B Nadol
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Massachusetts, University Hospital Zürich, Zürich, Switzerland.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, University Hospital Zürich, Zürich, Switzerland
| | - Joe C Adams
- Otopathology Laboratory, Massachusetts Eye and Ear Infirmary, Massachusetts, University Hospital Zürich, Zürich, Switzerland.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Focal Degeneration of Vestibular Neuroepithelium in the Cristae Ampullares of Three Human Subjects. Otol Neurotol 2018; 39:e1100-e1110. [PMID: 30303940 DOI: 10.1097/mao.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We report a unique pattern of focal degeneration of the neuroepithelium of cristae ampullares, thick subepithelial extracellular deposits, and neural degeneration in three humans. OBJECTIVE To characterize the pattern of vestibular degeneration and measure the thickness of subepithelial deposits in these three cases and controls. METHODS The subepithelial deposits of vestibular end organs in three subject cases and controls were studied using hematoxylin and eosin, periotic acid-Schiff, Gomori trichrome staining, and immunostaining for antineurofilament, antimyosin VIIa, and anticollagen 4a1. The thickness of deposit as measured by light microscopy was compared with that of control groups (age-matched controls, patients with unilateral Menière's disease, vestibular neuritis, cupulolithiasis, severe nonfocal degeneration of the vestibular neuroepithelium, and Alport syndrome). The correlation of thickness of deposits with age from 0 to 100 years was also investigated. RESULTS Focal loss of hair cells in the neuroepithelium, thick subepithelial deposits, and degeneration of subepithelial dendrites and Scarpa's ganglion were found in all three cristae of three subject cases. Immunostaining demonstrated a decrease of afferent neural fibers in the cristae and focal fragmentation of the basement membrane adjacent to the deposits. The thickness of the subepithelial deposits in three cristae of three subject cases was significantly greater than that of all controls. In the three cristae of normal controls, the thickness of deposits demonstrated a positive correlation with age. CONCLUSION Although both age and degeneration of the vestibular neuroepithelium may be associated with the thickness of the subepithelial deposits, in this unique pattern of degeneration, the thickness of the subepithelial deposits was significantly greater than that in all controls.
Collapse
|
16
|
Wu PZ, Liberman LD, Bennett K, de Gruttola V, O'Malley JT, Liberman MC. Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience 2018; 407:8-20. [PMID: 30099118 DOI: 10.1016/j.neuroscience.2018.07.053] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023]
Abstract
The noise-induced and age-related loss of synaptic connections between auditory-nerve fibers and cochlear hair cells is well-established from histopathology in several mammalian species; however, its prevalence in humans, as inferred from electrophysiological measures, remains controversial. Here we look for cochlear neuropathy in a temporal-bone study of "normal-aging" humans, using autopsy material from 20 subjects aged 0-89 yrs, with no history of otologic disease. Cochleas were immunostained to allow accurate quantification of surviving hair cells in the organ Corti and peripheral axons of auditory-nerve fibers. Mean loss of outer hair cells was 30-40% throughout the audiometric frequency range (0.25-8.0 kHz) in subjects over 60 yrs, with even greater losses at both apical (low-frequency) and basal (high-frequency) ends. In contrast, mean inner hair cell loss across audiometric frequencies was rarely >15%, at any age. Neural loss greatly exceeded inner hair cell loss, with 7/11 subjects over 60 yrs showing >60% loss of peripheral axons re the youngest subjects, and with the age-related slope of axonal loss outstripping the age-related loss of inner hair cells by almost 3:1. The results suggest that a large number of auditory neurons in the aging ear are disconnected from their hair cell targets. This primary neural degeneration would not affect the audiogram, but likely contributes to age-related hearing impairment, especially in noisy environments. Thus, therapies designed to regrow peripheral axons could provide clinically meaningful improvement in the aged ear.
