1
|
Wang Z, Wang H, Mwansisya TE, Sheng Y, Shan B, Liu Z, Xue Z, Chen X. The integrity of the white matter in first-episode schizophrenia patients with auditory verbal hallucinations: An atlas-based DTI analysis. Psychiatry Res Neuroimaging 2021; 315:111328. [PMID: 34260985 DOI: 10.1016/j.pscychresns.2021.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Auditory verbal hallucination (AVH) is one of the most remarkable symptoms of schizophrenia, with great impact on patients' lives and unclear pathogenesis. Neuroimaging studies have indicated that the development of AVHs is associated with white matter alteration, however, there are still inconsistencies in specific findings across previous investigations. The present study aimed to investigate the characteristics of the microstructural integrity of white matter (WM) in first-episode schizophrenia patients who experience auditory hallucinations. Atlas-based Diffusion Tensor Imaging (DTI) analysis was performed to evaluate the white matter integrity in 37 first-episode schizophrenia patients with AVH, 60 schizophrenia patients without AVH, and 50 healthy controls. Compared with the healthy controls group, AVH showed decreased mean fractional anisotropy (FA) in the genu and body of corpus callosum, right posterior corona radiata, left superior corona radiata, left external capsule, right superior fronto-occipital fasciculus, and higher mean diffusivity (MD) in genu of corpus callosum and left fornix and stria terminalis; whereas the nAVH group showed a much more significant reduction of FA and increased MD in broader brain regions. In addition, a significant positive correlation between FA and the severity of AVHs was observed in right posterior corona radiate. These observations collectively demonstrated that a certain degree of preserved fronto-temporal and interhemispheric connectivity in the early stage of schizophrenia might be associated with the brain capability to generate AVHs.
Collapse
Affiliation(s)
- Zhiyu Wang
- School of Public Health, Central South University, Changsha, China; Department of Communicable Disease Prevention and Management, Centers for Disease Control and Prevention(CDC) of Changsha City, Changsha, China
| | - Hui Wang
- Department of Geriatrics, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | | | - Yaoyao Sheng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analysis, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhimin Xue
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xudong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Wang G, Lyu H, Wu R, Ou J, Zhu F, Liu Y, Zhao J, Guo W. Resting-state functional hypoconnectivity of amygdala in clinical high risk state and first-episode schizophrenia. Brain Imaging Behav 2021; 14:1840-1849. [PMID: 31134583 DOI: 10.1007/s11682-019-00124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resting-state functional hypoconnectivity of the amygdala with several brain regions has been identified in patients with schizophrenia. However, little is known about it in individuals at clinical high risk state. Treatment-seeking, drug-naive young adults were recruited for the study. The participants included 33 adults at Clinical High Risk (CHRs), 31 adults with first-episode schizophrenia (FSZs), and 37 age-, gender-, and education-matched healthy controls. All the participants were subjected to resting-state functional magnetic resonance imaging scans. Seed-based voxel-wise amygdala/whole-brain functional connectivity (FC) was calculated and compared. In the CHR group, the right amygdala showed decreased FC with clusters located in the left orbital, right temporal, insular, and bilateral frontal and cingulate areas. In the FSZ group, the right amygdala showed decreased FC with clusters located in the right temporal, insular, cingulate, and frontal areas. Exactly 30% of the voxels showing decreased FC in the FSZ group coincided with those in the CHR group. No difference in FC was identified between the CHR and FSZ groups. Voxel-wise FC values with the left or right amygdala in the bilateral occipital cortex were negatively correlated with the PANSS total score in the FSZ group. Resting-state functional hypoconnectivity of the amygdala is a valuable risk phenotype of schizophrenia, and its distribution, rather than degree, distinguishes CHR state from schizophrenia. This particular hypoconnectivity in CHRs and FSZs is relatively independent of the symptomatology and may reflect a dysfunctional dopamine system.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Hailong Lyu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| |
Collapse
|
3
|
Chen ZT, Wang HT, Chueh KH, Liu IC, Yang CM. An exploration of the sleep quality and potential violence among patients with schizophrenia in community. Perspect Psychiatr Care 2021; 57:648-654. [PMID: 32730660 DOI: 10.1111/ppc.12589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Sleep quality in patients with schizophrenia is correlated with potential violence. However, few studies have conducted in-depth discussions on community patients with schizophrenia. The purpose of this study was to explore the influences of demographic characteristics, psychiatric symptom severity, and sleep quality in community patients with schizophrenia on the risks of potential violence and its subdimensions (ie, physical aggression, verbal aggression, anger, and hostility). DESIGN AND METHODS This study adopted a cross-sectional research design. Using convenience sampling, 78 community patients with schizophrenia were recruited from psychiatric outpatient clinics, day wards, and those who received home-care services. FINDINGS This study discovered that sleep quality is a crucial factor that influences the risks of potential violence. Analysis on the subdimensions revealed that having a violence history during the preceding month and sleep quality are crucial factors that influence physical aggression. In addition, sleep quality is a crucial factor that influences the occurrence of anger. Age and sleep quality substantially influence hostility. However, this study did not identify any crucial factors that influenced verbal aggression. PRACTICE IMPLICATIONS In the future, community nursing professionals should collect data on the patients' age, whether the patients exhibited violence behavior during the preceding month, and their sleep quality to prevent risks of potential violence, physical aggression, anger, or hostility.
