1
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
2
|
Costa do Bomfim FR, Gonzalez Sella VR, Thomasini RL, Plapler H. Photobiomodulation Modulates Proliferation and Gene Expression Related to Calcium Signaling in Human Osteoblast Cells. J Lasers Med Sci 2024; 15:e45. [PMID: 39381787 PMCID: PMC11459251 DOI: 10.34172/jlms.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Photobiomodulation with low-level laser treatment can enhance bone formation by stimulating the cell division of osteoblasts and increasing the amount of protein deposition, thus encouraging the formation of new bone. The aim of this study was to evaluate the effects of photobiomodulation with a low-level laser on proliferation and gene expression related to calcium signaling in human osteoblasts. Methods: Osteoblastic cell lines of the hFOB1.19 lineage, human osteoblasts, were grown and assigned into two groups, control (C; n=78 cultured wells) and photobiomodulation (L; n=78 cultured wells) with n=6 per day of the experimental period. Cells were cultured (immature at 34 ºC), and after maturation at 37 ºC, group L cells were exposed to laser irradiation with a low-level laser device (gallium and aluminum arsenide), at a wavelength of 808 nm, a power output of 200 mW, and a power density of 200 mW/cm2. The energy delivered to the cells was 37 J/cm2, with a beam area of 0.02 mm2 and an exposure time of 5 seconds. This treatment was applied daily for a period of 13 days. Following this, the number of cells was counted, and RNA was isolated, measured, and then converted into cDNA for further quantification using a comparative Ct method with real-time polymerase chain reaction. The results were then subjected to statistical analysis through a Mann-Whitney test, with a significance level of P<0.05. Results: The cell count in the L group (37.25x10±4±22.02) was statistically higher compared to the control group (22.75x10±4±7.660) with a P value of 0.0259. The values of 2-ΔΔCt for S100A6, plasma membrane calcium ATPase (PMCA), and calmodulin genes indicated hyper-expression on the thirteenth day, while the osteocalcin gene showed hypo-expression. Conclusion: The study suggests that the photobiomodulation mechanism with a low-level laser may regulate gene expression in human osteoblasts in a dose-dependent and cumulative manner.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
- Laboratory of Molecular Biology, Centro Universitário da Fundação Hermínio Ometto - FHO, Araras, SP, Brazil
| | - Valéria Regina Gonzalez Sella
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Ronaldo Luis Thomasini
- Medicine Faculty, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brazil
| | - Hélio Plapler
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
4
|
Carlomagno F, Hasenmajer V, Spaziani M, Tenuta M, Sesti F, Tarantino C, Pozza C, Isidori AM, Gianfrilli D. Total osteocalcin levels are independently associated with worse testicular function and a higher degree of hypothalamic-pituitary-gonadal axis activation in Klinefelter syndrome. J Endocrinol Invest 2024:10.1007/s40618-024-02390-7. [PMID: 38773059 DOI: 10.1007/s40618-024-02390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The role of osteocalcin (OCN) in pubertal development, male hypogonadism, and the effect of testosterone (Te) replacement therapy (TRT) remains unclear. We aimed to investigate the total OCN (tOCN) concentrations in male patients with Klinefelter syndrome (KS), a model of adult hypergonadotropic hypogonadism. METHODS This retrospective longitudinal study investigated 254 male patients with KS (47,XXY) between 2007 and 2021 at an academic referral center, categorized as (1) prepubertal, (2) pubertal, and (3) adults. All prepubertal patients were Te-naïve. Adult patients were subcategorized as (1) eugonadal, (2) hypogonadal, and (3) receiving TRT. We also analyzed 18 adult patients with available tOCN levels before and 3 months after TRT commencement. RESULTS The tOCN levels varied throughout the lifespan according to pubertal status, were highest in eugonadal and significantly lower in TRT subjects, correlated with both LH (p = 0.017) and FSH levels (p = 0.004) in adults, and significantly declined after 3 months of TRT (p = 0.006) in the adult KS cohort. HPG-axis hormones levels demonstrated no correlation in prepubertal boys. Adjustment for age and body mass index confirmed previous results and revealed significant inverse correlations with total Te (p = 0.004), calculated free Te (p = 0.016), the Te/LH (p = 0.010), and calculated free Te/LH ratios (p = 0.031). CONCLUSION In KS, a model of male hypergonadotropic hypogonadism, tOCN levels were not associated with gonadal function during normal prepuberty and pubertal development but were associated with worse testicular function and a higher degree of HPG stimulation in adults. TRT acutely reduced tOCN levels in adults.
Collapse
Affiliation(s)
- F Carlomagno
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - V Hasenmajer
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - M Spaziani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - M Tenuta
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - F Sesti
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - C Tarantino
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - C Pozza
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A M Isidori
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Endocrine and Andrological Regional Rare Disease Center (Endo-ERN Accredited), Policlinico Umberto I, 00161, Rome, Italy
| | - D Gianfrilli
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
5
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
6
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
7
|
Jiang C, Zhu S, Zhan W, Lou L, Li A, Cai J. Comparative analysis of bone turnover markers in bone marrow and peripheral blood: implications for osteoporosis. J Orthop Surg Res 2024; 19:163. [PMID: 38429649 PMCID: PMC10908102 DOI: 10.1186/s13018-024-04634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
INTRODUCTION This study examines bone turnover marker (BTM) variations between bone marrow and peripheral blood in osteoporotic and non-osteoporotic patients. BTMs offer insights into bone remodeling, crucial for understanding osteoporosis. METHODS A total of 133 patients were categorized into osteoporotic and non-osteoporotic cohorts. BTMs-C-telopeptide cross-linked type 1 collagen (β-CTX), serum osteocalcin (OC), Procollagen type I N-propeptide (P1NP), 25(OH)D-were measured in bone marrow and peripheral blood. Lumbar spine bone mineral density (BMD) was assessed. RESULTS Osteoporotic patients exhibited elevated β-CTX and OC levels in peripheral blood, indicating heightened bone resorption and turnover. β-CTX levels in osteoporotic bone marrow were significantly higher. Negative correlations were found between peripheral blood β-CTX and OC levels and lumbar spine BMD, suggesting their potential as osteoporosis severity indicators. No such correlations were observed with bone marrow markers. When analyzing postmenopausal women separately, we obtained consistent results. CONCLUSIONS Elevated β-CTX and OC levels in osteoporotic peripheral blood highlight their diagnostic significance. Negative β-CTX and OC-BMD correlations underscore their potential for assessing osteoporosis severity. Discrepancies between peripheral blood and bone marrow markers emphasize the need for further exploration. This research advances our understanding of BTM clinical applications in osteoporosis diagnosis and treatment.
Collapse
Affiliation(s)
- Chuan Jiang
- College of Medicine, Yangzhou University, Yangzhou, 225001, China
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Sibo Zhu
- Department of Orthopedics, Dalian Medical University, Dalian, 116000, China
| | - Wanda Zhan
- College of Medicine, Yangzhou University, Yangzhou, 225001, China
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Linbing Lou
- Department of Orthopedics, Dalian Medical University, Dalian, 116000, China
| | - Aoying Li
- Department of Orthopedics, Dalian Medical University, Dalian, 116000, China
| | - Jun Cai
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
8
|
Ying M, Mao J, Sheng L, Wu H, Bai G, Zhong Z, Pan Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J Pers Med 2023; 13:jpm13050705. [PMID: 37240875 DOI: 10.3390/jpm13050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) causes deaths worldwide, ranking second after lung cancer. Bone metastasis (BM) frequently results from advanced PCa, affecting approximately 90% of patients, and it also often results in severe skeletal-related events. Traditional diagnostic methods for bone metastases, such as tissue biopsies and imaging, have substantial drawbacks. This article summarizes the significance of biomarkers in PCa accompanied with BM, including (1) bone formation markers like osteopontin (OPN), pro-collagen type I C-terminal pro-peptide (PICP), osteoprotegerin (OPG), pro-collagen type I N-terminal pro-peptide (PINP), alkaline phosphatase (ALP), and osteocalcin (OC); (2) bone resorption markers, including C-telopeptide of type I collagen (CTx), N-telopeptide of type I collagen (NTx), bone sialoprotein (BSP), tartrate-resistant acid phosphatase (TRACP), deoxypyridinoline (D-PYD), pyridoxine (PYD), and C-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP); (3) prostate-specific antigen (PSA); (4) neuroendocrine markers, such as chromogranin A (CgA), neuron-specific enolase (NSE), and pro-gastrin releasing peptide (ProGRP); (5) liquid biopsy markers, such as circulating tumor cells (CTCs), microRNA (miRNA), circulating tumor DNA (ctDNA), and cell-free DNA (cfDNA) and exosomes. In summary, some of these markers are already in widespread clinical use, while others still require further laboratory or clinical studies to validate their value for clinical application.