Collapse
Affiliation(s)
- P Z Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - L D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - K Bennett
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - V de Gruttola
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - J T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 2017; 8:1654. [PMID: 29162831 PMCID: PMC5698400 DOI: 10.1038/s41467-017-01837-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 11/15/2022] Open
Abstract
Cisplatin chemotherapy causes permanent hearing loss in 40–80% of treated patients. It is unclear whether the cochlea has unique sensitivity to cisplatin or is exposed to higher levels of the drug. Here we use inductively coupled plasma mass spectrometry (ICP-MS) to examine cisplatin pharmacokinetics in the cochleae of mice and humans. In most organs cisplatin is detected within one hour after injection, and is eliminated over the following days to weeks. In contrast, the cochlea retains cisplatin for months to years after treatment in both mice and humans. Using laser ablation coupled to ICP-MS, we map cisplatin distribution within the human cochlea. Cisplatin accumulation is consistently high in the stria vascularis, the region of the cochlea that maintains the ionic composition of endolymph. Our results demonstrate long-term retention of cisplatin in the human cochlea, and they point to the stria vascularis as an important therapeutic target for preventing cisplatin ototoxicity. Permanent hearing loss occurs in many cancer patients treated with cisplatin. In this study, the authors examine cisplatin pharmacokinetics in the cochleae of mice and humans showing that cisplatin is retained for months to years after treatment.
Collapse
|
18
|
O'Malley JT, Burgess BJ, Galler D, Nadol JB. Foreign Body Response to Silicone in Cochlear Implant Electrodes in the Human. Otol Neurotol 2017; 38:970-977. [PMID: 28538471 PMCID: PMC5500409 DOI: 10.1097/mao.0000000000001454] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Silicone as part of a cochlear implant electrode may be responsible for a foreign body response in the human. BACKGROUND Clinical evidence of a foreign body response to a cochlear implant has been reported. In a previous study, particulate material found within the fibrous sheath and within macrophages surrounding a cochlear implant has been identified as being consistent with platinum. However, to date, there has been no histologic evidence of a role for silicone in this cellular immune response. METHODS A total of 44 temporal bone specimens from 36 patients were reviewed by light microscopy for evidence of presumed platinum and/or silicone foreign bodies in an extracellular or intracellular location. Identification of cell type involved in phagocytosis of foreign body material was accomplished using CD163 immunostaining. The identity and source of the foreign body material was confirmed using energy-dispersive X-ray spectroscopy and scanning electron microscopy. RESULTS Evidence for both platinum and silicone was found in all 44 specimens. In three patients, anti-CD 163 immunostaining demonstrated phagocytized platinum and silicone foreign bodies. In five specimens, energy-dispersive X-ray spectroscopy demonstrated that the birefringent foreign bodies were consistent with silicone. Scanning electron microscopy of two electrodes removed from temporal bones demonstrated small cracks, fragmentation, and small circular defects in the silicone carrier. CONCLUSION Histologic evidence of a foreign body response to the presence of platinum and silicone in a cochlear implant has been demonstrated and may be responsible for some reported delayed failures or extrusion.
Collapse
Affiliation(s)
- Jennifer T O'Malley
- *Otopathology Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston †Department of Materials Science and Engineering, Massachusetts Institutes of Technology, Cambridge ‡Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
19
|
Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol Neurotol 2016; 37:99-108. [PMID: 26485593 DOI: 10.1097/mao.0000000000000879] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Identification, characterization, and location of cells involved in the innate immune defense system of the human inner ear may lead to a better understanding of many otologic diseases and new treatments for hearing and balance-related disorders. BACKGROUND Many otologic disorders are thought to have, as part of their disease process, an immune component. Although resident macrophages are known to exist in the mouse inner ear, the innate immune cells in the human inner ear are, to date, unknown. METHODS Primary antibodies against CD163, Iba1, and CD68 (markers known to be specific for macrophages/microglia) were used to immunohistochemically stain celloidin embedded archival temporal bone tissue of normal individuals with no known otologic disorders other than changes associated with age. RESULTS Cells were positively stained throughout the temporal bone within the connective tissue and supporting cells with all three markers. They were often associated with neurons and on occasion entered the sensory cell areas of the auditory and vestibular epithelium. CONCLUSIONS We have immunohistochemically identified an unappreciated class of cells in the normal adult inner ear consistent in staining characteristics and morphology with macrophages/microglia. As in other organ systems, it is likely these cells play an essential role in organ homeostasis that has not yet been elucidated within the ear.
Collapse
|
20
|
Abstract
In this review, we provide a description of the recent methods used for immunohistochemical staining of the human inner ear using formalin-fixed frozen, paraffin and celloidin-embedded sections. We also show the application of these immunohistochemical methods in auditory and vestibular endorgans microdissected from the human temporal bone. We compare the advantages and disadvantages of immunohistochemistry (IHC) in the different types of embedding media. IHC in frozen and paraffin-embedded sections yields a robust immunoreactive signal. Both frozen and paraffin sections would be the best alternative in the case where celloidin-embedding technique is not available. IHC in whole endorgans yields excellent results and can be used when desiring to detect regional variations of protein expression in the sensory epithelia. One advantage of microdissection is that the tissue is processed immediately and IHC can be made within 1 week of temporal bone collection. A second advantage of microdissection is the excellent preservation of both morphology and antigenicity. Using celloidin-embedded inner ear sections, we were able to detect several antigens by IHC and immunofluorescence using antigen retrieval methods. These techniques, previously applied only in animal models, allow for the study of numerous important proteins expressed in the human temporal bone potentially opening up a new field for future human inner ear research.