Collapse
Affiliation(s)
- Zi-Ting Chen
- Department of Nursing, Fu Jen Catholic University, Taipei, Taiwan.,Department of Nursing, Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Hsiao-Tzu Wang
- Department of Nursing, Bali Psychiatric Center, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ke-Hsin Chueh
- Department of Nursing, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan.,Deputy Director of Department of Nursing, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - I-Chao Liu
- Director of Department of Psychiatry, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Chien-Ming Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
4
|
Cui X, Deng Q, Lang B, Su Q, Liu F, Zhang Z, Chen J, Zhao J, Guo W. Less reduced gray matter volume in the subregions of superior temporal gyrus predicts better treatment efficacy in drug-naive, first-episode schizophrenia. Brain Imaging Behav 2020; 15:1997-2004. [PMID: 33033986 DOI: 10.1007/s11682-020-00393-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Decreased gray matter volume (GMV) in the superior temporal gyrus (STG) has been implicated in the neurophysiology of schizophrenia. However, it remains unclear whether volumetric reduction in the subregions of the STG can predict treatment efficacy for schizophrenia. Our cohort included 44 drug-naive, first-episode patients, 42 unaffected siblings and 44 healthy controls. Voxel-based morphometry and pattern classification were utilized to analyze the acquired imaging data as per the anatomical subdivision by a well-defined brainnetome atlas. The patients presented lower GMV values in left TE1.0/1.2 (TE, anterior temporal visual association area) than the siblings, and lower GMV values in the left/right TE1.0/1.2 and left A22r (rostral area 22) than the controls. A positive correlation is observed between the GMV values in the right A38l (lateral area 38) and baseline Positive and Negative Syndrome Scale (PANSS) total scores in the patients. Support vector regression (SVR) results exhibited a significant association between predicted (based on the GMV values in the right A38l) and actual symptomatic improvement based on the reduction ratio of the PANSS total scores (r = 0.498, p = 0.001). Our results suggest that normal structure in the right A38l of the STG may be an important factor indicative of the effects of antipsychotic drugs, which can be potentially used to monitor drug effects for first-episode patients at an early stage in clinical practice.
Collapse
Affiliation(s)
- Xilong Cui
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qijian Deng
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bing Lang
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qinji Su
- Mental Health Center, the Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, the Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jindong Chen
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingping Zhao
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenbin Guo
- Department of Psychaitry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- The Third People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| |
Collapse
|
5
|
Interactions between knockout of schizophrenia risk factor Dysbindin-1 and copper metabolism in mice. Brain Res Bull 2020; 164:339-349. [PMID: 32795490 DOI: 10.1016/j.brainresbull.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear. EXPERIMENTAL APPROACH The current study measured behavioral indices of neurological function in dysbindin-1 functional knockout (KO) mice and their wild-type (WT) littermates with or without quetiapine treatment. We assessed serum and brain copper levels, ATP7A and CTR1 mRNA, and copper transporter-expressing cellular population transcripts: TTR (transthyretin; choroid plexus epithelial cells), MBP (myelin basic protein; oligodendrocytes), and GJA1 (gap-junction protein alpha-1; astrocytes) in cortex and hippocampus. KEY RESULTS Regardless of genotype, quetiapine significantly reduced TTR, MBP, CTR1 mRNA, and serum copper levels. Neurological function of untreated KO mice was abnormal, and ledge instability was rescued with quetiapine. KO mice were hyperactive after 10 min in the open-field assay, which was not affected by treatment. CONCLUSIONS AND IMPLICATIONS Dysbindin-1 KO results in hyperactivity, altered serum copper, and neurological impairment, the last of which is selectively rescued with quetiapine. Antipsychotic treatment modulates specific cellular populations, affecting myelin, the choroid plexus, and copper transport across the blood brain barrier. Together these results indicate the widespread impact of antipsychotic treatment, and that alteration of dysbindin-1 may be sufficient, but not necessary, for specific schizophrenia pathology.