Collapse
Affiliation(s)
- Mingshuai Ying
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Jianshui Mao
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lingchao Sheng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Hongwei Wu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Guangchao Bai
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhuolin Zhong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhijun Pan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
9
|
Cheng Y, Chen J, Zou S, Huang L, Li G. The mechanism underlying the remodeling effect of lactoferrin on midpalatal sutures during maxillary expansion and relapse in rats. Am J Orthod Dentofacial Orthop 2023; 163:e137-e151. [PMID: 37012109 DOI: 10.1016/j.ajodo.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION The remodeling effects of intragastric administration and intramaxillary injection of lactoferrin (LF) on midpalatal sutures (MPS) during maxillary expansion and relapse in rats were studied to explore the underlying bone remodeling mechanism. METHODS Using a rat model of maxillary expansion and relapse, rats were treated with LF by intragastric administration (1 g·kg-1·d-1) or intramaxillary injection (5 mg·25 μl-1·d-1). The effects of LF on the osteogenic and osteoclast activities of MPS were observed by microcomputed tomography, histologic staining, and immunohistochemical staining, and the expressions of key factors in the extracellular regulated protein kinase 1/2 (ERK1/2) pathway and osteoprotegerin (OPG)-receptor activator of nuclear factor-KB ligand (RANKL)-receptor activator of nuclear factor-KB (RANK) axis were detected. RESULTS Compared with the group with maxillary expansion alone, osteogenic activity was relatively enhanced, whereas osteoclast activity was relatively weakened in the groups administered LF, and the phosphorylated-ERK1/2: ERK1/2 and OPG: RANKL expression ratios increased significantly. The difference was more significant in the group administered LF intramaxillary. CONCLUSIONS Administration of LF promoted osteogenic activity at MPS and inhibited osteoclast activity during maxillary expansion and relapse in rats, which may have occurred through regulation of the ERK1/2 pathway and the OPG-RANKL-RANK axis. The efficiency of intramaxillary LF injection was greater than that of intragastric LF administration.
Collapse
|
10
|
Xu Z, Yang C, Wu F, Tan X, Guo Y, Zhang H, Wang H, Sui X, Xu Z, Zhao M, Jiang S, Dai Z, Li Y. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol 2023; 14:1136561. [PMID: 37057181 PMCID: PMC10089303 DOI: 10.3389/fphys.2023.1136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn−/−) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (μCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn−/− mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn−/− mice, while μCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn−/− mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaowen Tan
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Minbo Zhao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Siyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Yinghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| |
Collapse
|
11
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Devlin MJ, Eick GN, Snodgrass JJ. The utility of dried blood spot measurement of bone turnover markers in biological anthropology. Am J Hum Biol 2022; 34:e23816. [PMID: 36214251 PMCID: PMC9787861 DOI: 10.1002/ajhb.23816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Bone is a dynamic organ under continual turnover influenced by life history stage, energy dynamics, diet, climate, and disease. Bone turnover data have enormous potential in biological anthropology for testing evolutionary and biocultural hypotheses, yet few studies have integrated these biomarkers. In the present article we systematically review the current availability, future viability, and applicability of measuring bone turnover markers (BTMs) in dried blood spot (DBS) samples obtained from finger prick whole blood. METHODS Our review considers clinical and public health relevance, biomarker stability in DBS, assay availability, and cost. We consider biomarkers of bone formation such as osteocalcin (bone matrix protein), PINP (N-terminal propeptide of type I collagen), and alkaline phosphatase (osteoblast enzyme), as well as biomarkers of bone resorption such as CTX (marker of collagen breakdown) and TRACP5b (tartrate-resistant acid phosphatase 5b; osteoclast enzyme). RESULTS Two BTMs have been validated for DBS: osteocalcin (formation) and TRACP5b (resorption). Prime candidates for future development are CTX and PINP, the formation and resorption markers used for clinical monitoring of response to osteoporosis treatment. CONCLUSION BTMs are a field-friendly technique for longitudinal monitoring of skeletal biology during growth, reproduction and aging, combining minimized risk to study participants with maximized ease of sample storage and transport. This combination allows new insights into the effects of energy availability, disease, and physical activity level on bone, and questions about bone gain and loss across life history and in response to environmental factors; these issues are important in human biology, paleoanthropology, bioarchaeology, and forensic anthropology.
Collapse
Affiliation(s)
- Maureen J. Devlin
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geeta N. Eick
- Global Health Biomarker Laboratory, Department of AnthropologyUniversity of OregonEugeneOregonUSA
| | - J. Josh Snodgrass
- Global Health Biomarker Laboratory, Department of AnthropologyUniversity of OregonEugeneOregonUSA,Center for Global HealthUniversity of OregonEugeneOregonUSA,Invited Faculty, Global Station for Indigenous Studies & Cultural DiversityHokkaido UniversitySapparoHokkaidoJapan
| |
Collapse
|
13
|
OSTEOCALCIN ACTIVE CENTER MODELS: electrochemical adsorption on platinum AND QUANTUM CHEMICAL ANALYSIS. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am J Hum Biol 2022; 34:e23811. [PMID: 36205445 PMCID: PMC9787651 DOI: 10.1002/ajhb.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The use of minimally invasive biomarkers (MIBs - physiological biomarkers obtained from minimally invasive sample types) has expanded rapidly in science and medicine over the past several decades. The MIB approach is a methodological strength in the field of human and non-human primate evolutionary biology (HEB). Among humans and our closest relatives, MIBs provide unique opportunities to document phenotypic variation and to operationalize evolutionary hypotheses. AIMS This paper overviews the use of MIBs in HEB. Our objectives are to (1) highlight key research topics which successfully implement MIBs, (2) identify promising yet under-investigated areas of MIB application, and (3) discuss current challenges in MIB research, with suggestions for advancing the field. DISCUSSION AND CONCLUSIONS A range of MIBs are used to investigate focal topics in HEB, including energetics and life history variation/evolution, developmental plasticity, and social status and dominance relationships. Nonetheless, we identify gaps in existing MIB research on traits such as physical growth and gut function that are central to the field. Several challenges remain for HEB research using MIBs, including the need for additional biomarkers and methods of assessment, robust validations, and approaches that are standardized across labs and research groups. Importantly, researchers must provide better support for adaptation and fitness effects in hypothesis testing (e.g., by obtaining complementary measures of energy expenditure, demonstrating redundancy of function, and performing lifetime/longitudinal analyses). We point to continued progress in the use of MIBs in HEB to better understand the past, present, and future of humans and our closest primate relatives.
Collapse
Affiliation(s)
- Samuel S. Urlacher
- Department of AnthropologyBaylor UniversityWacoTexasUSA
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Child and Brain Development ProgramCIFARTorontoOntarioCanada
| | - Elizabeth Y. Kim
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Department of BiologyBaylor UniversityWacoTexasUSA
| | - Tiffany Luan
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Lauren J. Young
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Brian Adjetey
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| |
Collapse
|
15
|
Current use of bone turnover markers in the management of osteoporosis. Clin Biochem 2022; 109-110:1-10. [PMID: 36096182 DOI: 10.1016/j.clinbiochem.2022.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
The adult bone is continuously being remodelled to repair microdamage, preserve bone strength and mechanical competence as well as maintain calcium homeostasis. Bone turnover markers are products of osteoblasts (bone formation markers) and osteoclasts (bone resorption markers) providing a dynamic assessment of remodelling (turnover). Resorption-specific bone turnover markers are typically degradation products of bone collagen molecules (N- [NTX] and C-telopeptide cross-linked type 1 collagen [CTX]), which are released into the circulation and excreted in urine; or enzymatic activities reflecting osteoclastic resorption, tartrate-resistant acid phosphatase [TRACP]. Formation-specific bone turnover markers embrace different osteoblastic activities: type 1 collagen synthesis (Procollagen type I N- propeptide [PINP]), osteoblast enzymes (bone-specific alkaline phosphatase [BALP]), or bone matrix proteins [osteocalcin]. Among individuals not receiving osteoporosis treatment, resorption and formation markers are tightly linked and highly correlated (r= 0.6-0.8). Significant biological variability was reported in the past, but these issues have been greatly improved with automated assays and attention to pre-analytical and analytical factors that are known to influence bone turnover marker levels. Bone turnover markers are not useful in the diagnosis of osteoporosis, the individual prediction of bone loss, fracture, or rare complications, or in the selection of pharmacological treatment. Despite remaining issues with reference intervals and assays harmonization, bone turnover markers have proven to be useful in elucidating the pharmacodynamics and effectiveness of osteoporosis medications in clinical trials. As an alternative to BMD testing, BTMs may be useful to monitor osteoporosis therapies.
Collapse
|
16
|
Omidvar MH, Soltani-Zangbar MS, Zamani M, Motavalli R, Jafarpoor M, Dolati S, Ahmadi M, Mehdizadeh A, Khabbazi A, Hajialilo M, Yousefi M. The effect of osteoporotic and non-osteoporotic individuals' T cell-derived exosomes on osteoblast cells' bone remodeling related genes expression and alkaline phosphatase activity. BMC Res Notes 2022; 15:272. [PMID: 35941659 PMCID: PMC9358836 DOI: 10.1186/s13104-022-06139-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Osteoporosis is a common skeletal disorder attributed to age and is defined as a systematic degradation of bone mass and the microarchitecture leading to bone fractures. Exosomes have been reported in almost all biological fluids and during the failure of bone remodeling. 20 ml of blood samples were obtained from osteoporotic and non-osteoporotic postmenopausal women. After the isolation of peripheral blood mononuclear cells (PBMCs), T cells were separated via the magnetic-activated cell sorting (MACS) technique. Exosomes were driven from T cells of non-osteoporotic and osteoporotic volunteers. Subsequently, normal osteoblasts were treated with obtained T cell exosomes to assess osteoblastic function and gene expression. Results Runx2, type I collagen, osteopontin, and osteocalcin expression decreased in osteoblasts treated by osteoporotic T cell exosomes. In contrast, an increased expression of the mentioned genes was observed following non-osteoporotic T cell exosome treatment. Additionally, osteoblast alkaline phosphatase (ALP) activity treated with non-osteoporotic T cell exosomes increased. However, this activity decreased in another group. Our data demonstrated that T cell exosomes obtained from osteoporotic and non-osteoporotic individuals could alter the osteoblastic function and gene expression by affecting the genes essential for bone remodeling. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06139-4.