Collapse
|
21
|
Burgess BJ, O'Malley JT, Kamakura T, Kristiansen K, Robertson NG, Morton CC, Nadol JB. Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9). Audiol Neurootol 2016; 21:88-97. [PMID: 27023102 DOI: 10.1159/000443822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 01/05/2023] Open
Abstract
The histopathology of the inner ear in a patient with hearing loss caused by the p.L114P COCH mutation and its correlation with the clinical phenotype are presented. To date, 23 COCH mutations causative of DFNA9 autosomal dominant sensorineural hearing loss and vestibular disorder have been reported, and the histopathology of the human inner ear has been described in 4 of these. The p.L114P COCH mutation was first described in a Korean family. We have identified the same mutation in a family of non-Asian ancestry in the USA, and the temporal bone histopathology and clinical findings are presented herein. The histopathology found in the inner ear was similar to that shown in the 4 other COCH mutations and included degeneration of the spiral ligament with deposition of an eosinophilic acellular material, which was also found in the distal osseous spiral lamina, at the base of the spiral limbus, and in mesenchymal tissue at the base of the vestibular neuroepithelium. This is the first description of human otopathology of the COCH p.L114P mutation. In addition, it is the only case with otopathology characterization in an individual with any COCH mutation and residual hearing, thus allowing assessment of primary histopathological events in DFNA9, before progression to more profound hearing loss. A quantitative cytologic analysis of atrophy in this specimen and immunostaining using anti-neurofilament and anti-myelin protein zero antibodies confirmed that the principal histopathologic correlate of hearing loss was degeneration of the dendritic fibers of spiral ganglion cells in the osseous spiral lamina. The implications for cochlear implantation in this disorder are discussed.
Collapse
Affiliation(s)
- Barbara J Burgess
- Human Otopathology Laboratory, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Mass., USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Jung DH, Nadol JB, Folkerth RD, Merola JF. Histopathology of the Inner Ear in a Case With Recent Onset of Cogan’s Syndrome. Ann Otol Rhinol Laryngol 2015. [DOI: 10.1177/0003489415595426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The association of sensorineural hearing loss and vertigo with inflammatory eye disease, usually interstitial keratitis, has been called Cogan’s syndrome. The pathogenesis of Cogan’s syndrome is unknown, but it has been assumed to be an immune mediated disorder with vasculitis. The histopathology of the inner ear in Cogan’s syndrome has been described in 6 case reports. Although common pathologic findings in these reports include degeneration of the auditory and vestibular neuroepithelium, endolymphatic hydrops, fibrosis, and new bone formation, direct pathologic evidence of a vasculitis has not been published. A possible reason for this failure to identify vasculitis was a substantial delay (range, 4-40 years) between the onset of symptoms and examination of the otopathology. In the current case report, the patient had both auditory and vestibular symptoms and interstitial keratitis with a time delay of only 2 to 4 weeks between symptoms and death. Evidence of a vasculitis as a possible underlying etiology included H&E histopathology and anti-CD45 immunostaining of vessels both in the auditory and vestibular systems, supporting the hypothesis of a vasculitis as a mechanism in this disorder.
Collapse
Affiliation(s)
- David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph B. Nadol
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca D. Folkerth
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joseph F. Merola
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Nadol JB, O'Malley JT, Burgess BJ, Galler D. Cellular immunologic responses to cochlear implantation in the human. Hear Res 2014; 318:11-7. [PMID: 25285622 PMCID: PMC4465224 DOI: 10.1016/j.heares.2014.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
A cochlear implant array consists of biomaterials, including metal and polymeric in type which are biocompatible, but not necessarily bio-inert. Histologic evidence of a foreign body reaction has been described in temporal bones in patients who in life had undergone cochlear implantation. In the current study, the cellular immune response was characterized using immunohistochemical stains for B-cell lymphocytes (CD20), T-cell lymphocytes (CD3), and macrophages (CD68). In addition, energy dispersive spectroscopy by scanning electron microscopy (EDS-SEM) was performed to characterize the nature of particulate foreign material seen near the electrode array. Infiltrations of B-cell and Tcell lymphocytes and macrophages were identified immunohistochemically. The track of the electrode array was frequently lined by multi-nucleated foreign body giant cells. Energy dispersive X-ray spectroscopy identified the particulate material found in the fibrous sheeth surrounding the cochlear implant to be consistent with platinum. In conclusion, a cochlear implant generates a vigorous cellular immune response consisting of B and T lymphocytes, foreign body giant cells, and macrophages. Platinum was identified as one of the antigens likely responsible for this cellular response. This foreign body response may in certain cases result in migration or even extrusion of an implant device.