Collapse
|
6
|
Li H, Ou Y, Liu F, Su Q, Zhang Z, Chen J, Zhu F, Zhao J, Guo W. Region-specific insular volumetric decreases in drug-naive, first-episode schizophrenia and their unaffected siblings. Am J Med Genet B Neuropsychiatr Genet 2020; 183:106-112. [PMID: 31626393 DOI: 10.1002/ajmg.b.32765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022]
Abstract
Decreased insular volume may be one of the anatomical alterations caused by schizophrenia. The possibility of region-specific insular volumetric reduction as an endophenotype and/or a possible treatment predictor is a critical issue with great implications for the diagnosis and prognosis of the disease. The sample of the current study comprised 44 drug-naive and first-episode patients, 42 unaffected siblings, and 44 healthy controls. A computational anatomy toolbox (CAT12) was applied to analyze the structural images with a fine-grained, cross-validated brainnetome atlas. Correlation analysis and support vector regression (SVR) were used to determine the relationship between insular deficits and symptomatic severity among patients. The gray matter volume (GMV) values in the left hypergranular insula (G) exhibited the following pattern: patients < siblings < controls. GMV values in the right ventral agranular insula (vIa) and baseline Positive and Negative Syndrome Scale negative symptoms subscale scores among patients showed a positive correlation (r = 0.384, p = .010). Further SVR analysis exhibited a significantly positive correlation between GMV values in the right vIa and negative symptomatic improvement among patients (r = 0.537, p < .001). Results suggested the presence of region-specific insular volumetric decreases in first-episode schizophrenia. Thus, volumetric decrease in left G might be a potential endophenotype for schizophrenia, and GMV values in right vIa might be used to predict negative symptomatic improvement in schizophrenia.
Collapse
Affiliation(s)
- Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinji Su
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center of Mental Disorders, Changsha, China
| |
Collapse
|
7
|
Zhang M, Yang F, Fan F, Wang Z, Hong X, Tan Y, Tan S, Hong LE. Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia. NEUROIMAGE-CLINICAL 2020; 26:102218. [PMID: 32126520 PMCID: PMC7052514 DOI: 10.1016/j.nicl.2020.102218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Functional connectivity between amygdala subregions and the brain was studied with resting-state (RS) functional MRI. RS functional connectivity was compared between patients with first episode schizophrenia (FES) and healthy controls. FES patients showed changes in functional connectivity between amygdala subregions and sensorimotor cortex. Altered basolateral amygdala-precentral gyrus connectivity correlated with positive symptoms in FES patients.
Altered resting-state functional connectivity (rsFC) of the amygdala has been demonstrated to be implicated in schizophrenia neuronal pathophysiology. However, whether rsFC of amygdala subregions is differentially affected in schizophrenia remains unclear. This study compared the functional networks of each amygdala subdivision between healthy controls (HC) and patients with first-episode schizophrenia (FES). In total, 47 HC and 78 patients with FES underwent resting-state functional magnetic resonance imaging. The amygdala was divided into the following three subregions using the Juelich histological atlas: basolateral amygdala (BLA), centromedial amygdala (CMA), and superficial amygdala (SFA). The rsFC of the three amygdala subdivisions was computed and compared between the two groups. Significantly increased rsFC of the right CMA with the right postcentral gyrus and decreased rsFC of the right BLA with the left precentral gyrus were observed in the FES group compared with the HC group. Notably, the right BLA-left precentral gyrus connectivity was negatively correlated with positive symptoms and conceptual disorganization in patients with FES. In conclusion, this study found that patients with FES had abnormal functional connectivity in the amygdala subregions, and the altered rsFC was associated with positive symptoms. The present findings demonstrate the disruptive rsFC patterns of amygdala subregional-sensorimotor networks in FES and may provide new insights into the neuronal pathophysiology of FES.