Collapse
Affiliation(s)
- Mohammad Hasan Omidvar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jafarpoor
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrzad Hajialilo
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Kumar V, Bolanthakodi N, Vidyasagar S, Holla A, Sheik SM, Abhishek S. Association of serum osteocalcin with beta cell function, insulin resistance, and glycemic parameters in south Indian type 2 diabetic subjects. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
18
|
Park D, Kim DY, Byun MR, Hwang H, Ko SH, Baek JH, Baek K. Undercarboxylated, but not Carboxylated, Osteocalcin suppresses TNF-α induced inflammatory signaling pathway in Myoblast. J Endocr Soc 2022; 6:bvac084. [PMID: 35702666 PMCID: PMC9188654 DOI: 10.1210/jendso/bvac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Undercarboxylated osteocalcin (ucOCN) has been considered to be an important endocrine factor, especially to regulate bone and energy metabolism. Even with the mounting evidence showing the consistent inverse correlation of ucOCN levels in chronic inflammatory diseases, however, the mechanism underlying the involvement of ucOCN in the muscular inflammation has not been fully understood. In the present study, we explored 1) the endocrine role of ucOCN in the regulation of inflammation in C2C12 myoblasts and primary myoblasts and the underlying intracellular signaling mechanisms, and 2) whether G protein–coupled receptor family C group 6 member A (GPRC6A) is the ucOCN-sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts. ucOCN suppressed the tumor necrosis factor-α (TNF-α)–induced expressions of major inflammatory cytokines, including interleukin-1β (IL-1β) and inhibited the TNF-α–stimulated activities of transcription factors, including NF-κB, in C2C12 and primary myoblasts. Both knockdown and knockout of GPRC6A, by using siRNA or a CRISPR/CAS9 system, respectively, did not reverse the effect of ucOCN on IL-1β expression in myoblasts. Interestingly, TNF-α–induced IL-1β expression was inhibited by knockdown or deletion of GPRC6A itself, regardless of the ucOCN treatment. ucOCN was rapidly internalized into the cytoplasmic region via caveolae-mediated endocytosis, suggesting the presence of new target proteins in the cell membrane and/or in the cytoplasm for interaction with ucOCN in myoblasts. Taken together, these findings indicate that ucOCN suppresses the TNF-α–induced inflammatory signaling pathway in myoblasts. GPRC6A is not a sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts.
Collapse
Affiliation(s)
- Danbi Park
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University , Daegu 41940, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University , Seoul 02447, Republic of Korea
| | - Hyorin Hwang
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Seong Hee Ko
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University , Seoul 08826, Republic of Korea
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University , Gangwondo 25457, Republic of Korea
| |
Collapse
|
19
|
Logan AA, Nielsen BD, Hiney KM, Robison CI, Manfredi JM, Buskirk DD, Popovich JM. The Impact of Circular Exercise Diameter on Bone and Joint Health of Juvenile Animals. Animals (Basel) 2022; 12:ani12111379. [PMID: 35681842 PMCID: PMC9179390 DOI: 10.3390/ani12111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Circular exercise is used in many equestrian disciplines and this study aimed to determine if circle diameter impacts juvenile animal forelimb bone and joint health. On day 0, 24 calves at 9 weeks of age were assigned the following exercise treatments: small circle (12 m clockwise), large circle (18-m clockwise), treadmill, or non-exercised control. Exercise was initiated at 1.1−1.5 m/s for 5 min/d and increased 5 min weekly until reaching 30 min/d. On day 49, synovial fluid was collected from multiple joints, cartilage was collected from the proximal surface of fused third and fourth metacarpi (MC III and IV), and forelimbs underwent computed tomography scans. A statistical analysis (PROC mixed) was performed in SAS 9.4. The inside leg of the small circle treatment had a larger MC III and IV dorsopalmar external diameter than the outside (p = 0.05). The medial proximal phalanx had a greater mediolateral diameter than the lateral proximal phalanx of the small circle treatment (p = 0.01). Fetlock nitric oxide was greater in the large circle and treadmill treatments (p < 0.0001). Cartilage glycosaminoglycan concentration was greater in the outside leg of the small circle exercise treatment than the inside leg (p = 0.03). Even at slow speeds, circular exercise diameter can impact joint and bone health, but faster speeds may have greater alterations.
Collapse
Affiliation(s)
- Alyssa A. Logan
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
- Correspondence:
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Kristina M. Hiney
- Department of Animal and Food Sciences, Oklahoma State University, 201J Animal Sciences, Stillwater, OK 74074, USA;
| | - Cara I. Robison
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Jane M. Manfredi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA;
| | - Daniel D. Buskirk
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - John M. Popovich
- Center for Neuromusculoskeletal Clinical Research, Department of Osteopathic Manipulative Medicine, Michigan State University, 965 Wilson Rd., B439, East Lansing, MI 48824, USA;
| |
Collapse
|
20
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
21
|
Xu Y, Shen L, Liu L, Zhang Z, Hu W. Undercarboxylated Osteocalcin and Its Associations With Bone Mineral Density, Bone Turnover Markers, and Prevalence of Osteopenia and Osteoporosis in Chinese Population: A Cross-Sectional Study. Front Endocrinol (Lausanne) 2022; 13:843912. [PMID: 35898467 PMCID: PMC9309304 DOI: 10.3389/fendo.2022.843912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Undercarboxylated osteocalcin (ucOC) is one form of osteocalcin lacking full carboxylation, which plays an important role in bone homeostasis, glucose homeostasis, and energy metabolism. Our aim is to obtain the profile of serum ucOC level according to gender and age and explore its associations with bone mineral density (BMD), bone turnover markers (BTMs), and prevalence of osteopenia and osteoporosis in the Chinese population. METHODS This is a cross-sectional study with 900 subjects, composed of 431 men and 469 women. Clinical information was collected, and BMD values of the lumbar spine (L1-4), left femoral neck, and total hip were scanned. Biochemical markers including hepatic and renal function, serum calcium, serum phosphorus, procollagen type 1 N-propeptide (P1NP) β-CrossLaps of type I collagen-containing cross-linked C-telopeptide (β-CTX) intact parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), and ucOC were measured. RESULTS We found that the median ucOC level was higher in men than women [men, 2.6 ng/ml; women, 1.6 ng/ml; p < 0.001]. The profile according to age showed that ucOC levels were the lowest at the age of 40-49 years in both men [2.55 ng/ml (95% CI = 1.96-3.13 ng/ml)] and women [1.57 ng/ml (95% CI = 1.12-2.03 ng/ml)]; in patients younger than 49 years, they decreased with age; then over 50 years, they quickly increased. Furthermore, we found that a higher ucOC level was correlated with lower BMD values at the lumbar spine (men, r = -0.128, p = 0.013; women, r = -0.321, p < 0.001), femoral neck (men, r = -0.095, p = 0.062; women, r = -0.260, p < 0.001), and total hip (men, r = -0.123, p = 0.015; women, r = -0.209, p < 0.001) and higher P1NP (men, r = 0.307, p < 0.001; women, r = 0.239, p < 0.001) and β-CTX (men, r = 0.169, p = 0.001; women, r = 0.354, p < 0.001) levels in both men and women. Furthermore, we also showed that a 1 - SD increase in ucOC was associated with an odds ratio (OR) of 1.63 and 1.70 for having osteopenia or osteoporosis in men and women, respectively (men, 95% CI = 1.25-2.13, p = 0.004; women, 95% CI = 1.19-2.42, p = 0.004). CONCLUSIONS We first revealed the profile of serum ucOC levels according to gender and age in the Chinese population and demonstrated the associations of ucOC with BMD and BTMs and the risk of prevalent osteopenia or osteoporosis. Our findings provide a clue to elucidate the function of ucOC in bone metabolism.
Collapse
Affiliation(s)
- Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lianyong Liu
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai, China
- *Correspondence: Weiwei Hu, ; Zhenlin Zhang, ; Lianyong Liu,
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Weiwei Hu, ; Zhenlin Zhang, ; Lianyong Liu,
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Weiwei Hu, ; Zhenlin Zhang, ; Lianyong Liu,
| |
Collapse
|
22
|
Maillane-Vanegas S, Luiz-de-Marco R, Narciso PH, Faustino-da-Silva YVDS, Kemper H, Ribeiro Agostinete R, A Fernandes R. More than Sports Participation: The Role of Ground Reaction Force, Osteocalcin and Lean Soft Tissue on Bone Density Accrual in Adolescents: ABCD Growth Study. J Clin Densitom 2022; 25:61-72. [PMID: 34391643 DOI: 10.1016/j.jocd.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
The objective of this study was to identify predictors of 12-mo areal bone density accrual in different body segments, lean soft tissue, and osteogenic characteristics attributed to sports participation among adolescent girls and boys. Adolescents (Girls [n = 64], [aged = 14.7]); Boys [n = 129], [aged = 14.6]) were stratified into three groups according to their engagement in different sports (Control [n = 68], Swimming [n = 25], and Weight-bearing sports [n = 100]). Areal bone density (aBMD [g/cm²]) and lean soft tissue (LST) [kg] were measured by dual-energy x-ray absorptiometry (DXA; Lunar DPX-NT; General Electric Healthcare, Little Chalfont, Buckinghamshire, United Kingdom). The ground reaction force (GRF) index attributed to sports participation (Sport-GRF) was created considering the GRF attributed to each sport, body weight of the adolescent, and the amount of time spent in sports participation. Osteocalcin levels (ng/mL) were estimated from a venous blood sample. Multiple regression analysis showed that after adjusting for covariates, the models involving sport-GRF, LST (Δ), and osteocalcin explained 15.8% to 76.2% of the aBMD gains. Specifically in girls, OC was only associated with lower limb aBMD accrual. In boys, however, sport ground reaction forces were positively associated with total spine aBMD accrual. Furthermore, the LST (Δ) was positively associated with aBMD accrual in all body sites (β = 0.003 to 0.011) in both sexes. Increases in LST contributed significantly to gains in aBMD accrual in both sexes, being a more important predictor of changes in bone outcomes than ground reaction forces and osteocalcin.
