1
|
Pongtiwattanakul S, Leethanakul C, Rattanaporn O, Thammanichanon P, Tannukit S. Effect of compressive force combined with vibration on CCL2 and CCL5 in human periodontal ligament cells. J Oral Biol Craniofac Res 2024; 14:626-630. [PMID: 39252795 PMCID: PMC11381868 DOI: 10.1016/j.jobcr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose To investigate the effect of compressive force combined with vibration on expression of CC-chemokine ligand 2 (CCL2) and 5 (CCL5) in human periodontal ligament (hPDL) cells. Methods Human PDL cells were cultured and assigned into four groups: control (Con), compressive force 2.0 g/cm2 for 24 h and 48 h (C), vibration 0.3 g 30 Hz for 20 min every 24 h (V), and compressive force combined with vibration (VC). At 24 h and 48 h, mRNA and protein levels of CCL2 and CCL5 were examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results At 24 h and 48 h, CCL2 mRNA and protein levels in C and VC were significantly higher than Con. At 24 h, VC showed significantly higher CCL2 mRNA expression than C. However, there was no significant difference between CCL2 protein in C and VC at both time points. At 24 h and 48 h, CCL5 mRNA expression was significantly down-regulated in V and VC, whereas CCL5 protein was undetectable in all groups. Conclusions Application of compressive force combined with vibration resulted in the upregulation of CCL2 mRNA and protein levels, whereas CCL5 mRNA expression was down-regulated.
Collapse
Affiliation(s)
- Supunsa Pongtiwattanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Onnicha Rattanaporn
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | | | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Parashos P. The orthodontic-endodontic interface: trauma and pulpal considerations. Br Dent J 2024; 237:389-397. [PMID: 39271875 PMCID: PMC11399082 DOI: 10.1038/s41415-024-7786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 09/15/2024]
Abstract
The interpretation of the clinical signs and symptoms arising from the interdisciplinary relationship between orthodontics and endodontics becomes more complicated when superimposed by dental trauma. A history of dental trauma before or during orthodontic tooth movement may have implications for pulpal health and clinical outcomes. An understanding of the biology is essential for appropriate treatment planning. This review and treatment recommendations will assist dental practitioners in managing orthodontic-endodontic interactions.
Collapse
Affiliation(s)
- Peter Parashos
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Yan T, Li H, Yan J, Ma S, Tan J. Age-related mitophagy regulates orthodontic tooth movement by affecting PDLSCs mitochondrial function and RANKL/OPG. FASEB J 2024; 38:e23865. [PMID: 39096136 DOI: 10.1096/fj.202401280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.
Collapse
Affiliation(s)
- Tong Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilin Li
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiayin Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Siyuan Ma
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Tan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
5
|
Mai ZH, Huang JH, Peng ZL, Pan YJ, Sun ZW, Ai H. miR-20a: a key regulator of orthodontic tooth movement via BMP2 signaling pathway modulation. Connect Tissue Res 2024; 65:304-312. [PMID: 38922815 DOI: 10.1080/03008207.2024.2365201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
AIM In this study, we aimed to establish a rat tooth movement model to assess miR-20's ability in enhancing the BMP2 signaling pathway and facilitate alveolar bone remodeling. METHOD 60 male SD rats had nickel titanium spring devices placed between their left upper first molars and incisors, with the right side serving as the control. Forces were applied at varying durations (18h, 24h, 30h, 36h, 42h, 1d, 3d, 5d, 7d, 14d), and their bilateral maxillary molars and surrounding alveolar bones were retrieved for analysis. Fluorescent quantitative PCR was conducted to assess miR-20a, BMP2, Runx2, Bambi and Smad6 gene expression in alveolar bone, and western blot was performed to determine the protein levels of BMP2, Runx2, Bambi, and Smad6 after mechanical loading. RESULT We successfully established an orthodontic tooth movement model in SD rats and revealed upregulated miR-20a expression and significantly increased BMP2 and Runx2 gene expression and protein synthesis in alveolar bone during molar tooth movement. Although Bambi and Smad6 gene expression did not significantly increase, their protein synthesis was found to decrease significantly. CONCLUSION MiR-20a was found to be involved in rat tooth movement model alveolar bone remodeling, wherein it promoted remodeling by reducing Bambi and Smad6 protein synthesis through the BMP2 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Hua Huang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Stomatology, Kiang Wu Hospital, Macao, China
| | - Zhu-Li Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan-Jun Pan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Wen Sun
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Mohanty B, Chekka M, Sowmya C, Khurana R, Manga UM, Varma Datla PK, Somaraj V. Evaluation of Pain and Discomfort Associated with Orthodontic Adjustments. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2400-S2402. [PMID: 39346332 PMCID: PMC11426631 DOI: 10.4103/jpbs.jpbs_269_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background Orthodontic treatment is commonly associated with pain and discomfort, impacting patient experience and treatment compliance. Understanding the factors influencing pain perception is crucial for improving pain management strategies during orthodontic adjustments. Methods Pain levels were assessed using a "Visual Analog Scale (VAS)" before and after each adjustment session. Qualitative data were collected through semi-structured interviews conducted immediately post-adjustment. Statistical analyses were performed to compare mean pain scores before and after adjustments, and thematic analysis was conducted to identify common themes in qualitative data. Results Quantitative analysis revealed a significant increase in mean pain scores following orthodontic adjustments (P < 0.001). Qualitative analysis identified themes related to pain experiences, including anticipation of discomfort, adaptation over time, and coping strategies employed by patients. Conclusion Orthodontic adjustments induce varying levels of pain and discomfort among patients. By integrating quantitative and qualitative assessments, this study provides comprehensive insights into patient experiences during orthodontic treatment, informing strategies for pain management and patient care.
Collapse
Affiliation(s)
- Biswaroop Mohanty
- Department of Orthodontics, Kalinga Institute of Dental Sciences, K.I.I.T University, Bhubaneswar, Odisha, India
| | - Manjunath Chekka
- Professor and HOD, Department of Orthodontics and Dentofacial Orthopaedics, Tirumala Dental College, Bardipur, Nizamabad, Telangana, India
| | - Cherukupalli Sowmya
- Department of Orthodontics, Panineeya Dental College and Hospital, Hyderabad, Telangana, India
| | - Rattan Khurana
- Department of Orthodontics and Dentofacial Orthopaedics, Rayat Bahra Dental College and Hospital, Rayat Bahra University, Mohali, Punjab, India
| | - Udayini Monica Manga
- Department of Orthodontics, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
| | | | - Vinej Somaraj
- Department of Public Health Dentistry, Rajas Dental College and Hospital, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
7
|
Hernaiz-García M, Zanolli C, Martín-Francés L, Mazurier A, Benazzi S, Sarig R, Fu J, Kullmer O, Fiorenza L. Masticatory habits of the adult Neanderthal individual BD 1 from La Chaise-de-Vouthon (France). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24926. [PMID: 38420653 DOI: 10.1002/ajpa.24926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES The analysis of dental wear provides a useful approach for dietary and cultural habit reconstructions of past human populations. The analysis of macrowear patterns can also be used to better understand the individual chewing behavior and to investigate the biomechanical responses during different biting scenarios. The aim of this study is to evaluate the diet and chewing performance of the adult Neanderthal Bourgeois-Delaunay 1 (BD 1) and to investigate the relationship between wear and cementum deposition under mechanical demands. MATERIALS AND METHODS The macrowear pattern of BD 1 was analyzed using the occlusal fingerprint analysis method. We propose a new method for the bilateral measurement of the cementum volume along both buccal and lingual sides of the molar root. RESULTS BD 1's anterior dentition is more affected by wear compared to the posterior one. The macrowear pattern suggest a normal chewing behavior and a mixed-diet coming from temperate environments. The teeth on the left side of the mandible display greater levels of wear, as well as the buccal side of the molar crowns. The cementum analysis shows higher buccal volume along the molar roots. DISCUSSION BD1 could have been preferably chewing on the left side of the mandible. The exploitation of various food resources suggested by the macrowear analysis is compatible with the environmental reconstructions. Finally, the greater wear on the buccal side of the molar occlusal surface and the greater volume of cementum in that side of the molar roots offers a preliminary understanding about the potential correlation between dental wear and cementum deposition.