Collapse
Affiliation(s)
- Meng Zhang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Fude Yang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - Fengmei Fan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Zhiren Wang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Xiang Hong
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Yunlong Tan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Shuping Tan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States
| |
Collapse
|
8
|
Common increased hippocampal volume but specific changes in functional connectivity in schizophrenia patients in remission and non-remission following electroconvulsive therapy: A preliminary study. NEUROIMAGE-CLINICAL 2019; 24:102081. [PMID: 31734526 PMCID: PMC6861644 DOI: 10.1016/j.nicl.2019.102081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023]
Abstract
Electroconvulsive therapy (ECT) is considered a treatment option in patients with drug-resistant schizophrenia (SZ). However, approximately one-third of patients do not benefit from ECT in the clinic. Thus, it is critical to investigate differences between ECT responders and non-responders. Accumulated evidence has indicated that one region of ECT action is the hippocampus, which also plays an important role in SZ pathophysiology. To date, no studies have investigated differences in ECT effects in the hippocampus between treatment responders and non-responders. This study recruited twenty-one SZ patients treated for four weeks with ECT (MSZ, n = 21) and twenty-one SZ patients who received pharmaceutical therapy (DSZ, n = 21). The MSZ group was further categorized into responders (MSR, n = 10) or non-responders (MNR, n = 11) based on treatment outcomes by the criterion of a 50% reduction in the Positive and Negative Syndrome Scale total scores. Using structural and resting-state functional MRI, we measured the hippocampal volume and functional connectivity (FC) in all SZ patients (before and after treatment) and 23 healthy controls. In contrast to pharmaceutical therapy, ECT induced bilateral hippocampal volume increases in the MSZ. Both the MSR and MNR exhibited hippocampal expansion after ECT, whereas a lower baseline volume in one of hippocampal subfield (hippocampus-amygdala transition area) was found in the MNR. After ECT, increased FC between the hippocampus and brain networks associated with cognitive function was only observed in the MSR. The mechanism of action of ECT in schizophrenia is complex. A combination of baseline impairment level, ECT-introduced morphological changes and post-ECT FC increases in the hippocampus may jointly contribute to the post-ECT symptom improvements in patients with SZ.
Collapse
|
9
|
Hegarty CE, Jolles DD, Mennigen E, Jalbrzikowski M, Bearden CE, Karlsgodt KH. Disruptions in White Matter Maturation and Mediation of Cognitive Development in Youths on the Psychosis Spectrum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:423-433. [PMID: 30745004 DOI: 10.1016/j.bpsc.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Psychosis onset typically occurs in adolescence, and subclinical psychotic experiences peak in adolescence. Adolescence is also a time of critical neural and cognitive maturation. Using cross-sectional data from the Philadelphia Neurodevelopmental Cohort, we examined whether regional white matter (WM) development is disrupted in youths with psychosis spectrum (PS) features and whether WM maturation mediates the relationship between age and cognition in typically developing (TD) youths and youths with PS features. METHODS We examined WM microstructure, as assessed via diffusion tensor imaging, in 670 individuals (age 10-22 years; 499 TD group, 171 PS group) by using tract-based spatial statistics. Multiple regressions were used to evaluate age × group interactions on regional WM indices. Mediation analyses were conducted on four cognitive domains-executive control, complex cognition, episodic memory, and social cognition-using a bootstrapping approach. RESULTS There were age × group interactions on fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF) and retrolenticular internal capsule. Follow-up analyses revealed these effects were significant in both hemispheres. Bilateral SLF FA mediated the relationship between age and complex cognition in the TD group, but not the PS group. Regional FA did not mediate the age-associated increase in any of the other cognitive domains. CONCLUSIONS Our results showed aberrant age-related effects in SLF and retrolenticular internal capsule FA in youths with PS features. SLF development supports emergence of specific higher-order cognitive functions in TD youths, but not in youths with PS features. Future mechanistic explanations for these relationships could facilitate development of earlier and refined targets for therapeutic interventions.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Dietsje D Jolles
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Eva Mennigen
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carrie E Bearden
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California
| | - Katherine H Karlsgodt
- Department of Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
10
|
Xiao G, He K, Chen X, Wang L, Bai X, Gao L, Zhu C, Wang K. Slow Binocular Rivalry as a Potential Endophenotype of Schizophrenia. Front Neurosci 2018; 12:634. [PMID: 30258349 PMCID: PMC6143673 DOI: 10.3389/fnins.2018.00634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/23/2018] [Indexed: 01/10/2023] Open
Abstract
Objectives: Binocular rivalry is a typical example of bistable perception that arises when two monocular images are simultaneously presented to each eye. Binocular rivalry is a heritable perceptual cognitive function that is impaired in patients with schizophrenia (SZ). Despite its potential suitability as a visual endophenotype, binocular rivalry has hardly been studied in the unaffected siblings of schizophrenia (SIB). There is also little research about whether binocular rivalry is a potential visual endophenotype between SZ and SIB. Methods: In our cross-sectional study, we included 40 SZ and their unaffected SIBs, as well as 40 age- and sex-matched healthy controls (HC). All subjects underwent the binocular rivalry test, the Positive and Negative Syndrome Scale (PANSS) and a battery of cognitive neuropsychological assessments evaluating attention, memory and executive function domains. Results: Our results demonstrate that the switching rate in SZ was significantly slower than in HC (p < 0.001), and compared to the SIB, the mean alternation rates were significantly different (p < 0.01). Moreover, there was a significant difference in mean switching rate between the SIB and the HC (p < 0.001). There was no significant correlation between the alternation rate of binocular rivalry and these cognitive tasks and the PANSS scores. Conclusion: The present study shows that SZ and SIB both exhibit changes in binocular rivalry, with SIB exhibiting intermediate performance compared with that of SZ and the HC. This supports the claim that the switching rate for SZ differs from that of SIB and suggests that binocular rivalry may qualify as a visual endophenotype for SZ.