Collapse
Affiliation(s)
- Santiago Maillane-Vanegas
- Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), Presidente Prudente, Brazil; Laboratory of InVestigation in Exercise LIVE, Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil.
| | - Rafael Luiz-de-Marco
- Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), Presidente Prudente, Brazil; Laboratory of InVestigation in Exercise LIVE, Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Pedro Henrique Narciso
- Laboratory of InVestigation in Exercise LIVE, Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | | | - Han Kemper
- Amsterdam UMC, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Ricardo Ribeiro Agostinete
- Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), Presidente Prudente, Brazil; Laboratory of InVestigation in Exercise LIVE, Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| | - Rômulo A Fernandes
- Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), Presidente Prudente, Brazil; Laboratory of InVestigation in Exercise LIVE, Department of Physical Education, Sao Paulo State University (UNESP), Presidente Prudente, Brazil
| |
Collapse
|
23
|
Rija FF, Hussein SZ, Abdalla MA. Osteoprotegerin, sclerostin, and osteocalcin serum levels in thyroid disorder patients. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Chitwood JR, Chakraborty N, Hammamieh R, Moe SM, Chen NX, Kacena MA, Natoli RM. Predicting fracture healing with blood biomarkers: the potential to assess patient risk of fracture nonunion. Biomarkers 2021; 26:703-717. [PMID: 34555995 DOI: 10.1080/1354750x.2021.1985171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fracture non-union is a significant orthopaedic problem affecting a substantial number of patients yearly. Treatment of nonunions is devastating to patients and costly to the healthcare system. Unfortunately, the diagnosis of non-union is typically made in a reactionary fashion by an orthopaedic surgeon based on clinical assessment and radiographic features several months into treatment. For this reason, investigators have been trying to develop prediction algorithms; however, these have relied on population-based approaches and lack the predictive capability necessary to make individual treatment decisions. There is also a growing body of literature focussed on identifying blood biomarkers that are associated with non-union. This review describes the research that has been done in this area. Further studies of patient-centered, precision medicine approaches will likely improve fracture non-union diagnostic/prognostic capabilities.
Collapse
Affiliation(s)
- Joseph R Chitwood
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Azmy Abd El-Motelp B, Tarek Ebrahim M, Khairy Mohamed H. Salvia officinalis Extract and 17β-Estradiol Suppresses Ovariectomy Induced Osteoporosis in Female Rats. Pak J Biol Sci 2021; 24:434-444. [PMID: 34486329 DOI: 10.3923/pjbs.2021.434.444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Osteoporosis is a progressive metabolic disorder characterized by an impaired bone formation that leads to increased morbidity and mortality.<i> Salvia officinalis </i>is a source of phytoestrogens that could help mitigate the risk of osteoporotic rat fracture by exerting sex hormones. Therefore, the present study was designed to investigate the curative effect of <i>Salvia officinalis </i>Extract<i> </i>(SOE) and<i> </i>17β-estradiol (E<sub>2</sub>) and their combination<i> </i>on bone loss in female rats with ovariectomy-induced estrogen deficiency <b>Materials and Methods:</b> Forty adult female albino rats were divided into five groups, which included Sham control (Sham), ovariectomy (OVX), OVX+SOE, OVX+E<sub>2</sub> and OVX +SOE+E<sub>2</sub>.<i> </i>SOE (10 mL kg<sup></sup><sup>1</sup>) and E<sub>2</sub> (30 μg kg<sup></sup><sup>1</sup>) had been daily gavaged in the OVX+SOE, OVX+E<sub>2</sub> and OVX+SOE+E<sub>2</sub>, respectively for 6-weeks. <b>Results:</b> The model of ovariectomy resulted in osteoporosis as demonstrated by the decreased serum Ca, P, vitamin D, E<sub>2</sub> level associated with a significant increase in PTH levels in comparison to the sham control group. Besides, OVX to rats caused up-regulation in the levels of CTX-1, P1NP, BALP, OC and RANKL comparable to the sham control group. Moreover, SOE and E<sub>2</sub> significantly modulated the calciotropic parameters and improved all bone turnover markers as well as RANKL as compared to the OVX group. However, Histopathological and immunohistochemical results showed defective mineralization with the destruction of the bone matrix and increased TNF-α expression from the OVX group relative to the treated groups. <b>Conclusion:</b> These results suggest that both SOE and E<sub>2</sub> or their combined administration are efficient inhibitors against ovariectomy-induced bone loss in female rats.
Collapse
|
26
|
Xiao X, Cheng Y, Huang L, Liu R, Zou S, Chen J. Gavage-administered lactoferrin promotes palatal expansion stability in a dose-dependent manner. Oral Dis 2021; 29:254-264. [PMID: 34343383 DOI: 10.1111/odi.13989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effects of different lactoferrin concentrations on mid-palatal suture bone remodeling during palatal expansion and relapse in rats. MATERIALS AND METHODS Thirty-two 5-week-old male Wistar rats were randomly divided into four groups: EO (expansion only), E+LF1 (expansion plus 10 mg/kg/day daily LF), E+LF2 (expansion plus 100 mg/kg/day daily LF), and E+LF3 (expansion plus 1 g/kg/day daily LF). Thereafter, micro-computed tomography and micro-morphology of the mid-palatal suture were analyzed on day 7 and day 14, respectively. RESULTS The arch widths were increased in all the four groups after expansion, and there was no significant difference among them on day 7. After relapse, however, the arch width in the E+LF3 group was significantly larger compared with EO group. In E+LF3 group and E+LF2 group, new bone formation and osteoblast number were enhanced with up-regulated expression of osteocalcin and collagen type I, while the expression of cathepsin K-positive cells was downregulated in E+LF3 group. CONCLUSION Lactoferrin gavage administration might increase the stability of palatal expansion and reduce relapse in a concentration-dependent manner by enhancing bone formation and inhibiting resorption. LF administration may be promising for optimizing the maxillary expansion outcome.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Nanjing Stomatological Hospital, Medical school of Nanjing University, Nanjing, China
| | - Li Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Takaya J. Calcium-Deficiency during Pregnancy Affects Insulin Resistance in Offspring. Int J Mol Sci 2021; 22:ijms22137008. [PMID: 34209784 PMCID: PMC8268058 DOI: 10.3390/ijms22137008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Prenatal malnutrition is known to affect the phenotype of the offspring through changes in epigenetic regulation. Growing evidence suggests that epigenetics is one of the mechanisms by which nutrients and minerals affect metabolic traits. Although the perinatal period is the time of highest phenotypic plasticity, which contributes largely to developmental programming, there is evidence of nutritional influence on epigenetic regulation during adulthood. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. Cortisol, the most important glucocorticoid, is considered to lead to insulin resistance and metabolic syndrome. 11β-hydroxysteroid dehydrogenase-1 is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. This brief review aims to identify the effects of Ca deficiency during pregnancy and/or lactation on insulin resistance in the offspring. Those findings demonstrate that maternal Ca deficiency during pregnancy may affect the epigenetic regulation of gene expression and thereby induce different metabolic phenotypes. We aim to address the need for Ca during pregnancy and propose the scaling-up of clinical and public health approaches that improved pregnancy outcomes.
Collapse
Affiliation(s)
- Junji Takaya
- Department of Pediatrics, Kawachi General Hospital, 1-31 Yokomakura, Higashi-Osaka 578-0954, Osaka, Japan
| |
Collapse
|
28
|
The carboxylation status of osteocalcin has important consequences for its structure and dynamics. Biochim Biophys Acta Gen Subj 2020; 1865:129809. [PMID: 33340588 DOI: 10.1016/j.bbagen.2020.129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The carboxylation status of Osteocalcin (Ocn) not only influences formation and structure in bones but also has important endocrine functions affecting energy metabolism and expenditure. In this study, the role of γ-carboxylation of the glutamate residues in the structure-dynamics-function relationship in Ocn is investigated. METHODS Three forms of Ocn, differentially carboxylated at the Glu-17, 21 and 24 residues, along with a mutated form of Ocn carrying Glu/Ala mutations, are modeled and simulated using molecular dynamics (MD) simulation in the presence of calcium ions. RESULTS Characterization of the global conformational dynamics of Ocn, described in terms of the orientational variations within its 3-helical domain, highlights large structural variations in the non-carboxylated osteocalcin (nOcn). The bi-carboxylated Ocn (bOcn) and tri-carboxylated (tOcn) species, in contrast, display relatively rigid tertiary structures, with the dynamics of most regions strongly correlated. Radial distribution functions calculated for both bOcn and tOcn show long-range ordering of the calcium ion distribution around the carboxylated glutamate (γGlu) residues, likely playing an important role in promoting stability of these Ocns. Additionally, the same calcium ions are observed to coordinate with neighboring γGlu, better shielding their negative charges and in turn stabilizing these systems more than do the singly coordinating calcium ions observed in the case of nOcn. bOcn is also found to exhibit a more helical C-terminal structure, that has been shown to activate its cellular receptor GPRC6A, highlighting the allosteric role of Ocn carboxylation in modulating the stability and binding potential of the active C-terminal. CONCLUSIONS The carboxylation status of Ocn as well and its calcium coordination appear to have a direct influence on Ocn structure and dynamics, possibly leading to the known differences in Ocn biological function. GENERAL SIGNIFICANCE Modification of Ocn sequence or its carboxylation state may provide the blueprint for developing high-affinity peptides targeting its cellular receptor GPRC6A, with therapeutic potential for treatment of metabolic disorders.