Collapse
Affiliation(s)
- Joseph B Nadol
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.
| | | | - Barbara J Burgess
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, USA
| | - Donald Galler
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Abstract
OBJECTIVE To describe the temporal bone histopathology in children with congenital toxoplasmosis. BACKGROUND Toxoplasmosis is a parasitic infection caused by Toxoplasma gondii. If fetal infection occurs early in gestation, severe inflammation and necrosis can cause brain lesions, chorioretinitis, and hearing loss. Hearing loss in congenital toxoplasmosis may be preventable with early diagnosis and treatment. MATERIALS AND METHODS The temporal bones of 9 subjects with congenital toxoplasmosis were removed at autopsy and studied under light microscopy. Cytocochleograms were constructed for hair cells, the stria vascularis, and cochlear neuronal cells. RESULTS Three (33%) of 9 subjects were found to have parasites in the temporal bone. The organism was identified in the internal auditory canal, the spiral ligament, stria vascularis, and saccular macula. The cystic form of the parasite was not associated with the inflammatory response seen in the active tachyzoite form. CONCLUSION We infer that the hearing loss of toxoplasmosis is likely the result of a postnatal inflammatory response to the tachyzoite form of T. gondii. Our findings have implications for the early identification and management of Toxoplasmosis.
Collapse
|
25
|
Linthicum FH, Doherty J, Webster P, Makarem A. The periductal channels of the endolymphatic duct, hydrodynamic implications. Otolaryngol Head Neck Surg 2013; 150:441-7. [PMID: 24376120 DOI: 10.1177/0194599813516420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To describe the anatomy of a small network of channels surrounding the human endolymphatic duct. STUDY DESIGN Archival temporal bone sections and a surgical specimen were studied using a variety of techniques. SETTING Temporal bone laboratory of the House Research Institute. SUBJECTS AND METHODS Archival temporal bone sections were examined by light microscopy, 3D reconstruction, and immunohistochemical labeling. A surgical specimen was examined using electron microscopy. Sections from temporal bones with blocked endolymphatic ducts or amputated sacs were examined for the manifestations of endolymphatic hydrops. RESULTS Peri-endolymphatic duct channels were found to extend from the proximal cisternal part of the endolymphatic sac to the supporting tissue of the saccule and utricle. Tissue in the channels, as seen by conventional and electron microscopy, is continuous with and identical with the tissue surrounding the endolymphatic duct. Tissue in the channels labels with the S100 antibody similar to the spiral ligament and supporting tissue of the vestibular end organs and suggests a neural crest origin, as did the presence of melanocytes. Obstruction of the endolymphatic duct resulted in endolymphatic hydrops whereas amputation of the sac did not. CONCLUSION Endolymph is probably absorbed in the endolymphatic duct. The peri-endolymphatic duct channels that extend from the proximal sac to the supporting tissue of the saccule label with the S100 antibody and contain melanocytes suggest a neural crest origin and involvement in fluid and potassium hydrodynamics similar to those described for the similarly staining spiral ligament of the cochlea.