Collapse
Affiliation(s)
- María Hernaiz-García
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | | | - Laura Martín-Francés
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Department of Paleobiology, CENIEH, Burgos, Spain
| | - Arnaud Mazurier
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, Université de Poitiers, Poitiers, France
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Rachel Sarig
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University, Frankfurt, Germany
| | - Luca Fiorenza
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Zamanian MY, Golmohammadi M, Vadiyan FV, Almulla AA, Vadiyan DE, Morozova NS, Alkadir OKA, Kareem AH, Alijani M. A narrative review of the effects of vitamin D3 on orthodontic tooth movement: Focus on molecular and cellular mechanisms. Food Sci Nutr 2024; 12:3164-3176. [PMID: 38726436 PMCID: PMC11077251 DOI: 10.1002/fsn3.4035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
Orthodontic tooth movement (OTM) is a critical process in dental alignment, driven by the application of calibrated orthodontic forces. This study delves into the intricate molecular and cellular mechanisms by which vitamin D3 influences OTM. Vitamin D3 is identified as a critical regulator in bone metabolism, enhancing osteoblast activity and bone formation while also modulating osteoclast quantity and RANKL expression, essential for the remodeling of the alveolar bone. The precise mechanisms through which vitamin D3 facilitates these processes are explored, highlighting its potential in accelerating bone remodeling and, consequently, tooth alignment. This comprehensive review underscores vitamin D3's anabolic impact on bone metabolism and its pivotal role in the synthesis and mineralization processes governed by osteoblasts. The findings illuminate vitamin D3's promise in augmenting orthodontic therapy, suggesting its utility in improving treatment efficiency and reducing duration. However, the need for further research into the optimal application of vitamin D3 in orthodontics is emphasized, particularly concerning dosage, timing, and delivery methods.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Filipp V. Vadiyan
- Department of Therapeutic Dentistry, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Diana E. Vadiyan
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Natalia S. Morozova
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of DentistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | | | - Mojtaba Alijani
- Department of Orthodontics, School of DentistryHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
9
|
Sangalli L, Alessandri-Bonetti A, Dalessandri D. Effectiveness of dental monitoring system in orthodontics: A systematic review. J Orthod 2024; 51:28-40. [PMID: 37278017 DOI: 10.1177/14653125231178040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Dental monitoring (DM) constitutes a recent technological advance for the remote monitoring of patients undergoing an orthodontic therapy. Especially in times of health emergency crisis, the possibility of relying on remote monitoring could be particularly useful. OBJECTIVES To assess the effectiveness of DM in orthodontic care. ELIGIBILITY Studies conducted on healthy patients undergoing orthodontic care where DM was applied, assessing a change in treatment duration, emergency appointments, in-office visits, orthodontic relapse, early detection of orthodontic emergencies and improvement of oral health status. INFORMATION SOURCES PubMed, Web of Science and Scopus were searched for publications until November 2022. RISK OF BIAS Quality assessment was performed with the STROBE Checklist. DATA EXTRACTION Data were extracted independently by two reviewers, and discrepancies were resolved with a third reviewer. INCLUDED STUDIES Out of 6887 records screened, 11 studies were included. SYNTHESIS OF RESULTS DM implemented to the standard orthodontic care was found to significantly decrease the number of in-office visits by 1.68-3.5 visits and showed a possible trend towards improvement of aligner fit. Conversely, evidence does not support a reduction of treatment duration and emergency appointments. The assessment of the remaining variables did not allow any qualitative synthesis. CONCLUSIONS This review highlighted that DM implemented to standard orthodontic care can significantly decrease the number of in-office visits and may potentially result in an improved aligner fit. Due to the low quality of most of the included studies and the heterogeneity of the orthodontic system where DM was applied, studies with different investigation team and rigorous methodology are advocated.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine, Midwestern University, Downers Grove, IL, USA
| | - Anna Alessandri-Bonetti
- Department of Oral Health Science, Division of Orofacial Pain, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Institute of Dental Clinic, A. Gemelli University Policlinic IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Domenico Dalessandri
- Dental School, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Mordente CM, Oliveira DD, Palomo JM, Cardoso PA, Assis MAL, Zenóbio EG, Souki BQ, Soares RV. The effect of micro-osteoperforations on the rate of maxillary incisors' retraction in orthodontic space closure: a randomized controlled clinical trial. Prog Orthod 2024; 25:6. [PMID: 38342823 PMCID: PMC10859353 DOI: 10.1186/s40510-023-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/29/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND This single-centered randomized controlled clinical trial aimed to evaluate the effectiveness of micro-osteoperforations (MOPs) in accelerating the orthodontic retraction of maxillary incisors. METHODS Forty-two patients aged 16-40 were recruited and randomly assigned into two groups, one which underwent MOPs (MOPG) in the buccal and palatal region of all maxillary incisors immediately before the start of retraction and one which did not (CG). Eligibility criteria included the orthodontic need for maxillary first premolars extraction and space closure in two phases. The primary outcome of the study consisted of measuring the rate of space closure and, consequently, the rate of incisors' retraction using digital model superimposition 14 days later and monthly thereafter for the next 4 months. The secondary outcomes included measuring anchorage loss, central incisors' inclination, and root length shortening, analyzed using cone beam computed tomography scans acquired before retraction and 4 months after retraction. Randomization was performed using QuickCalcs software. While clinical blinding was not possible, the image's examinator was blinded. RESULTS Twenty-one patients were randomly assigned to each group. However, due to various reasons, a total of 37 patients (17 male and 20 female) were analyzed (mean age: 24.3 ± 8.1 years in the MOPG; 22.2 ± 4.2 years in the CG) during the trial. No statistically significant difference was found between the MOPG and the CG regarding the incisors' retraction measured at different time points at the incisal border (14 days, 0.4 mm vs. 0.5 mm; 1 month, 0.79 mm vs. 0.77 mm; 2 months, 1.47 mm vs. 1.41 mm; 3 months, 2.09 mm vs. 1.88 mm; 4 months, 2.62 mm vs. 2.29 mm) and at the cervical level (14 days, 0.28 mm vs. 0.30 mm; 1 month, 0.41 mm vs. 0.32 mm; 2 months, 0.89 mm vs. 0.61 mm; 3 months, 1.36 mm vs. 1.10 mm; 4 months, 1.73 mm vs. 1.39 mm). Similarly, no statistically significant differences were detected in the space closure, anchorage loss, central incisors' inclination, and radicular length between groups. No adverse effect was observed during the trial. CONCLUSIONS MOPs did not accelerate the retraction of the maxillary incisors, nor were they associated with greater incisor inclination or root resorption. Trial registration ClinicalTrials.gov NCT03089996. Registered 24 March 2017- https://clinicaltrials.gov/ct2/show/NCT03089996 .