Collapse
Affiliation(s)
- Guixian Xiao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui, China
| | | | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui, China
| | - Xiaomeng Bai
- Department of Medical Psychology, Anhui Medical University, Hefei, China
| | - Liling Gao
- Anhui Mental Health Center, Hefei, China
| | - Chunyan Zhu
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui, China
- Department of Medical Psychology, Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui, China
- Anhui Mental Health Center, Hefei, China
- Department of Medical Psychology, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Decreased white matter FA values in the left inferior frontal gyrus is a possible intermediate phenotype of schizophrenia: evidences from a novel group strategy. Eur Arch Psychiatry Clin Neurosci 2018; 268:89-98. [PMID: 27942861 DOI: 10.1007/s00406-016-0752-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/06/2016] [Indexed: 01/27/2023]
Abstract
Intermediate phenotype could be used to investigate genetic susceptibility. However, genetic and environmental heterogeneity may interfere with identification of intermediate phenotypes. In this study, we minimized these interferences by using a novel group strategy. A total of 22 drug-naive and first-episode schizophrenia (FES) patients, along with 22 of their kin healthy siblings (HS), 22 non-kin healthy siblings (nHS) of other schizophrenia patients and 22 healthy controls (HC), were recruited. Brain imaging was acquired from the participants. Voxel-based analysis was used to investigate differences in white matter integrity derived from diffusion tensor imaging among the four groups. Two cognitive tests related to our findings were selected to confirm the related phenotypic changes. All of the FES, HS, and nHS groups showed decreased fractional anisotropy (FA) values in the left inferior frontal gyrus (IFG) compared with the HC group (p < 0.05, FDR corrected). The scores of Hopkins Verbal learning Test-Revised and Animal Naming in FES patients were significantly lower than in participants belonging to the other three groups (p < 0.05). Significant correlation between Animal Naming scores and FA values in the left IFG was found in FES patients (r = 0.53, p = 0.01). Moreover, FES patients also showed decreased FA values in the left medial frontal gyrus, left inferior temporal gyrus, left parahippocampal gyrus, left posterior cingulate, and right middle temporal gyrus compared with HC (p < 0.05, FDR corrected). Decreased FA values in the left IFG is a possible intermediate phenotype of schizophrenia, and this finding supports the hypothesis that disrupted connectivity of white matter may be the key substrate of schizophrenia.