Collapse
|
29
|
Tavakol M, Vaughan TJ. The structural role of osteocalcin in bone biomechanics and its alteration in Type-2 Diabetes. Sci Rep 2020; 10:17321. [PMID: 33057142 PMCID: PMC7560881 DOI: 10.1038/s41598-020-73141-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/10/2020] [Indexed: 01/26/2023] Open
Abstract
This study presents an investigation into the role of Osteocalcin (OC) on bone biomechanics, with the results demonstrating that the protein's α-helix structures play a critical role in energy dissipation behavior in healthy conditions. In the first instance, α-helix structures have high affinity with the Hydroxyapatite (HAp) mineral surface and provide favorable conditions for adsorption of OC proteins onto the mineral surface. Using steered molecular dynamics simulation, several key energy dissipation mechanisms associated with α-helix structures were observed, which included stick-slip behavior, a sacrificial bond mechanism and a favorable binding feature provided by the Ca2+ motif on the OC protein. In the case of Type-2 Diabetes, this study demonstrated that possible glycation of the OC protein can occur through covalent crosslinking between Arginine and N-terminus regions, causing disruption of α-helices leading to a lower protein affinity to the HAp surface. Furthermore, the loss of α-helix structures allowed protein deformation to occur more easily during pulling and key energy dissipation mechanisms observed in the healthy configuration were no longer present. This study has significant implications for our understanding of bone biomechanics, revealing several novel mechanisms in OC's involvement in energy dissipation. Furthermore, these mechanisms can be disrupted following the onset of Type-2 Diabetes, implying that glycation of OC could have a substantial contribution to the increased bone fragility observed during this disease state.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
30
|
Schatz M, Saravanan S, d'Adesky ND, Bramlett H, Perez-Pinzon MA, Raval AP. Osteocalcin, ovarian senescence, and brain health. Front Neuroendocrinol 2020; 59:100861. [PMID: 32781196 DOI: 10.1016/j.yfrne.2020.100861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Menopause, an inevitable event in a woman's life, significantly increases risk of bone resorption and diseases such as Alzheimer's, vascular dementia, cardiac arrest, and stroke. The sole role of bones, as traditionally regarded, is to provide structural support for skeletal muscles and allow for ambulation, however this concept is becoming quickly outdated. New literature has emerged that suggests the bone cell-derived hormone osteocalcin (OCN) plays a pivotal role in cognition. OCN levels are correlated with bone mass density and bone turnover, and thus are strongly influenced by the changes associated with menopause. The goal of the current review is to discuss potential gaps in our knowledge of OCN and cognition, discrepancies in methods of OCN quantification, and therapies to enhance circulating OCN. A discussion on implementing exercise or low frequency vibration interventions at the menopausal transition to reduce risk and severity of neurological diseases and associated cognitive decline is included.
Collapse
Affiliation(s)
- Marc Schatz
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sharnikha Saravanan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Helen Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Pirklbauer M, Fuchs L, Heiss R, Ratschiller T, Mayer G. Intradialytic Calcium Kinetics and Cardiovascular Disease in Chronic Hemodialysis Patients. Blood Purif 2020; 49:723-732. [PMID: 32712610 PMCID: PMC7677992 DOI: 10.1159/000508060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND/OBJECTIVE Calcium loading has been associated with cardiovascular risk in hemodialysis (HD) patients. However, it remains to be elucidated whether alterations of intradialytic calcium buffering add to the increased cardiovascular disease burden in this high-risk population. METHODS Intradialytic calcium kinetics was evaluated in a cross-sectional observational study by measuring dialysate-sided ionized calcium mass balance (iCaMB), calcium buffer capacity, and change in serum calcium levels in 40 chronic HD patients during a routine HD session. A dialysate calcium of 3.5 mEq/L was used to adequately challenge calcium buffer mechanisms. Aortic pulse wave velocity and serum osteocalcin levels were measured prior to the HD session. Presence of cardiovascular disease and diabetes was assessed. RESULTS The mean dialysate-sided iCaMB, extracellular fluid ionized calcium mass gain, and buffered ionized calcium mass were 469 (±154), 111 (±49), and 358 (±145) mg/HD, respectively. The mean ionized serum calcium increase (∆iCa) was 0.42 (±0.14) mEq/L per HD. The mean intradialytic calcium buffer capacity was 73 (±18)%. Multivariate regression analysis revealed significant independent association of (1) iCaMB with the dialysate-to-blood calcium gradient at HD start and (2) intradialytic calcium buffer capacity with undercarboxylated osteocalcin. The presence of coronary heart disease was associated with higher ∆iCa but not iCaMB in the multivariate model. CONCLUSIONS In line with our proof-of-concept study, we provide clinical evidence for a rapidly accessible and exchangeable calcium pool involved in intradialytic calcium regulation and for the role of osteocalcin as a potential biomarker. Our findings argue for evaluating the prognostic potential of intradialytic calcium kinetics in prospective clinical trials.
Collapse
Affiliation(s)
- Markus Pirklbauer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria,
| | - Lisa Fuchs
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Ramona Heiss
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Ratschiller
- Department of Cardiac, Vascular and Thoracic Surgery, Kepler University Hospital, Linz, Austria
| | - Gert Mayer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Palatal expansion and relapse in rats: A histologic and immunohistochemical study. Am J Orthod Dentofacial Orthop 2020; 157:783-791. [DOI: 10.1016/j.ajodo.2019.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
|
33
|
Abstract
INTRODUCTION Bone has conventionally been considered to be a passive organ that only receives external control, but according to recent findings, it has become clear that bone is an endocrine organ that actively regulates systemic metabolism through osteocalcin (OC). METHODS We focus on the relationship between the brain and bone and summarize the effects of OC on cognitive function as well as the association between OC and improved cognitive function through exercise. RESULTS The findings suggest that the decrease in OC produced by bone is responsible for the decrease in cognitive function associated with aging. Furthermore, positive effect of improving cognitive function can generally be recognized in exercise interventions conducted for healthy elderly people and those with MCI, and moderate exercise is particularly effective for dementia prevention. CONCLUSION The improving bone health with aging may exert beneficial effects on cognition.
Collapse
Affiliation(s)
- Misa Nakamura
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan.,Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Masakazu Imaoka
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan.,Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Masatoshi Takeda
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
34
|
Is Dietary 2-Oxoglutaric Acid Effective in Accelerating Bone Growth and Development in Experimentally-Induced Intrauterine Growth Retarded Gilts? Animals (Basel) 2020; 10:ani10040728. [PMID: 32331362 PMCID: PMC7222790 DOI: 10.3390/ani10040728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Intrauterine growth restriction (IUGR) is a significant health issue that not only affects infant mortality or term body weight, but may also predispose individuals to a reduced rate of weight gain and the development of numerous diseases later in life. In livestock production, growth restricted (IUGR) animals require more time to reach slaughter weight. In this study, we examined the effects of long-term administration of 2-oxoglutaric acid (2-Ox) to experimentally-induced intrauterine growth retarded gilts. Abstract In this study, the effect of long-term 2-oxoglutaric acid (2-Ox) supplementation to experimentally-induced intrauterine growth retarded gilts was examined. Sows were treated with synthetic glucocorticoid (dexamethasone) every second day, during the last 45 days of pregnancy, at a dose of 0.03 mg/kg b.w. At birth, the gilts were randomly divided into two groups: unsupplemented and supplemented with 2-Ox for nine months (0.4 g/kg body weight/day). Oral supplementation of 2-Ox to experimentally-induced intrauterine growth retarded gilts increased body weight at weaning as well as final body weight at the age of nine months, and showed a regenerative effect on bone mineralization and morphology of trabeculae and articular cartilage. The positive effects on bone structure were attributed to the 2-Ox-induced alterations in bone metabolism, as evidenced by the changes in the expression of proteins involved in bone formation and remodeling: osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), cartilage oligomeric matrix protein (COMP), and vascular endothelial growth factor (VEGF).
Collapse
|
35
|
Cirano FR, Pimentel SP, Ribeiro FV, Casati MZ, Casarin RC, Gallafassi DF, Nishii D, Corrêa MG. Impact of history of periodontitis on gene expression of bone-related factors in young patients. Braz Oral Res 2020; 34:e014. [PMID: 32074214 DOI: 10.1590/1807-3107bor-2020.vol34.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Although dental implants and bone regenerative procedures are important approaches for the reestablishment of esthetics and function in young patients with a history of generalized aggressive periodontitis (GAP), no predictable outcomes have been reported, and the host osteo-immunoinflammatory response may play a relevant role in this context. In view of the lack of molecular investigations into the bone tissue condition of young patients with periodontitis, the aim of this study was to evaluate the gene expression of bone-related factors in this population. Bone biopsies were obtained from the posterior mandible in 16 individuals previously diagnosed with GAP and on periodontal support therapy and from 17 periodontally healthy (PH) patients. The gene expression of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, receptor activator of the NF-κB ligand (RANKL), osteoprotegerin (OPG), osteocalcin (OC), bone sialoprotein (BSP), and type I collagen (COL-I), important biomarkers of bone turnover, was evaluated by qRT-PCR. Lower TGF-β and OPG mRNA levels were observed in GAP patients compared to PH individuals (p ≤ 0.05). There were no between-group differences in levels of TNF-α, BSP, RANKL, OC, or COL-I mRNA (p>0.05). In young adults, a history of periodontal disease can negatively modulate the gene expression of important bone-related factors in alveolar bone tissue. These molecular outcomes may contribute to the future development of therapeutic approaches to benefit bone healing in young patients with history of periodontitis via modulation of osteo-immuno-inflammatory biomarkers.