Collapse
Affiliation(s)
- Carolina Morsani Mordente
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dauro Douglas Oliveira
- Graduate Program in Dentistry, Department of Orthodontics, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juan Martin Palomo
- Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Polyana Araújo Cardoso
- Graduate Program in Dentistry, Department of Orthodontics, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina Araújo Leite Assis
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elton Gonçalves Zenóbio
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bernardo Quiroga Souki
- Graduate Program in Dentistry, Department of Orthodontics, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Villamarim Soares
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Avenida Dom José Gaspar, 500, Prédio 46, Sala 101, Belo Horizonte, MG, 30535-901, Brazil.
| |
Collapse
|
11
|
Mohammed Bahaa El-Din A, Abd El Khaliq Hendy K, Elghetany Mohamed R, Abouelnour A, Mohamed Ali M, Akram El-Awady A, Ahmed Hussein F. Pain Intensity of Skeletally Anchored Maxillary Molar Distalization in Conjunction with Micro-osteoperforations: A Randomized Clinical Trial. Cureus 2024; 16:e53527. [PMID: 38445137 PMCID: PMC10912477 DOI: 10.7759/cureus.53527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Objective To assess pain intensity levels during orthodontic therapy of Class II malocclusion patients undergoing skeletally anchored maxillary molar distalization assisted with different micro-osteoperforation (MOP) approaches. Methods Twenty-seven patients (12 males and 18 females) with a mean age of 16.1 ± 0.3 years were randomized into three equal groups (n=9): Group 1 comprised MOPs on buccal surface, Group 2 comprised MOPs on buccal and palatal surface, and Group 3 comprised the control or no-MOP group. The patients underwent maxillary molar distalization using skeletally anchored distal jet appliance assisted with or without MOPs. The MOPs were applied repeatedly on the buccal and buccal and palatal sides, or no MOP (control). Pain intensity was assessed using a 10 cm visual analog scale after each device activation at 24, 48, 72 hours, and at seven days. Data were analyzed using one-way ANOVA and repeated measures ANOVA for non-paired and paired means. Results Both approaches of buccal and buccal and palatal application of MOPs showed statistically significant (p< 0.01) higher levels of pain intensity after the first activation at 24 hours. Nevertheless, pain intensity levels decreased significantly in both MOP groups and between the two activations. Conclusion The repeated application of MOPs on either the buccal side only or on both buccal and palatal sides during maxillary molar distalization did not affect the levels of pain experienced; however, these levels were reported to be higher than that obtained in the control group. Moreover, it is observed that these pain levels tend to gradually reduce to mild levels over the subsequent days.
Collapse
Affiliation(s)
| | | | | | - Ahmed Abouelnour
- Department of Orthodontics, Faculty of Dental Medicine (Boys), Al-Azhar University, Cairo, EGY
| | - Mohamed Mohamed Ali
- Department of Orthodontics, Faculty of Dental Medicine (Boys), Al-Azhar University, Cairo, EGY
| | - Ahmed Akram El-Awady
- Department of Orthodontics, Faculty of Dental Medicine (Boys), Al-Azhar University, Cairo, EGY
| | - Farouk Ahmed Hussein
- Department of Orthodontics, Faculty of Dental Medicine (Boys), Al-Azhar University, Cairo, EGY
| |
Collapse
|
12
|
Liu X, Wang B, Chang M, Zhang X, Zou H, Zhang Z, Han G. USP12 regulates ER stress-associated osteogenesis in human periodontal ligament cells under tension stress. Cell Signal 2024; 114:111015. [PMID: 38113977 DOI: 10.1016/j.cellsig.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The bone formation (osteogenesis) of human periodontal ligament cells (hPDLCs) under tension stress is essential for alveolar bone remodeling during orthodontic tooth movement (OTM). Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins, affecting their function and mediating cell survival and differentiation. However, whether and how DUBs regulate hPDLC function under tension force is poorly understood. In this study, we first investigated the expression of DUBs in hPDLCs under cyclic tension stimulation (CTS). Up-regulation of USP12 was observed in hPDLCs and at the tension side of molar teeth in OTM C57BL6 mice models. Knockdown (KD) of USP12 led to enhanced osteogenesis of hPDLCs under CTS. RNA-seq analysis suggested that the unfolded protein response (UPR) was the prevailing biological process in hPDLCs with USP12 KD, indicating that USP12 depletion triggered endoplasmic reticulum (ER) stress. The three major UPR-related signaling branches, namely PERK/eIF2α/ATF4, IRE1α/XBP1s, and ATF6 axis, were activated in hPDLCs with USP12 KD. By utilizing specific inhibitors, we proved that the PERK/eIF2α/ATF4 axis predominantly mediated the enhanced osteogenesis in hPDLCs with USP12 KD under CTS. In summary, our study demonstrates that USP12 serves as a key regulator for CTS-induced osteogenesis in hPDLCs, suggesting that USP12 upregulation serves as an adaptive mechanism for hPDLCs to alleviate ER stress during OTM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Beike Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maolin Chang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Hao Zou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Bai X, Wang Y, Ma X, Yang Y, Deng C, Sun M, Lin C, Zhang L. Periodontal ligament cells-derived exosomes promote osteoclast differentiation via modulating macrophage polarization. Sci Rep 2024; 14:1465. [PMID: 38233593 PMCID: PMC10794214 DOI: 10.1038/s41598-024-52073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Several studies have demonstrated that exosomes (Exos) are involved in the regulation of macrophage polarization and osteoclast differentiation. However, the characteristics as well as roles of exosomes from human periodontal ligament cells (hPDLCs-Exos) in M1/M2 macrophage polarization and osteoclast differentiation remain unclear. Here, periodontal ligament cells were successfully extracted by method of improved Type-I collagen enzyme digestion. hPDLCs-Exos were extracted by ultracentrifugation. hPDLCs-Exos were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Osteoclast differentiation was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), WB and tartrate-resistant acid phosphatase (TRAP) staining. M1/M2 macrophage polarization were evaluated by RT-qPCR and WB. The results showed hPDLCs-Exos promoted osteoclast differentiation and M2 macrophage polarization, but inhibited M1 macrophage polarization. Moreover, M1 macrophages inhibited osteoclast differentiation, whereas M2 macrophages promoted osteoclast differentiation. It has shown that hPDLCs-Exos promoted osteoclast differentiation by inhibiting M1 and promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Xinyi Bai
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Yingxue Wang
- Tianjin Kanghui Hospital, Tianjin, Tianjin, 300385, China
| | - Xinyuan Ma
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | | | - Cong Deng
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Mengling Sun
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Lin
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| | - Linkun Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
14
|
Wang M, Wang J, Jin X, Liu D, Bian H, Zhao Y, Li Y. Impact of occlusal contact pattern on dental stability and oromandibular system after orthodontic tooth movement in rats. Sci Rep 2023; 13:22276. [PMID: 38097596 PMCID: PMC10721791 DOI: 10.1038/s41598-023-46668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