Collapse
|
12
|
Lottman KK, White DM, Kraguljac NV, Reid MA, Calhoun VD, Catao F, Lahti AC. Four-way multimodal fusion of 7 T imaging data using an mCCA+jICA model in first-episode schizophrenia. Hum Brain Mapp 2018; 39:1475-1488. [PMID: 29315951 DOI: 10.1002/hbm.23906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/06/2017] [Accepted: 11/26/2017] [Indexed: 01/05/2023] Open
Abstract
Acquisition of multimodal brain imaging data for the same subject has become more common leading to a growing interest in determining the intermodal relationships between imaging modalities to further elucidate the pathophysiology of schizophrenia. Multimodal data have previously been individually analyzed and subsequently integrated; however, these analysis techniques lack the ability to examine true modality inter-relationships. The utilization of a multiset canonical correlation and joint independent component analysis (mCCA + jICA) model for data fusion allows shared or distinct abnormalities between modalities to be examined. In this study, first-episode schizophrenia patients (nSZ =19) and matched controls (nHC =21) completed a resting-state functional magnetic resonance imaging (fMRI) scan at 7 T. Grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and amplitude of low frequency fluctuation (ALFF) maps were used as features in a mCCA + jICA model. Results of the mCCA + jICA model indicated three joint group-discriminating components (GM-CSF, WM-ALFF, GM-ALFF) and two modality-unique group-discriminating components (GM, WM). The joint component findings are highlighted by GM basal ganglia, somatosensory, parietal lobe, and thalamus abnormalities associated with ventricular CSF volume; WM occipital and frontal lobe abnormalities associated with temporal lobe function; and GM frontal, temporal, parietal, and occipital lobe abnormalities associated with caudate function. These results support and extend major findings throughout the literature using independent single modality analyses. The multimodal fusion of 7 T data in this study provides a more comprehensive illustration of the relationships between underlying neuronal abnormalities associated with schizophrenia than examination of imaging data independently.
Collapse
Affiliation(s)
- Kristin K Lottman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Meredith A Reid
- Department of Electrical and Computer Engineering, MRI Research Center, Auburn University, Auburn, Alabama
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Fabio Catao
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando' A, Zennaro A. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2017; 270:8-21. [PMID: 28988022 DOI: 10.1016/j.pscychresns.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
Collapse
Affiliation(s)
- Enrico Vitolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Mona Karina Tatu
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Claudia Pignolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Franco Cauda
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy; GCS-fMRI, Koelliker Hospital, Corso Galileo Ferraris 247/255, 10134 Turin, TO, Italy.
| | - Tommaso Costa
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Agata Ando'
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Alessandro Zennaro
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| |
Collapse
|
14
|
Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 2017; 7:e1171. [PMID: 28934193 PMCID: PMC5538118 DOI: 10.1038/tp.2017.138] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/12/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells (OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new (combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
Collapse
|
15
|
Family-based case-control study of homotopic connectivity in first-episode, drug-naive schizophrenia at rest. Sci Rep 2017; 7:43312. [PMID: 28256527 PMCID: PMC5335664 DOI: 10.1038/srep43312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Family-based case-control design is rarely used but powerful to reduce the confounding effects of environmental factors on schizophrenia. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 family-based controls (FBC), and 40 healthy controls (HC) underwent resting-state functional MRI. Voxel-mirrored homotopic connectivity (VMHC), receiver operating characteristic curve (ROC), and support vector machine (SVM) were used to process the data. Compared with the FBC, the patients showed lower VMHC in the precuneus, fusiform gyrus/cerebellum lobule VI, and lingual gyrus/cerebellum lobule VI. The patients exhibited lower VMHC in the precuneus relative to the HC. ROC analysis exhibited that the VMHC values in these brain regions might not be ideal biomarkers to distinguish the patients from the FBC/HC. However, SVM analysis indicated that a combination of VMHC values in the precuneus and lingual gyrus/cerebellum lobule VI might be used as a potential biomarker to distinguish the patients from the FBC with a sensitivity of 96.43%, a specificity of 89.29%, and an accuracy of 92.86%. Results suggested that patients with schizophrenia have decreased homotopic connectivity in the motor and low level sensory processing regions. Neuroimaging studies can adopt family-based case-control design as a viable option to reduce the confounding effects of environmental factors on schizophrenia.
Collapse
|
16
|
Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry 2017; 22:4-12. [PMID: 27646261 PMCID: PMC5414080 DOI: 10.1038/mp.2016.147] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30-120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- J Stedehouder
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Mubarik A, Tohid H. Frontal lobe alterations in schizophrenia: a review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016; 38:198-206. [DOI: 10.1590/2237-6089-2015-0088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Abstract Objective: To highlight the changes in the frontal lobe of the human brain in people with schizophrenia. Methods: This was a qualitative review of the literature. Results: Many schizophrenic patients exhibit functional, structural, and metabolic abnormalities in the frontal lobe. Some patients have few or no alterations, while some have more functional and structural changes than others. Magnetic resonance imaging (MRI) shows structural and functional changes in volume, gray matter, white matter, and functional activity in the frontal lobe, but the mechanisms underlying these changes are not yet fully understood. Conclusion: When schizophrenia is studied as an essential topic in the field of neuropsychiatry, neuroscientists find that the frontal lobe is the most commonly involved area of the human brain. A clear picture of how this lobe is affected in schizophrenia is still lacking. We therefore recommend that further research be conducted to improve understanding of the pathophysiology of this psychiatric dilemma.