Collapse
Affiliation(s)
- Fabiano Ribeiro Cirano
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Suzana Peres Pimentel
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Marcio Zaffalon Casati
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Renato Corrêa Casarin
- Universidade Estadual de Campinas - Unicamp, School of Dentistry at Piracicaba, Department of Prosthodontics and Periodontics, Piracicaba, SP, Brazil
| | - Daniel Freire Gallafassi
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Denise Nishii
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Mônica Grazieli Corrêa
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Eick GN, Madimenos FC, Cepon‐Robins TJ, Devlin MJ, Kowal P, Sugiyama LS, Snodgrass JJ. Validation of an enzyme‐linked immunoassay assay for osteocalcin, a marker of bone formation, in dried blood spots. Am J Hum Biol 2020; 32:e23394. [DOI: 10.1002/ajhb.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Geeta N. Eick
- Department of Anthropology University of Oregon Eugene Oregon
| | | | - Tara J. Cepon‐Robins
- Department of Anthropology University of Colorado Springs Colorado Springs Colorado
| | - Maureen J. Devlin
- Department of Anthropology University of Michigan Ann Arbor Michigan
| | - Paul Kowal
- Research Centre for Generational Health and Ageing University of Newcastle Newcastle New South Wales Australia
- Research Institute for Health Sciences Chiang Mai University Chiang Mai Thailand
| | | | | |
Collapse
|
37
|
Millar SA, John SG, McIntyre CW, Ralevic V, Anderson SI, O'Sullivan SE. An Investigation Into the Role of Osteocalcin in Human Arterial Smooth Muscle Cell Calcification. Front Endocrinol (Lausanne) 2020; 11:369. [PMID: 32587575 PMCID: PMC7298126 DOI: 10.3389/fendo.2020.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Osteocalcin (OCN) is a bone-derived protein that is detected within human calcified vascular tissue. Calcification is particularly prevalent in chronic kidney disease (CKD) patients but the role of OCN in calcification, whether active or passive, has not been elucidated. Part 1: The relationship between OCN, CKD and vascular calcification was assessed in CKD patients (n = 28) and age-matched controls (n = 19). Part 2: in vitro, we analyzed whether addition of uncarboxylated osteocalcin (ucOCN) influenced the rate or extent of vascular smooth muscle cell (VSMC) calcification. Human aortic VSMCs were cultured in control media or mineralisation inducing media (MM) containing increased phosphate with or without ucOCN (10 or 30 ng/mL) for up to 21 days. Markers of osteogenic differentiation and calcification were determined [alkaline phosphatase (ALP) activity, total intracellular OCN, Runx2 expression, α-SMA expression, alizarin red calcium staining, and calcium quantification]. Part 1 results: In our human population, calcification was present (mean age 76 years), but no differences were detected between CKD patients and controls. Plasma total OCN was increased in CKD patients compared to controls (14 vs. 9 ng/mL; p < 0.05) and correlated to estimated glomerular filtration rate (p < 0.05), however no relationship was detected between total OCN and calcification. Part 2 results: in vitro, ALP activity, α-SMA expression and calcium concentrations were significantly increased in MM treated VSMCs at day 21, but no effect of ucOCN was observed. Cells treated with control media+ucOCN for 21 days did not show increases in ALP activity nor calcification. In summary, although plasma total OCN was increased in CKD patients, this study did not find a relationship between OCN and calcification in CKD and non-CKD patients, and found no in vitro evidence of an active role of ucOCN in vascular calcification as assessed over 21 days. ucOCN appears not to be a mediator of vascular calcification, but further investigation is warranted.
Collapse
Affiliation(s)
- Sophie A. Millar
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- *Correspondence: Sophie A. Millar
| | - Stephen G. John
- Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| | - Christopher W. McIntyre
- Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
- London Health Sciences Centre, London, ON, Canada
| | - Vera Ralevic
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Susan I. Anderson
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
38
|
Mo H, Zhang N, Li H, Li F, Pu R. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. ACTA ACUST UNITED AC 2019; 52:e8754. [PMID: 31826180 PMCID: PMC6903142 DOI: 10.1590/1414-431x20198754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Cuscuta chinensis Lam. (Convolvulaceae) is an important herbal medicine widely used to improve sexual function, treat osteoporosis, and prevent aging, and has been reported to exhibit anti-osteoporotic effects in vitro. However, the activity of Cuscuta chinensis Lam. on glucocorticoid-induced osteoporosis still remains unclear. The present study aimed to assess the protective effect and the underlying mechanism of action of Cuscuta chinensis extract (CCE) against glucocorticoid-induced osteoporosis in vivo. Sprague-Dawley rats were randomly divided into four groups as follows: control group, osteoporosis group, and 2 CCE-treated osteoporosis groups (100 mg·kg-1·day-1). Blood samples and femur bones were collected for immunohistochemistry, biochemical, mRNA expression, and western blot analysis. HPLC analysis revealed that chlorogenic acid, quercetin, and hyperin were the major constituents of CCE. The results indicated that CCE increased bone length, bone weight, and bone mineral density and suppressed dexamethasone (DEX)-induced reduction in body weight. In addition, TRAP staining indicated that CCE reduced osteoclasts in DEX-induced osteoporosis rats. Mechanistically, CCE treatment alleviated the increase of bone resorption markers and the decline of osteogenic markers, which might be partially mediated by regulation of RANKL/OPG and RunX2 pathways. These results suggest that CCE showed promising effects in the protection against glucocorticoid-induced osteoporosis through protecting osteoblasts and suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Hui Mo
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Ning Zhang
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Huifu Li
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Fan Li
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Rong Pu
- Clinical Laboratory of the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| |
Collapse
|
39
|
Logan AA, Nielsen BD, Robison CI, Manfredi JM, Buskirk DD, Schott HC, Hiney KM. Calves, as a model for juvenile horses, need only one sprint per week to experience increased bone strength. J Anim Sci 2019; 97:3300-3312. [PMID: 31231753 PMCID: PMC6667263 DOI: 10.1093/jas/skz202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Previous research has determined that maintaining young animals in stalls is detrimental to their bone health, while the addition of 50 to 82-m sprints 5 d/week aids in counteracting the reduction of bone strength from confinement. The current research aims to determine if 1 or 3 d/week of sprinting affords the same benefits to bone as 5 d/week of sprinting compared to animals confined with no sprinting. Twenty-four Holstein bull calves were obtained from the Michigan State University Dairy Cattle Teaching and Research Center. At 9 wk of age, calves were randomly assigned to treatments of 1, 3, or 5 d/week of sprint exercise, or to the confined control group sprinted 0 d/week. Each treatment had 6 calves. Individual sprinting bouts included a single sprint down a 71-m concrete aisle. For the duration of the 6-wk study, calves were housed at the MSU Beef Cattle Teaching and Research Center in stalls which afforded calves room to stand, lay down, and turn around. Serum was collected weekly via jugular venipuncture to obtain concentrations of osteocalcin (OC) and C-telopeptide crosslaps of type I collagen (CTX-1)—markers of bone formation and degradation, respectively. Sprints were videotaped weekly to determine stride frequency and sprint velocity. On day 42, calves were humanely euthanized at the Michigan State University Meat Lab and both front limbs were immediately harvested. Computed tomography scans and mechanical testing were performed on the left fused third and fourth metacarpal bones. Serum OC concentration was greatest for calves sprinted 5 d/week (P < 0.001). Calves sprinted 5 d/week had both greater stride frequency (P < 0.05) and lower sprint velocity (P < 0.05). All exercise treatments experienced greater dorsal cortical widths compared to control animals (P < 0.01). Through mechanical testing, fracture forces of all sprinting treatments were determined to be greater than the control treatment (P < 0.02). Results from this study support that sprinting 1, 3, or 5 d/week during growth can increase bone health and cause favorable alterations in bone markers. While all exercise treatments had over a 20% increase to fracture force, calves sprinted 1 d/week sprinted only 426 m over the 6-wk study and still experienced over a 20% increase in bone strength compared to confined calves. This study demonstrates the remarkably few strides at speed needed to enhance bone strength and emphasizes the danger to skeletal strength if sprinting opportunities are not afforded.