How to ensure dental stability in new positions and reduce the likelihood of relapse is a major clinical concern in the orthodontic field. Occlusal contacts between arches may affect the transmission of masticatory forces, thereby influencing the biological response of the periodontal and the oromandibular system. Occlusion factors that may influence the stability after orthodontic tooth movement (OTM) remain largely unknown. Hence, this research was conducted in order to investigate the influence of different occlusal contact patterns on tooth stability and oromandibular system including the masseter muscle and the temporomandibular joint following OTM. By modifying the occlusal surfaces, in vivo animal study models with distinct occlusal patterns corresponding to clinical circumstances were established. The relapse distance of teeth and the level of inflammatory factors in the gingival cervical fluid were analyzed. We also closely observed the histological remodeling of periodontal tissue, masseter tissue, and joint tissue after one week of relapse. Moreover, genes expression in the alveolar bone was analyzed to illustrate the potential biological mechanisms of relapse under the influence of different occlusal contact patterns following OTM. Different occlusal contact patterns after OTM in rats were established. The intercuspation contact between cusp and fossa group exhibited the lowest level of relapse movement, inflammatory factors and osteoclast activity (P < 0.05). On the other hand, groups with interferences or inadequate contacts exhibited more relapse movement, and tend to promote inflammation of periodontal tissue and activate bone resorption (P < 0.05). Adequate occlusal contacts without interference may enhance tooth stability and reduce the likelihood of relapse. After active orthodontic treatment, necessary occlusal adjustment should be made to achieve the desired intercuspation contact relationship and ensure adequate contact between the arches. The elimination of occlusal interferences is crucial to achieving optimal stability and promoting overall healthy condition of the oromandibular system.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China
| | - Jing Wang
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiang Jin
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Dedi Liu
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Huan Bian
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China.
- State Key Laboratory of Military Stomatology, Xi'an, 710032, China.
| | - Yanfeng Li
- Department of Stomatology, The Fourth Medical Center, Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
15
|
Seddiqi H, Klein-Nulend J, Jin J. Osteocyte Mechanotransduction in Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:731-742. [PMID: 37792246 PMCID: PMC10724326 DOI: 10.1007/s11914-023-00826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW Orthodontic tooth movement is characterized by periodontal tissue responses to mechanical loading, leading to clinically relevant functional adaptation of jaw bone. Since osteocytes are significant in mechanotransduction and orchestrate osteoclast and osteoblast activity, they likely play a central role in orthodontic tooth movement. In this review, we attempt to shed light on the impact and role of osteocyte mechanotransduction during orthodontic tooth movement. RECENT FINDINGS Mechanically loaded osteocytes produce signaling molecules, e.g., bone morphogenetic proteins, Wnts, prostaglandins, osteopontin, nitric oxide, sclerostin, and RANKL, which modulate the recruitment, differentiation, and activity of osteoblasts and osteoclasts. The major signaling pathways activated by mechanical loading in osteocytes are the wingless-related integration site (Wnt)/β-catenin and RANKL pathways, which are key regulators of bone metabolism. Moreover, osteocytes are capable of orchestrating bone adaptation during orthodontic tooth movement. A better understanding of the role of osteocyte mechanotransduction is crucial to advance orthodontic treatment. The optimal force level on the periodontal tissues for orthodontic tooth movement producing an adequate biological response, is debated. This review emphasizes that both mechanoresponses and inflammation are essential for achieving tooth movement clinically. To fully comprehend the role of osteocyte mechanotransduction in orthodontic tooth movement, more knowledge is needed of the biological pathways involved. This will contribute to optimization of orthodontic treatment and enhance patient outcomes.
Collapse
Affiliation(s)
- Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Lin S, Marvidou AM, Novak R, Moreinos D, Abbott PV, Rotstein I. Pathogenesis of non-infection related inflammatory root resorption in permanent teeth: A narrative review. Int Endod J 2023; 56:1432-1445. [PMID: 37712904 DOI: 10.1111/iej.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.
Collapse
Affiliation(s)
- Shaul Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Athina M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Rostislav Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Department, Orthopedic Oncology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - Paul Vincent Abbott
- UWA Dental School, The University of Western Australia, Western Australia, Nedlands, Australia
| | - Ilan Rotstein
- University of Southern California, California, Los Angeles, USA
| |
Collapse
|
17
|
Yang Y, Pullisaar H, Stunes AK, Nogueira LP, Syversen U, Reseland JE. Irisin reduces orthodontic tooth movement in rats by promoting the osteogenic potential in the periodontal ligament. Eur J Orthod 2023; 45:842-853. [PMID: 37209709 PMCID: PMC10687601 DOI: 10.1093/ejo/cjad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Positive effects of irisin on osteogenic differentiation of periodontal ligament (PDL) cells have been identified previously, this study aims to examine its effect on orthodontic tooth movement (OTM) in vivo. MATERIALS AND METHODS The maxillary right first molars of male Wistar rats (n = 21) were moved mesially for 14 days, with submucosal injection of two dosages of irisin (0.1 or 1 μg) or phosphate-buffered saline (control) every third day. OTM was recorded by feeler gauge and micro-computed tomography (μCT). Alveolar bone and root volume were analysed using μCT, and plasma irisin levels by ELISA. Histological characteristics of PDL tissues were examined, and the expression of collagen type I, periostin, osteocalcin (OCN), von Willebrand factor (vWF) and fibronectin type III domain-containing protein 5 (FNDC5) in PDL was evaluated by immunofluorescence staining. RESULTS Repeated 1 μg irisin injections suppressed OTM on days 6, 9, and 12. No significant differences were observed in OTM in the 0.1 μg irisin group, or in bone morphometric parameters, root volume or plasma irisin, compared to control. Resorption lacunae and hyalinization were found at the PDL-bone interface on the compression side in the control, whereas they were scarce after irisin administration. The expression of collagen type I, periostin, OCN, vWF, and FNDC5 in PDL was enhanced by irisin administration. LIMITATIONS The feeler gauge method may overestimate OTM. CONCLUSIONS Submucosal irisin injection reduced OTM by enhancing osteogenic potential of PDL, and this effect was more significant on the compression side.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
| | | | - Unni Syversen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Yang Y, Liu Q, Lu X, Ma J, Mei D, Chen Q, Zhao T, Chen J. Sanhuang decoction inhibits autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by activating PI3K-Akt-mTOR pathway. Biomed Pharmacother 2023; 166:115391. [PMID: 37677964 DOI: 10.1016/j.biopha.2023.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) is a typical treatment that corrects malaligned teeth by applying mechanical forces. However, mechanical overload often leads to damage of PDL fibroblasts. Sanhuang decoction (SHD) is commonly used to inhibit inflammation and oxidative stress. However, the mechanism of SHD for OTM treatment is still unclear. Therefore, this study attempts to explore the underlying mechanism through relevant experiments. METHODS In the present paper, we established a OTM rat model and further explored the effects of SHD on the PDL of OTM rats. The OTM model and effects of SHD were determined by micro-CT, and the PDL pathological changes, PDL width and capillaries in PDL were observed by H&E staining. Subsequently, the ROS levels in PDL was determined using flow cytometry analysis with DCFH-DA staining, MDA contents and antioxidative enzymes activities were also measured using commercial kits. Furthermore, the autophagy of PDL fibroblasts and proteins in the PI3K/Akt/mTOR pathway were detected using immunoluminescence, qPCR and western blotting assays. RESULTS The results showed SHD treatment can alleviate the decrease of PDL cells and capillaries induced by OTM, and improve the MDA and ROS levels in PDL, as well as enhance the activities of SOD and GSH-Px. Further experiments indicated SHD decreased the autophagy levels of PDL fibroblasts via promoting the phosphorylation levels of mTOR, PI3K and Akt proteins. CONCLUSION SHD inhibited autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by inhibiting oxidative stress via activating PI3K-Akt-mTOR pathway. Our present findings suggested SHD treatment would be useful for management of the possible disorders occurs in orthodontic tooth movement therapy.