Collapse
|
18
|
Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li C, Wu L, Zhong X, Zhou Y, Fan N, Zheng Y, Xiong D, Peng H, Escudero J, Huang B, Li X, Ning Y, Wu K. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016; 95:e3973. [PMID: 27472673 PMCID: PMC5265810 DOI: 10.1097/md.0000000000003973] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.
Collapse
Affiliation(s)
- Xiaobing Lu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yongzhe Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Minjian Gao
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yong Xu
- School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Yongcheng Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Xin Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Chengwei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Lei Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaomei Zhong
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Yanling Zhou
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Ni Fan
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, Guangzhou Brain Hospital (GBH)/ (Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
| | - Javier Escudero
- Institute for Digital Communications, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Biao Huang
- School of Medicine, South China University of Technology (SCUT), Guangzhou, China
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, US
- Department of Electric and Computer Engineering, New Jersey Institute of Technology, NJ, US
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, US
| | - Yuping Ning
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, Guangzhou Brain Hospital (GBH)/(Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University), Guangzhou, China
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, China
- GBH-SCUT Joint Research Centre for Neuroimaging, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Sci Rep 2015; 5:17275. [PMID: 26608842 PMCID: PMC4660304 DOI: 10.1038/srep17275] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed – right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed – bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia.
Collapse
|
20
|
Guo W, Liu F, Xiao C, Yu M, Zhang Z, Liu J, Zhang J, Zhao J. Increased Causal Connectivity Related to Anatomical Alterations as Potential Endophenotypes for Schizophrenia. Medicine (Baltimore) 2015; 94:e1493. [PMID: 26496253 PMCID: PMC4620791 DOI: 10.1097/md.0000000000001493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Anatomical and functional abnormalities in the cortico-cerebellar-thalamo-cortical circuit have been observed in schizophrenia patients and their unaffected siblings. However, it remains unclear to the relationship between anatomical and functional abnormalities within this circuit in schizophrenia patients and their unaffected siblings, which may serve as potential endophenotypes for schizophrenia.Anatomical and resting-state functional magnetic resonance imaging data were acquired from 49 first-episode, drug-naive schizophrenia patients, 46 unaffected siblings, and 46 healthy controls. Data were analyzed by using voxel-based morphometry and Granger causality analysis.The patients and the siblings shared anatomical deficits in the left middle temporal gyrus (MTG) and increased left MTG-left angular gyrus (AG) connectivity. Moreover, the left MTG-left AG connectivity negatively correlates to the duration of untreated psychosis in the patients.The findings indicate that anatomical deficits in the left MTG and its increased causal connectivity with the left AG may serve as potential endophenotypes for schizophrenia with clinical implications.
Collapse
Affiliation(s)
- Wenbin Guo
- From the Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan (GW, ZJ); Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan (LF); and Mental Health Center, The First Affiliated Hospital, Guangxi Medical University; Nanning, Guangxi, China (XC, YM, ZZ, LJ, ZJ)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Zheng J, Fan X, Guo X, Guo W, Yang G, Chen H, Zhao J, Lv L. Dysfunctional resting-state connectivities of brain regions with structural deficits in drug-naive first-episode schizophrenia adolescents. Schizophr Res 2015; 168:353-9. [PMID: 26281967 DOI: 10.1016/j.schres.2015.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/05/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Individuals with adolescent-onset schizophrenia (AOS) are a subgroup of patients who present clinical symptoms between 13 and 18years of age. Little is known about neurodevelopmental abnormalities in this patient population. The present study was to examine possible resting-state dysfunctional connectivity of brain regions with altered gray matter volume in AOS. METHODS Gray matter volume was investigated by voxel-based morphometry (VBM) analysis. Resting-state functional connectivity analysis was used to examine the correlations between regions with structural deficits and the remaining regions. RESULTS Thirty-seven first-episode schizophrenia adolescents and 30 healthy controls were enrolled. Compared to the controls, the patients showed significantly decreased gray matter volumes in the right superior temporal gyrus (STG) and middle temporal gyrus (MTG) (ps<0.05). With the right STG as seed, significantly reduced connectivities were found within the frontal-temporal networks in the patient group (ps<0.05). With the right MTG as seed, the patient group showed significantly reduced connectivities in the default-mode networks and visual networks (ps<0.05). Compared to significant correlations in the controls (p=0.02), the patients had no observed correlations between functional connectivity of the right STG and gray matter volume of this region. Significant positive correlations were found between functional connectivity of the right STG with the left middle frontal gyrus and the Positive and Negative Syndrome Scale total scores (p=0.048) after controlling the confounding variables. CONCLUSIONS These findings show dysfunctional resting-state connectivities of the right STG and MTG with decreased gray matter volume in adolescents with AOS, suggesting that neurodevelopmental abnormalities may be present in AOS.