Collapse
Affiliation(s)
- Alyssa A Logan
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Brian D Nielsen
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Cara I Robison
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Jane M Manfredi
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Daniel D Buskirk
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Harold C Schott
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| | - Kristina M Hiney
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
40
|
Liu Z, Chen R, Jiang Y, Yang Y, He L, Luo C, Dong J, Rong L. A meta-analysis of serum osteocalcin level in postmenopausal osteoporotic women compared to controls. BMC Musculoskelet Disord 2019; 20:532. [PMID: 31722698 PMCID: PMC6854738 DOI: 10.1186/s12891-019-2863-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Background Circulatory osteocalcin (OC) has been widely used as a biomarker to indicate bone turnover status in postmenopausal osteoporosis (PMO). However, the change of serum OC (sOC) level in PMO cases compared to postmenopausal controls remains controversial. Methods We searched the online database of PubMed and Cochrane Library. A meta-analysis of case-control studies was performed to compare the pooled sOC level between PMO patients and postmenopausal controls. Subgroup analysis according to potential confounding factors (different OC molecules and regions of the study population) was also performed. Results Ten case-control studies with 1577 postmenopausal women were included in this meta analysis. We found no significant difference in the pooled sOC level [mean difference (MD) = 1.84, 95% confidence interval (CI): (− 1.49, 5.16), p = 0.28] between PMO patients and controls. Subgroup analysis also revealed no significant difference in intact OC [MD = 1.76, 95%CI: (− 1.71, 5.23), p = 0.32] or N-terminal mid-fragment of the OC molecule [MD = 0.67, 95%(− 5.83, 7.18), p = 0.84] between groups. For different regions, no significant difference in sOC was found in Asian population between cases and controls [MD = -0.06, 95%(− 6.02, 5.89), p = 0.98], while the pooled sOC level was significantly higher in European PMO cases than controls [MD = 3.15, 95%(0.90, 5.39), p = 0.006]. Conclusions Our analysis revealed no significant difference in sOC level between PMO cases and controls according to all the current eligible studies. OC molecules are quite heterogeneous in the circulation and can be influenced by glucose metabolism. Therefore, sOC is currently not a good indicator for the high bone turnover status in PMO. More trials with standardized methodologies for the evaluation of circulatory OC are awaited to update our current findings.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ruiqiang Chen
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutong Jiang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yang Yang
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lei He
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chunxiao Luo
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianwen Dong
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Limin Rong
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
41
|
Millar SA, Anderson SI, O'Sullivan SE. Osteokines and the vasculature: a review of the in vitro effects of osteocalcin, fibroblast growth factor-23 and lipocalin-2. PeerJ 2019; 7:e7139. [PMID: 31372314 PMCID: PMC6660824 DOI: 10.7717/peerj.7139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Bone-derived factors that demonstrate extra-skeletal functions, also termed osteokines, are fast becoming a highly interesting and focused area of cross-disciplinary endocrine research. Osteocalcin (OCN), fibroblast growth factor-23 (FGF23) and lipocalin-2 (LCN-2), produced in bone, comprise an important endocrine system that is finely tuned with other organs to ensure homeostatic balance and health. This review aims to evaluate in vitro evidence of the direct involvement of these proteins in vascular cells and whether any causal roles in cardiovascular disease or inflammation can be supported. PubMed, Medline, Embase and Google Scholar were searched for relevant research articles investigating the exogenous addition of OCN, FGF23 or LCN-2 to vascular smooth muscle or endothelial cells. Overall, these osteokines are directly vasoactive across a range of human and animal vascular cells. Both OCN and FGF23 have anti-apoptotic properties and increase eNOS phosphorylation and nitric oxide production through Akt signalling in human endothelial cells. OCN improves intracellular insulin signalling and demonstrates protective effects against endoplasmic reticulum stress in murine and human endothelial cells. OCN may be involved in calcification but further research is warranted, while there is no evidence for a pro-calcific effect of FGF23 in vitro. FGF23 and LCN-2 increase proliferation in some cell types and increase and decrease reactive oxygen species generation, respectively. LCN-2 also has anti-apoptotic effects but may increase endoplasmic reticulum stress as well as have pro-inflammatory and pro-angiogenic properties in human vascular endothelial and smooth muscle cells. There is no strong evidence to support a pathological role of OCN or FGF23 in the vasculature based on these findings. In contrast, they may in fact support normal endothelial functioning, vascular homeostasis and vasodilation. No studies examined whether OCN or FGF23 may have a role in vascular inflammation. Limited studies with LCN-2 indicate a pro-inflammatory and possible pathological role in the vasculature but further mechanistic data is required. Overall, these osteokines pose intriguing functions which should be investigated comprehensively to assess their relevance to cardiovascular disease and health in humans.
Collapse
Affiliation(s)
- Sophie A Millar
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Susan I Anderson
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
42
|
Moriwaki K, Matsumoto H, Tanishima S, Tanimura C, Osaki M, Nagashima H, Hagino H. Association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults: a cross-sectional study. BMC Musculoskelet Disord 2019; 20:276. [PMID: 31164134 PMCID: PMC6549364 DOI: 10.1186/s12891-019-2650-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Understanding interactions between bone and muscle based on endocrine factors may help elucidate the relationship between osteoporosis and sarcopenia. However, whether the abundance or activity of these endocrine factors is affected by age and sex or whether these factors play a causal role in bone and muscle formation and function is unclear. We aimed to evaluate the association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults. METHODS In all, 254 residents (97 men, 157 women) participated in this cross-sectional study conducted in Japan. The calcaneal speed of sound (SOS) was evaluated by quantitative ultrasound examination. Skeletal muscle mass index (SMI) was calculated by bioelectrical impedance analysis. Grip strength was measured using a dynamometer. Gait speed was measured by optical-sensitive gait analysis. Serum sclerostin, osteocalcin (OC), insulin-like growth factor-1 (IGF-1), myostatin, and tartrate-resistant acid phosphatase-5b (TRACP-5b) concentrations were measured simultaneously. The difference by sex was determined using t test. Correlations between serum bone- and muscle-derived factors and age, BMI, SOS, SMI, grip strength, gait speed, and TRACP-5b in men and women were determined based on Pearson's correlation coefficients. Multiple regression analysis was performed using the stepwise method. RESULTS There was no significant difference with regard to age between men (75.0 ± 8.9 years) and women (73.6 ± 8.1 years). Sclerostin was significantly higher in men than in women and tended to increase with age in men; it was significantly associated with SOS and TRACP-5b levels. OC was significantly higher in women than in men and was significantly associated with TRACP-5b levels and age. IGF-1 tended to decrease with age in both sexes and was significantly associated with SOS and body mass index. Myostatin did not correlate with any assessed variables. CONCLUSIONS Sclerostin was significantly associated with sex, age, and bone metabolism, although there was no discernable relationship between serum sclerostin levels and muscle function. There was no obvious relationship between OC and muscle parameters. This study suggests that IGF-1 is an important modulator of muscle mass and function and bone metabolism in community-dwelling middle-aged and elderly adults.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan.
| | - Hiromi Matsumoto
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Matsushima 288, Kurashiki, Okayama, 701-0193, Japan
| | - Shinji Tanishima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Chika Tanimura
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan
| | - Mari Osaki
- Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hideki Nagashima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hiroshi Hagino
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan.,Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
43
|
Heamatococcus pluvialis ameliorates bone loss in experimentally-induced osteoporosis in rats via the regulation of OPG/RANKL pathway. Biomed Pharmacother 2019; 116:109017. [PMID: 31158803 DOI: 10.1016/j.biopha.2019.109017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDS Osteoporosis prevailing in elderly involves a marked increase in bone resorption showing an initial fall in bone mineral density leading to a significant reduction in bone formation. AIM The present study aimed to investigate the effect of Heamatococcus pluvialis microalgae on osteoporosis in D-galactose-treated rats. The underlying mechanism was tracked targeting the osteoprotegerin (OPG)/ nuclear factor-κβ ligand (RANKL) pathway using micro-computed tomography scanning. METHODS Osteoporosis was induced in rats by intraperitoneal injection of D-galactose (200 mg/kg/day) for eight consecutive weeks. Osteoporotic rats were orally treated with H. pluvialis biomass (BHP; 450 mg/kg), its polar (PHP; 30 mg/kg) and carotenoid (CHP; 30 mg/kg) fractions for the last 2 weeks of D-Gal injection. Twenty four hours after the last dose of the treatments, tibia bones of the rats were scanned using micro-computed tomography scanning for bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness/separation/number (Tb.Th, Tb.Sp, Tb.N) evaluation, blood samples were withdrawn and sera were used for biochemical assessment. Moreover, femur bones were examined histopathologically using several stains. RESULTS Induction of osteoporosis was associated with a marked reduction in BMD, BV/TV, Tb.Th, Tb.Sp, Tb.N and in serum levels of phosphorus and catalase. On the other hand, a significant elevation in serum levels of calcium, bone alkaline phosphatase (BALP) and interleukin-6 was observed. Moreover, up-regulation of OPG was detected in osteoporotic rats. Oral treatment with BHP, and PHP incremented tibia BMD and serum phosphorus level along with the decrease in serum levels of calcium, BALP, interleukin-6, OPG and RANKL. However, treatment with CHP almost restored all the fore mentioned parameters to normal values. Furthermore, the histopathological evaluation emphasized the biochemical outcomes. CONCLUSION H. pluvialis fractions rich in astaxanthin ameliorated bone loss in experimentally-induced osteoporosis in rats probably through the down-regulation of serum OPG in concurrence with up-regulation of serum RANKL.
Collapse
|
44
|
Chen L, Childs RD, Landis WJ. Correlations between gene expression and mineralization in the avian leg tendon. Bone 2019; 121:42-59. [PMID: 30419319 DOI: 10.1016/j.bone.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Certain avian tendons have been studied previously as a model system for normal mineralization of vertebrates in general. In this regard, the gastrocnemius tendon in the legs of turkeys mineralizes in a well defined temporal and spatial manner such that changes in the initial and subsequent events of mineral formation can be associated with time and specific locations in the tissue. In the present investigation, these parameters and mineral deposition have been correlated with the expression of several genes and the synthesis and secretion of their related extracellular matrix proteins by the composite tenocytes of the tendon. Quantitative polymerase chain reaction analysis demonstrates that mRNA expression of the non-collagenous genes of bone sialoprotein, osteopontin, and osteocalcin corresponds well with the temporal and spatial onset and progression of mineralization. Immunolocalization separately confirms the synthesis and secretion of these matrix molecules. The expression of other non-collagenous genes such as decorin does not show strong correlation with turkey leg tendon mineralization, and expression of vimentin, a cytoskeletal component which may be regulated by biomechanical factors in the tendon, may lead to inhibition of osteocalcin expression during the development and mineralization of the tissue. The overall results of this work provide insight into direct temporal and spatial relations between the genes and proteins of interest as well as the formation and deposition of mineral in the avian tendon model.