Collapse
Affiliation(s)
- Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Liu
- Department of Prosthodontics, Yinchuan Stomatological Hospital, Yinchuan 750004, PR China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jing Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Donglan Mei
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Tian Zhao
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
19
|
Nile M, Folwaczny M, Wichelhaus A, Baumert U, Janjic Rankovic M. Fluid flow shear stress and tissue remodeling-an orthodontic perspective: evidence synthesis and differential gene expression network analysis. Front Bioeng Biotechnol 2023; 11:1256825. [PMID: 37795174 PMCID: PMC10545883 DOI: 10.3389/fbioe.2023.1256825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: This study aimed to identify and analyze in vitro studies investigating the biological effect of fluid-flow shear stress (FSS) on cells found in the periodontal ligament and bone tissue. Method: We followed the PRISMA guideline for systematic reviews. A PubMed search strategy was developed, studies were selected according to predefined eligibility criteria, and the risk of bias was assessed. Relevant data related to cell source, applied FSS, and locus-specific expression were extracted. Based on this evidence synthesis and, as an original part of this work, analysis of differential gene expression using over-representation and network-analysis was performed. Five relevant publicly available gene expression datasets were analyzed using gene set enrichment analysis (GSEA). Result: A total of 6,974 articles were identified. Titles and abstracts were screened, and 218 articles were selected for full-text assessment. Finally, 120 articles were included in this study. Sample size determination and statistical analysis related to methodological quality and the ethical statement item in reporting quality were most frequently identified as high risk of bias. The analyzed studies mostly used custom-made fluid-flow apparatuses (61.7%). FSS was most frequently applied for 0.5 h, 1 h, or 2 h, whereas FSS magnitudes ranged from 6 to 20 dyn/cm2 depending on cell type and flow profile. Fluid-flow frequencies of 1 Hz in human cells and 1 and 5 Hz in mouse cells were mostly applied. FSS upregulated genes/metabolites responsible for tissue formation (AKT1, alkaline phosphatase, BGLAP, BMP2, Ca2+, COL1A1, CTNNB1, GJA1, MAPK1/MAPK3, PDPN, RUNX2, SPP1, TNFRSF11B, VEGFA, WNT3A) and inflammation (nitric oxide, PGE-2, PGI-2, PTGS1, PTGS2). Protein-protein interaction networks were constructed and analyzed using over-representation analysis and GSEA to identify shared signaling pathways. Conclusion: To our knowledge, this is the first review giving a comprehensive overview and discussion of methodological technical details regarding fluid flow application in 2D cell culture in vitro experimental conditions. Therefore, it is not only providing valuable information about cellular molecular events and their quantitative and qualitative analysis, but also confirming the reproducibility of previously published results.
Collapse
Affiliation(s)
- Mustafa Nile
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Kloukos D, Kalimeri E, Gkourtsogianni S, Kantarci A, Katsaros C, Stavropoulos A. Impact of fixed orthodontic appliances on blood count and high-sensitivity C-reactive protein levels: A prospective cohort study. Am J Orthod Dentofacial Orthop 2023; 164:351-356. [PMID: 36941188 DOI: 10.1016/j.ajodo.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The aim was to elucidate the magnitude of alterations in systemic blood counts in healthy patients during the first 14 days after fixed orthodontic appliance placement. METHODS This prospective cohort study consecutively included 35 White Caucasian patients starting orthodontic treatment with fixed appliances. The mean age was 24.48 ± 6.68 years. All patients were physically and periodontally healthy. Blood samples were collected at 3 time points: (1) baseline (exactly before the placement of appliances), (2) 5 days after bonding, and (3) 14 days after baseline. Whole blood and erythrocyte sedimentation rates were analyzed in automated hematology and erythrocyte sedimentation rate analyzer. Serum high-sensitivity C-reactive protein levels were measured by the nephelometric method. Standardized sample handling and patient preparation procedures were adopted to reduce preanalytical variability. RESULTS A total of 105 samples were analyzed. All clinical and orthodontic procedures were performed without complications or side effects during the study period. All laboratory procedures were performed per protocol. Significantly lower white blood cell counts were detected 5 days after bracket bonding, compared with baseline (P <0.05). Hemoglobin levels were lower at 14 days than baseline (P <0.05). No other significant shifts or alteration patterns were observed over time. CONCLUSIONS Orthodontic fixed appliances led to a limited and transient change in white blood cell counts and hemoglobin levels during the first days after bracket placement. The fluctuation of high-sensitivity C-reactive protein levels was not significant, demonstrating a lack of association between systemic inflammation and orthodontic treatment.
Collapse
Affiliation(s)
- Dimitrios Kloukos
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Orthodontics and Dentofacial Orthopedics, 251 Hellenic Air Force Hospital, Athens, Greece; Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - Eleni Kalimeri
- Department of Orthodontics and Dentofacial Orthopedics, 251 Hellenic Air Force Hospital, Athens, Greece
| | - Sofia Gkourtsogianni
- Department of Paediatric Dentistry, Athens School of Dentistry, National and Kapodistrian University of Athens, Greece
| | | | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
21
|
Maltha JC, Kuijpers-Jagtman AM. Mechanobiology of orthodontic tooth movement: An update. J World Fed Orthod 2023; 12:156-160. [PMID: 37349154 DOI: 10.1016/j.ejwf.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023]
Abstract
The purpose of this review is to provide an update on the changes at the cellular and tissue level occurring during orthodontic force application. For the understanding of this process, knowledge of the mechanobiology of the periodontal ligament and the alveolar bone are essential. The periodontal ligament and alveolar bone make up a functional unit that undergoes robust changes during orthodontic tooth movement. Complex molecular signaling is responsible for converting mechanical stresses into biochemical events with a net result of bone apposition and/or bone resorption. Despite an improved understanding of mechanical and biochemical signaling mechanisms, it is largely unknown how mechanical stresses regulate the differentiation of stem/progenitor cells into osteoblast and osteoclast lineages. To advance orthodontics, it is crucial to gain a better understanding of osteoblast differentiation from mesenchymal stem/progenitor cells and osteoclastogenesis from the hematopoietic/monocyte lineage.