Collapse
Affiliation(s)
- Yan Zhang
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory for Mental Health of Hunan Province, Changsha, China; Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junjie Zheng
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoduo Fan
- UMass Memorial Medical Center, University of Massachusetts Medical School, MA, USA
| | - Xiaofeng Guo
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory for Mental Health of Hunan Province, Changsha, China
| | - Wenbin Guo
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory for Mental Health of Hunan Province, Changsha, China
| | - Ge Yang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Huafu Chen
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory for Mental Health of Hunan Province, Changsha, China.
| | - Luxian Lv
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
22
|
Lei W, Li N, Deng W, Li M, Huang C, Ma X, Wang Q, Guo W, Li Y, Jiang L, Zhou Y, Hu X, McAlonan GM, Li T. White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Sci Rep 2015; 5:12994. [PMID: 26257373 PMCID: PMC4530339 DOI: 10.1038/srep12994] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/06/2015] [Indexed: 02/05/2023] Open
Abstract
Categorizing ‘deficit schizophrenia’ (DS) as distinct from ‘non-deficit’ schizophrenia (NDS) may help reduce heterogeneity within schizophrenia. However, it is unknown if DS has a discrete white matter signature. Here we used MRI to compare white matter volume (voxel-based morphometry) and microstructural integrity (fractional anisotropy, FA) in first-episode treatment-naïve patients with DS and NDS and their unaffected relatives to control groups of similar age. We found that white matter disruption was prominent in DS compared to controls; the DS group had lower volumes in the cerebellum, bilateral extra-nuclear and bilateral frontoparietal regions, and lower FA in the body of corpus callosum, posterior superior longitudinal fasciculus and uncinate fasciculus. The DS group also had lower volume in bilateral extra-nuclear regions compared to NDS, and the volume of these clusters was negatively correlated with deficit symptom ratings. NDS patients however, had no significant volume alterations and limited disruption of microstructural integrity compared to controls. Finally, first-degree relatives of those with DS shared volume abnormalities in right extra-nuclear white matter. Thus, white matter pathology in schizophrenia is most evident in the deficit condition, and lower extra-nuclear white matter volumes in both DS patients and their relatives may represent a brain structural ‘endophenotype’ for DS.
Collapse
Affiliation(s)
- Wei Lei
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Na Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Wei Deng
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Mingli Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Chaohua Huang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xiaohong Ma
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Qiang Wang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Wanjun Guo
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Yinfei Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Lijun Jiang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Yi Zhou
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, Branch Hospital of West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Grainne Mary McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Tao Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| |
Collapse
|
23
|
White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Sci Rep 2015. [PMID: 26257373 DOI: 10.1038/srep12994.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Categorizing 'deficit schizophrenia' (DS) as distinct from 'non-deficit' schizophrenia (NDS) may help reduce heterogeneity within schizophrenia. However, it is unknown if DS has a discrete white matter signature. Here we used MRI to compare white matter volume (voxel-based morphometry) and microstructural integrity (fractional anisotropy, FA) in first-episode treatment-naïve patients with DS and NDS and their unaffected relatives to control groups of similar age. We found that white matter disruption was prominent in DS compared to controls; the DS group had lower volumes in the cerebellum, bilateral extra-nuclear and bilateral frontoparietal regions, and lower FA in the body of corpus callosum, posterior superior longitudinal fasciculus and uncinate fasciculus. The DS group also had lower volume in bilateral extra-nuclear regions compared to NDS, and the volume of these clusters was negatively correlated with deficit symptom ratings. NDS patients however, had no significant volume alterations and limited disruption of microstructural integrity compared to controls. Finally, first-degree relatives of those with DS shared volume abnormalities in right extra-nuclear white matter. Thus, white matter pathology in schizophrenia is most evident in the deficit condition, and lower extra-nuclear white matter volumes in both DS patients and their relatives may represent a brain structural 'endophenotype' for DS.
Collapse
|