Collapse
Affiliation(s)
- Ling Chen
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | | | - William J Landis
- Department of Polymer Science, University of Akron, Akron, OH, USA.
| |
Collapse
|
45
|
Sørensen KU, Kruger MC, Hansen-Møller J, Poulsen HD. Bone biochemical markers for assessment of bone responses to differentiated phosphorus supply in growing-finishing pigs. J Anim Sci 2019; 96:4693-4703. [PMID: 30085053 DOI: 10.1093/jas/sky311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphorus (P) is essential for building and maintaining a healthy and strong skeleton. Moreover, dietary P supply may play a role for bone turnover, and the excretion of bone turnover metabolites may be useful as markers for sufficient dietary P supply. The objective was to study the long-term effects of low, medium, and high dietary P supply on bone metabolism in terms of serum concentration and urinary excretion of bone turnover components and metabolites in healthy growing-finishing pigs compared with bone mineral content (BMC) and bone mineral density (BMD) of humerus and femur. Pigs were fed diets containing low [LP; 4.1 g/kg dry matter (DM)], medium (MP; 6.2 g/kg DM), or high dietary P (HP; 8.9 g/kg DM) from 39.7 kg body weight (BW) until slaughter at 110 kg BW. Urine and blood were collected at 40, 70, and 110 kg BW while bones were collected at slaughter. Serum was analyzed for osteocalcin (OC), bone alkaline phosphatase (BAP), and C-terminal telopeptides of type I collagen (CTX-I), whereas urine was analyzed for pyridinoline (PYD), deoxypyridinoline (DPD), CTX-I, hydroxylysine (HYL), galactosyl-hydroxylysine (GAL-HYL), glycosyl-galactosyl-hydroxylysine (GLC-GAL-HYL), and hydroxyproline (HYP). Humerus and femur were analyzed for BMC and BMD. The LP diet caused reduced OC and increased BAP and CTX-I concentrations in serum. Furthermore, BAP was increased in response to the HP diet. Urine metabolites of bone resorption were all increased in pigs fed the LP diet, but only a few responses were obtained in response to the HP diet. Furthermore, age-related decreases were identified for BAP, HYL, GAL-HYL, and GLC-GAL-HYL. Bone mineral content and BMD were markedly lowered in pigs fed the LP diet but were not affected in pigs fed the HP diet. In conclusion, OC, BAP, and CTX-I in serum have proved useful for P adequacy in growing-finishing pigs. In addition, urine bone resorption metabolites have also proved useful for P adequacy and analysis of PYD, DPD, and CTX-I was considered to be the most relevant markers due to their specificity for bone and their negative correlation with BMD, BMC, ash, calcium (Ca), and P contents. Finally, DPD may be the preferred marker in long-term P feeding assessments.
Collapse
Affiliation(s)
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | | | - Hanne D Poulsen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
46
|
Li X, Sui X, Yang Q, Li Y, Li N, Shi X, Han D, Li Y, Huang X, Yu P, Qu X. Oviductus Ranae protein hydrolyzate prevents menopausal osteoporosis by regulating TGFβ/BMP2 signaling. Arch Gynecol Obstet 2019; 299:873-882. [DOI: 10.1007/s00404-018-5033-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022]
|
47
|
Kornyushova EA, Kashevskii AV, Arsent'ev KY, Pushkarev BG, Nikiforov SB, Safronov AY. Electrochemical behavior of titanium and platinum in dicarboxilic amino acids solution. Bioelectrochemistry 2018; 126:113-120. [PMID: 30554019 DOI: 10.1016/j.bioelechem.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
Titanium and platinum samples as components of bimetallic implants for the osteoregeneration process have been modified in solutions modeling biological systems and studied by means of cyclic voltammetry, electrochemical impedance spectroscopy and scanning probe microscopy. While aspartic and glutamic acids did not adsorb significantly on platinum in the potential region investigated, the presence of the amino acids affects oxide layer growth on the titanium surface under anodic polarization. The two studied amino acids behave differently on the titanium electrode surface due to differences in adsorption modes of these substances. The adsorption of the glutamic acid depends on the polarization potential to a large extent, and most of quantitative adsorption characteristics (EIS data, the surface roughness) undergo drastic change at the polarization potential value of 750 mV (vs. Ag/AgCl) in the presence of this substance. Equivalent circuit modeling of the surface processes has been carried out, and a scheme for aspartic and glutamic acid adsorption onto the titanium surface has proposed.
Collapse
Affiliation(s)
- E A Kornyushova
- Irkutsk State University, 1, K.Marx Str., Irkutsk 664003, Russia.
| | - A V Kashevskii
- Irkutsk State University, 1, K.Marx Str., Irkutsk 664003, Russia
| | - K Y Arsent'ev
- Limnological Institute SB RAS, 3, Ulan-Batorskaya Str, Irkutsk 664033, Russia.
| | - B G Pushkarev
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Str, Irkutsk 664003, Russia
| | - S B Nikiforov
- Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii Str, Irkutsk 664003, Russia
| | - A Y Safronov
- Irkutsk State University, 1, K.Marx Str., Irkutsk 664003, Russia.
| |
Collapse
|
48
|
Takaya J, Yamanouchi S, Kino J, Tanabe Y, Kaneko K. A Calcium-Deficient Diet in Dams during Gestation Increases Insulin Resistance in Male Offspring. Nutrients 2018; 10:nu10111745. [PMID: 30428526 PMCID: PMC6266795 DOI: 10.3390/nu10111745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/09/2023] Open
Abstract
Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. Osteocalcin (OC), a bone formation biomarker, acts directly on β-cells and increases insulin secretion. We determined the effects of Ca deficiency during pregnancy and/or lactation on insulin resistance in offspring. Female Wistar rats consumed either a Ca-deficient or control diet ad libitum from three weeks preconception to 21 days postparturition. Pups were allowed to nurse their original mothers until weaning. The offspring were fed a control diet beginning at weaning and were killed on day 180. Serum carboxylated OC (Gla-OC) and undercarboxylated OC (Glu-OC), insulin and adipokines in offspring were measured. In males, mean levels of insulin, glucose, and HOMA-IR were higher in the Ca-deficient group than in the control group. In addition, ionized Ca (iCa) was inversely associated with serum Glu-OC and adiponectin in males. In females, mean levels of Glu-OC and Gla-OC in the Ca-deficient group were higher than in the control group. In all offspring, serum leptin levels were correlated with serum insulin levels, and inversely correlated with iCa. In conclusion, maternal Ca restriction during pregnancy and/or lactation influences postnatal offspring Ca metabolism and insulin resistance in a sex-specific manner.
Collapse
Affiliation(s)
- Junji Takaya
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Jiro Kino
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Yuko Tanabe
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan.
| |
Collapse
|
49
|
Vlot MC, den Heijer M, de Jongh RT, Vervloet MG, Lems WF, de Jonge R, Obermayer-Pietsch B, Heijboer AC. Clinical utility of bone markers in various diseases. Bone 2018; 114:215-225. [PMID: 29920402 DOI: 10.1016/j.bone.2018.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Measurements of bone markers (BMs) in peripheral blood or urine are a pivotal part of bone research within modern clinical medicine. In recent years the use of BMs increased substantially as they can be useful either to diagnose bone (related) disease and to follow its natural history, but also to monitor the effects of interventions. However, the use of BMs is still complicated mainly due to (pre)analytical variability of these substances, limited accessibility of assays, variable cut-off values in different countries and laboratories and heterogeneous results with regard to clinical implications of measuring BMs in several studies. This review will provide the clinician with a practical guide, based on current evidence, in which circumstances to test which bone markers for optimal diagnostic purposes, in order to improve patient care in different areas of bone diseases including Paget's disease, primary osteoporosis, tumor induced osteomalacia, hypophosphatemic rickets, van Buchem disease, chronic kidney disease, rheumatoid arthritis, neoplasma/multiple myeloma, type 2 diabetes mellitus and primary hyperparathyroidism. The clinician should consider fasting state, recent fractures, aging, menopausal status, concomitant liver and kidney disease when ordering and interpreting BM measurements as these factors might result in misleading BM concentrations. We found that BMs are clearly useful in the current diagnosis of tumor induced osteomalacia, van Buchem disease, Paget's disease and hypophosphatemic rickets. In addition, BMs are useful to monitor disease activity in chronic kidney disease, Paget's disease and are useful to monitor treatment adherence in osteoporosis.
Collapse
Affiliation(s)
- M C Vlot
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M den Heijer
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R T de Jongh
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M G Vervloet
- Department Nephrology, Amsterdam Cardiovascular Sciences (ACS) VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - W F Lems
- Department of Rheumatology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R de Jonge
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - B Obermayer-Pietsch
- Department of Internal Medicine, Endocrinology and Diabetology, Medical University of Graz, Graz 8036, Austria
| | - A C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Undercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regulation of Insulin Sensitivity. Nutrients 2018; 10:nu10070847. [PMID: 29966260 PMCID: PMC6073619 DOI: 10.3390/nu10070847] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Recent advances have indicated that osteocalcin, and in particular its undercarboxylated form (ucOC), is not only a nutritional biomarker reflective of vitamin K status and an indicator of bone health but also an active hormone that mediates glucose metabolism in experimental studies. This work has been supported by the putative identification of G protein-coupled receptor, class C, group 6, member A (GPRC6A) as a cell surface receptor for ucOC. Of note, ucOC has been associated with diabetes and with cardiovascular risk in epidemiological studies, consistent with a pathophysiological role for ucOC in vivo. Limitations of existing knowledge include uncertainty regarding the underlying mechanisms by which ucOC interacts with GPRC6A to modulate metabolic and cardiovascular outcomes, technical issues with commonly used assays for ucOC in serum, and a paucity of clinical trials to prove causation and illuminate the scope for novel health interventions. A key emerging area of research is the role of ucOC in relation to expression of GPRC6A in muscle, and whether exercise interventions may modulate metabolic outcomes favorably in part via ucOC. Further research is warranted to clarify potential direct and indirect roles for ucOC in human health and cardiometabolic diseases.
Collapse
|