Collapse
Affiliation(s)
- Jaap C Maltha
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine/Medical Faculty, University of Bern, Bern, Switzerland; Faculty of Dentistry, Universitas Indonesia, Campus Salemba, Jakarta, Indonesia.
| |
Collapse
|
22
|
Jepsen K, Tietmann C, Martin C, Kutschera E, Jäger A, Wüllenweber P, Gaveglio L, Cardaropoli D, Sanz-Sánchez I, Fimmers R, Jepsen S. Synergy of Regenerative Periodontal Surgery and Orthodontics Improves Quality of Life of Patients with Stage IV Periodontitis: 24-Month Outcomes of a Multicenter RCT. Bioengineering (Basel) 2023; 10:695. [PMID: 37370626 PMCID: PMC10295428 DOI: 10.3390/bioengineering10060695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In stage IV periodontitis patients with pathologic tooth migration (PTM), interdisciplinary treatment includes regenerative periodontal surgery (RPS) with an application of biomaterials and orthodontic therapy (OT) to restore function, esthetics and thereby quality of life (QoL). In a 24-month randomized trial we explored the synergy between regenerative medicine and biomechanical force application. The following methods were used: Forty-three patients had been randomized to a combined treatment comprising RPS and subsequent OT starting either 4 weeks (early OT) or 6 months (late OT) post-operatively. Clinical periodontal parameters and oral health-related QoL (GOHAI) were recorded up to 24 months. We obtained the following results: Mean clinical attachment gain (∆CAL ± SD) was significantly higher with early OT (5.96 ± 2.1 mm) versus late OT (4.65 ± 1.76 mm) (p = 0.034). Pocket closure (PPD ≤ 4 mm) was obtained in 91% of defects with early OT compared to 90% with late OT. GOHAI-scores decreased significantly from 26.1 ± 7.5 to 9.6 ± 4.7 (early OT) and 25.1 ± 7.1 to 12.7 ± 5.6 (late OT). Inconclusion, teeth severely compromised by intrabony defects and PTM can be treated successfully by RPS followed by early OT with the advantage of an overall reduced treatment time. As a result of the combined periodontal-orthodontic therapy, the oral health-related QoL of patients was significantly improved. Early stimulation of wound healing with orthodontic forces had a favorable impact on the outcomes of regenerative periodontal surgery.
Collapse
Affiliation(s)
- Karin Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
| | - Christina Tietmann
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
- Private Practice for Periodontology, Krefelder Strasse 73, 52070 Aachen, Germany
| | - Conchita Martin
- BIOCRAN Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Eric Kutschera
- Department of Orthodontics, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany
| | - Peter Wüllenweber
- Private Practice for Orthodontics, Theaterstraße 98-102, 52062 Aachen, Germany
| | - Lorena Gaveglio
- Private Practice, Corso Galileo Ferraris 148, 10129 Turino, Italy
| | | | | | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, 53127 Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
| |
Collapse
|
23
|
Parashos P. Endodontic-orthodontic interactions: a review and treatment recommendations. Aust Dent J 2023; 68 Suppl 1:S66-S81. [PMID: 37961018 DOI: 10.1111/adj.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The literature is replete with articles describing the many and varied interactions between endodontic treatment and orthodontic tooth movement (OTM), often reporting conflicting views and findings, which creates confusion for clinicians. Original research and review articles have described aspects such as apical root resorption and potential pulpal complications of teeth related to OTM. Some interactions are of relatively minor clinical significance, whilst others may have adverse consequences. A history of dental trauma before or during OTM further complicates the interactions. This review re-assesses the historical literature on endodontic-orthodontic interactions in light of more recent research and presents guidelines for managing clinical situations involving both disciplines. © 2023 Australian Dental Association.
Collapse
Affiliation(s)
- P Parashos
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Lin Y, Fu ML, Harb I, Ma LX, Tran SD. Functional Biomaterials for Local Control of Orthodontic Tooth Movement. J Funct Biomater 2023; 14:294. [PMID: 37367258 DOI: 10.3390/jfb14060294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Orthodontic tooth movement (OTM) occurs with the application of a controlled mechanical force and results in coordinated tissue resorption and formation in the surrounding bone and periodontal ligament. The turnover processes of the periodontal and bone tissue are associated with specific signaling factors, such as Receptor Activator of Nuclear factor Kappa-β Ligand (RANKL), osteoprotegerin, runt-related transcription factor 2 (RUNX2), etc., which can be regulated by different biomaterials, promoting or inhibiting bone remodeling during OTM. Different bone substitutes or bone regeneration materials have also been applied to repair alveolar bone defects followed by orthodontic treatment. Those bioengineered bone graft materials also change the local environment that may or may not affect OTM. This article aims to review functional biomaterials that were applied locally to accelerate OTM for a shorter duration of orthodontic treatment or impede OTM for retention purposes, as well as various alveolar bone graft materials which may affect OTM. This review article summarizes various types of biomaterials that can be locally applied to affect the process of OTM, along with their potential mechanisms of action and side effects. The functionalization of biomaterials can improve the solubility or intake of biomolecules, leading to better outcomes in terms of increasing or decreasing the speed of OTM. The ideal timing for initiating OTM is generally considered to be 8 weeks post-grafting. However, more evidence is needed from human studies to fully understand the effects of these biomaterials, including any potential adverse effects.
Collapse
Affiliation(s)
- Yi Lin
- Division of Orthodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moyu Lara Fu
- School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingrid Harb
- Division of Dentistry, Montreal Children's Hospital and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Lisa Xiaolu Ma
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Science, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
25
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
26
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
27
|
Pu P, Wu S, Zhang K, Xu H, Guan J, Jin Z, Sun W, Zhang H, Yan B. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnology 2023; 21:88. [PMID: 36915132 PMCID: PMC10012474 DOI: 10.1186/s12951-023-01836-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM), a process of alveolar bone remodelling, is induced by mechanical force and regulated by local inflammation. Bone marrow-derived mesenchymal stem cells (BMSCs) play a fundamental role in osteogenesis during OTM. Macrophages are mechanosensitive cells that can regulate local inflammatory microenvironment and promote BMSCs osteogenesis by secreting diverse mediators. However, whether and how mechanical force regulates osteogenesis during OTM via macrophage-derived exosomes remains elusive. RESULTS Mechanical stimulation (MS) promoted bone marrow-derived macrophage (BMDM)-mediated BMSCs osteogenesis. Importantly, when exosomes from mechanically stimulated BMDMs (MS-BMDM-EXOs) were blocked, the pro-osteogenic effect was suppressed. Additionally, compared with exosomes derived from BMDMs (BMDM-EXOs), MS-BMDM-EXOs exhibited a stronger ability to enhance BMSCs osteogenesis. At in vivo, mechanical force-induced alveolar bone formation was impaired during OTM when exosomes were blocked, and MS-BMDM-EXOs were more effective in promoting alveolar bone formation than BMDM-EXOs. Further proteomic analysis revealed that ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) was enriched in MS-BMDM-EXOs compared with BMDM-EXOs. We went on to show that BMSCs osteogenesis and mechanical force-induced bone formation were impaired when UCHL3 was inhibited. Furthermore, mothers against decapentaplegic homologue 1 (SMAD1) was identified as the target protein of UCHL3. At the mechanistic level, we showed that SMAD1 interacted with UCHL3 in BMSCs and was downregulated when UCHL3 was suppressed. Consistently, overexpression of SMAD1 rescued the adverse effect of inhibiting UCHL3 on BMSCs osteogenesis. CONCLUSIONS This study suggests that mechanical force-induced macrophage-derived exosomal UCHL3 promotes BMSCs osteogenesis by targeting SMAD1, thereby promoting alveolar bone formation during OTM.