Collapse
|
26
|
Takiguchi Y, Sun GW, Ogawa K, Matsunaga T. Long-lasting changes in the cochlear K+ recycling structures after acute energy failure. Neurosci Res 2013; 77:33-41. [DOI: 10.1016/j.neures.2013.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/30/2013] [Accepted: 06/08/2013] [Indexed: 11/26/2022]
|
27
|
Balaker AE, Ishiyama P, Lopez IA, Ishiyama G, Ishiyama A. Immunocytochemical Localization of the Translocase of the Outer Mitochondrial Membrane (Tom20) in the Human Cochlea. Anat Rec (Hoboken) 2012; 296:326-32. [DOI: 10.1002/ar.22622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Water channel proteins in the inner ear and their link to hearing impairment and deafness. Mol Aspects Med 2012; 33:612-37. [DOI: 10.1016/j.mam.2012.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 11/24/2022]
|
29
|
Abstract
HYPOTHESIS The histopathology of Sjogren's syndrome (SS) in the human inner ear correlates with mouse models of autoimmune inner ear disease. BACKGROUND SS is an autoimmune disease in which 25% of patients have sensorineural hearing loss (SNHL). The inner ear histology in a SS mouse model has shown degeneration of the stria vascularis (SV) and immunoglobulin G deposition on the basement membrane of SV blood vessels. Correlation with human temporal bone histopathology has not been addressed. METHODS The histopathology and immunohistochemistry of the inner ear in 4 patients with SS is described and compared with SS mouse models. RESULTS The histopathology of the inner ear in 3 patients with SS and SNHL showed severe loss of the intermediate cells of the SV and immunoglobulin G deposition on the basement membrane of SV blood vessels. These results parallel those of known SS mouse models. Additionally, there was shrinkage of the spiral ganglia neurons in 2 patients, whereas vestibular ganglia neurons were preserved. The fourth patient with SS and normal hearing showed only mild SV atrophy. CONCLUSION This is the first study describing the pathologic changes in the inner ear of 4 patients with SS. The 3 SS specimens with SNHL showed pathologic changes in the SV similar to the mouse model of autoimmune inner ear disease. Additionally, we propose that spiral ganglia neurons may be directly affected by SS pathology. These results highlight the importance of correlating the histopathology of human temporal bones with animal models to better understand inner ear disease in future research.
Collapse
|
30
|
McCall AA, Linthicum FH, O'Malley JT, Adams JC, Merchant SN, Bassim MK, Gellibolian R, Fayad JN. Extralabyrinthine manifestations of DFNA9. J Assoc Res Otolaryngol 2010; 12:141-9. [PMID: 21052762 DOI: 10.1007/s10162-010-0245-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 10/20/2010] [Indexed: 12/20/2022] Open
Abstract
DFNA9 is an autosomal dominant cause of non-syndromic adult-onset sensorineural hearing loss with associated variable vestibular dysfunction caused by mutations in the COCH gene. DFNA9 has previously been characterized by the presence of unique histopathologic features limited to the cochlear and vestibular labyrinth. This report describes newly discovered extralabyrinthine findings within the middle ear in DFNA9 and discusses their implications. The histopathologic anatomy of extralabyrinthine structures was reviewed in 12 temporal bones from seven individuals with DFNA9 and compared with age-matched controls. All temporal bones with DFNA9 had abnormal deposits within the tympanic membrane, incudomalleal joint, and incudostapedial joint. Hematoxylin and eosin stain and Movat's pentachrome stain both revealed different staining patterns of the extralabyrinthine deposits compared with the intralabyrinthine deposits suggesting that the composition of the deposits varies with location. The deposits within the tympanic membrane resembled cartilage morphologically and stained positively for aggrecan, an extracellular matrix protein found in cartilage. However, the cellular component of the tympanic membrane deposits did not stain with immunomarkers for chondrocytes (s100 and connective tissue growth factor). These novel findings in DFNA9 have implications for the phenotypic expression of the disorder and the clinical workup of adult-onset sensorineural hearing loss.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi M, Kimura Y, Sawabe M, Kitamura K. Modified paraffin-embedding method for the human cochlea that reveals a fine morphology and excellent immunostaining results. Acta Otolaryngol 2010; 130:788-92. [PMID: 20082565 DOI: 10.3109/00016480903426626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION A modified paraffin-embedding method could be applied to histopathological and immunohistochemical studies of the human cochlea. The complementary use of molecular and immunohistochemical techniques by means of this method is thus considered to be a valuable tool for the future study of the human inner ear. OBJECTIVE To propose a new paraffin-embedding method for the morphological and immunohistochemical study of the human cochlea. METHODS Five human temporal bones were harvested at autopsy. The temporal bone specimens were fixed in 20% buffered formalin, decalcified with EDTA, cropped to a cube of approximately 15 mm, embedded in paraffin, and then cut into 6 microm thick sections. The sections were stained with hematoxylin and eosin, and immunostained with anti-prestin and anti-neurofilament antibodies. RESULTS Although paraffin-embedded sections cannot show the excellent morphology of the delicate membranous labyrinth obtained with celloidin, this technique successfully preserved the morphology of the cochlea, especially the organ of Corti, thereby enabling us to obtain excellent immunostaining results.
Collapse
|