Collapse
Affiliation(s)
- Panjun Pu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China.
| |
Collapse
|
28
|
Navarrete C, Riquelme A, Baksai N, Pérez R, González C, Michea M, von Mühlenbrock H, Cafferata EA, Vernal R. Levels of Pro-Inflammatory and Bone-Resorptive Mediators in Periodontally Compromised Patients under Orthodontic Treatment Involving Intermittent Forces of Low Intensities. Int J Mol Sci 2023; 24:ijms24054807. [PMID: 36902236 PMCID: PMC10002573 DOI: 10.3390/ijms24054807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
During orthodontic treatment, diverse cytokines, enzymes, and osteolytic mediators produced within the teeth surrounding periodontal tissues determine the rate of alveolar bone remodeling and consequent teeth movement. In patients with teeth presenting reduced periodontal support, periodontal stability should be ensured during orthodontic treatment. Thus, therapies based on the application of low-intensity intermittent orthodontic forces are recommended. To determine if this kind of treatment is periodontally well tolerated, this study aimed to analyze the production of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), interleukin (IL)-6, IL-17A, and matrix metalloproteinase (MMP)-8 in periodontal tissues of protruded anterior teeth with reduced periodontal support and undergoing orthodontic treatment. Patients with periodontitis-associated anterior teeth migration received non-surgical periodontal therapy and a specific orthodontic treatment involving controlled low-intensity intermittent orthodontic forces. Samples were collected before periodontitis treatment, after periodontitis treatment, and at 1 week to 24 months of the orthodontic treatment. During the 2 years of orthodontic treatment, no significant differences were detected in the probing depth, clinical attachment level, supragingival bacterial plaque, and bleeding on probing. In line with this, the gingival crevicular levels of RANKL, OPG, IL-6, IL-17A, and MMP-8 did not vary between the different evaluation time-points of the orthodontic treatment. When compared with the levels detected during the periodontitis, the RANKL/OPG ratio was significantly lower at all the analyzed time-points of the orthodontic treatment. In conclusion, the patient-specific orthodontic treatment based on intermittent orthodontic forces of low intensities was well tolerated by periodontally compromised teeth with pathological migration.
Collapse
Affiliation(s)
- Cristian Navarrete
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Alejandro Riquelme
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Natalia Baksai
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Romina Pérez
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Claudia González
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - María Michea
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Hans von Mühlenbrock
- Orthodontics-Periodontics Center, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima 15067, Peru
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
- Correspondence:
| |
Collapse
|
29
|
Al-Ibrahim HM, Hajeer MY, Burhan AS, Haj Hamed Y, Alkhouri I, Zinah E. Assessment of Dentoalveolar Changes Following Leveling and Alignment of Severely Crowded Upper Anterior Teeth Using Self-Ligating Brackets Alone or With Flapless Piezocision Compared to Traditional Brackets: A Randomized Controlled Clinical Trial. Cureus 2023; 15:e35733. [PMID: 36875255 PMCID: PMC9984186 DOI: 10.7759/cureus.35733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Dental crowding is one of the most common types of malocclusions. It can be treated with or without extraction, depending on the severity of the crowding. Extraction-based orthodontic treatments are the preferred treatment option in cases of severe crowding, but they take longer than non-extraction cases. Objective This study aimed to evaluate the dentoalveolar changes following the orthodontic treatment of severely crowded maxillary anterior teeth in adults using self-ligating brackets alone or combined with flapless piezocision. Materials and methods The participants in this study were 63 patients (46 females and 17 males; mean age SD: 19.71 ± 2.74 years) who attended the Department of Orthodontics at the University of Damascus from January 2020 to December 2021. The participants were divided into three groups at random: Group (1): traditional brackets group, Group (2): self-ligating brackets group; and Group (3): self-ligating brackets with flapless piezocision group. Little's Irregularity Index (LII) was measured at five assessment times: before the onset of orthodontic treatment (T0), after one month (T1), after two months (T2), after three months (T3), and at the end of the leveling and alignment phase (T4). The intercanine width (lingual), the intercanine width (cusp), and the canine rotation angle were measured at two assessment times: before the onset of orthodontic treatment (T0) and at the end of the leveling and alignment phase (T4). Results The three studied groups had statistically significant differences in terms of LII during the first three months, and the most significant improvement of LII was in the self-ligating brackets with the piezocision group (P < 0.001). In addition, the intercanine width (cusp) at the end of the leveling and aligning phase revealed greater mean values in both self-ligating brackets groups compared to the traditional brackets group, and the differences were statistically significant (P < 0.001). Otherwise, no statistically significant differences were found at the end of the leveling and aligning phase in the intercanine width (lingual) or the canine rotation angle between the three studied groups (P > 0.05). Conclusion Using self-ligating brackets with flapless piezocision revealed more significant results concerning LII as compared to other groups. Thus, combining these two acceleration methods could get more effective results in aligning severely crowded teeth. Self-ligating brackets, whether used alone or with flapless piezocision, resulted in greater intercanine width at the cusp level. The type of brackets (traditional or self-ligating) did not affect the canine rotation angle.
Collapse
Affiliation(s)
- Heba M Al-Ibrahim
- Department of Orthodontics, University of Damascus Faculty of Dentistry, Damascus, SYR
| | - Mohammad Y Hajeer
- Department of Orthodontics, University of Damascus Faculty of Dentistry, Damascus, SYR
| | - Ahmad S Burhan
- Department of Orthodontics, University of Damascus Faculty of Dentistry, Damascus, SYR
| | - Yaser Haj Hamed
- Department of Orthodontics, Appolonia Pediatric Dentistry Center, Dubai, ARE
| | - Issam Alkhouri
- Department of Oral and Maxillofacial Surgery, University of Damascus Faculty of Dentistry, Damascus, SYR
| | - Eiad Zinah
- Department of Dental Public Health, University College London, London, GBR
| |
Collapse
|
30
|
Shi SM, Liu TT, Wei XQ, Sun GH, Yang L, Zhu JF. GCN5 regulates ZBTB16 through acetylation, mediates osteogenic differentiation, and affects orthodontic tooth movement. Biochem Cell Biol 2023. [PMID: 36786377 DOI: 10.1139/bcb-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In the process of orthodontic tooth movement (OTM), periodontal ligament fibroblasts (PDLFs) must undergo osteogenic differentiation. OTM increased the expression of Zinc finger and BTB domain-containing 16 (ZBTB16), which is implicated in osteogenic differentiation. Our goal was to investigate the mechanism of PDLF osteogenic differentiation mediated by ZBTB16. The OTM rat model was established, and PDLFs were isolated and exposed to mechanical force. Hematoxylin-eosin staining, Alizarin Red staining, immunofluorescence, and immunohistochemistry were carried out. The alkaline phosphatase (ALP) activity was measured. Dual-luciferase reporter gene assay and chromatin immunoprecipitation assay were conducted. In OTM models, ZBTB16 was significantly expressed. Additionally, there was an uneven distribution of PDLFs in the OTM group, as well as an increase in fibroblasts and inflammatory infiltration. ZBTB16 interference hindered PDLF osteogenic differentiation and decreased Wnt and β-catenin levels. Meanwhile, ZBTB16 activated the Wnt/β-catenin pathway. ZBTB16 also enhanced the expression of the osteogenic molecules osterix, osteocalcin (OCN), osteopontin (OPN), and bone sialo protein (BSP) at mRNA and protein levels. The interactions between Wnt1 and ZBTB16, as well as GCN5 and ZBTB16, were also verified. The adeno-associated virus-shZBTB16 injection also proved to inhibit osteogenic differentiation and reduce tooth movement distance in in vivo tests. ZBTB16 was up-regulated in OTM. Through acetylation modification of ZBTB16, GCN5 regulated the Wnt/β-catenin signaling pathway and further mediated PDLF osteogenic differentiation.
Collapse
Affiliation(s)
- Shu-Man Shi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting-Ting Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xue-Qin Wei
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ge-Hong Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan-Fang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
31
|
Wang Y, Groeger S, Yong J, Ruf S. Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. Int J Mol Sci 2023; 24:ijms24043117. [PMID: 36834533 PMCID: PMC9958841 DOI: 10.3390/ijms24043117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Orthodontic tooth movement is a complex periodontal remodeling process triggered by compression that involves sterile inflammation and immune responses. Macrophages are mechanically sensitive immune cells, but their role in orthodontic tooth movement is unclear. Here, we hypothesize that orthodontic force can activate macrophages, and their activation may be associated with orthodontic root resorption. After force-loading and/or adiponectin application, the migration function of macrophages was tested via scratch assay, and Nos2, Il1b, Arg1, Il10, ApoE, and Saa3 expression levels were detected using qRT-PCR. Furthermore, H3 histone acetylation was measured using an acetylation detection kit. The specific inhibitor of H3 histone, I-BET762, was deployed to observe its effect on macrophages. In addition, cementoblasts were treated with macrophage-conditioned medium or compression force, and OPG production and cellular migration were measured. We further detected Piezo1 expression in cementoblasts via qRT-PCR and Western-blot, and its effect on the force-induced impairment of cementoblastic functions was also analyzed. Compressive force significantly inhibited macrophage migration. Nos2 was up-regulated 6 h after force-loading. Il1b, Arg1, Il10, Saa3, and ApoE increased after 24 h. Meanwhile, higher H3 histone acetylation was detected in the macrophages subjected to compression, and I-BET762 dampened the expression of M2 polarization markers (Arg1 and Il10). Lastly, even though the activated macrophage-conditioned medium showed no effect on cementoblasts, compressive force directly impaired cementoblastic function by enhancing mechanoreceptor Piezo1. Compressive force activates macrophages; specifically, it causes M2 polarization via H3 histone acetylation in the late stage. Compression-induced orthodontic root resorption is macrophage-independent, but it involves the activation of mechanoreceptor Piezo1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Correspondence:
| | - Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
32
|
Wang J, Yang H, Ma X, Liu J, Li L, Chen L, Wei F. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells. Cell Mol Biol Lett 2023; 28:7. [PMID: 36694134 PMCID: PMC9872397 DOI: 10.1186/s11658-023-00420-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.
Collapse
Affiliation(s)
- Jixiao Wang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Huiqi Yang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Xiaobei Ma
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Jiani Liu
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lan Li
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lei Chen
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Fulan Wei
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| |
Collapse
|
33
|
Ma J, Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Kanou K, Kishikawa A, Ichimura A, Mizoguchi I. Docosahexaenoic acid inhibits TNF-α-induced osteoclast formation and orthodontic tooth movement through GPR120. Front Immunol 2023; 13:929690. [PMID: 36741381 PMCID: PMC9889988 DOI: 10.3389/fimmu.2022.929690] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that has a range of positive impacts on human health, including anti-inflammatory effects and inhibition of osteoclast formation via G-protein-coupled receptor 120 (GPR120). Orthodontic force was reported to induce tumor necrosis factor-α (TNF-α) expression, which activates osteoclast differentiation during orthodontic tooth movement (OTM). The aim of this study was to investigate the influence of DHA on TNF-α-induced osteoclast formation and OTM in vivo. We examined osteoclast formation and bone resorption within the calvaria of both wild-type (WT) and GPR120-deficient (GPR120-KO) mice injected with phosphate-buffered saline (PBS), TNF-α, TNF-α and DHA, or DHA. DHA inhibited TNF-α-induced osteoclast formation and bone resorption in WT mice but had no effect in GPR120-KO mice. OTM experiments were performed in mouse strains with or without regular injection of DHA, and the effects of DHA on osteoclast formation in the alveolar bones during OTM were examined. DHA also suppressed OTM in WT but not GPR120-KO mice. Our data showed that DHA suppresses TNF-α-induced osteoclastogenesis and bone resorption via GPR120. TNF-α has considerable significance in OTM, and therefore, DHA may also inhibit TNF-α-induced osteoclast formation and bone resorption in OTM.
Collapse
Affiliation(s)
- Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan,*Correspondence: Hideki Kitaura,
| | - Saika Ogawa
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nara
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Adya Pramusita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Ria Kinjo
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Akiko Kishikawa
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Atsuhiko Ichimura
- Department of Biological Chemistry Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
34
|
Seki Y, Takebe H, Mizoguchi T, Nakamura H, Iijima M, Irie K, Hosoya A. Differentiation ability of Gli1 + cells during orthodontic tooth movement. Bone 2023; 166:116609. [PMID: 36371039 DOI: 10.1016/j.bone.2022.116609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Orthodontic tooth movement (OTM) induces bone formation on the alveolar bone of the tension side; however, the mechanism of osteoblast differentiation is not fully understood. Gli1 is an essential transcription factor for hedgehog signaling and functions in undifferentiated cells during embryogenesis. In this study, we examined the differentiation of Gli1+ cells in the periodontal ligament (PDL) during OTM using a lineage-tracing analysis. After the final administration of tamoxifen for 2 days to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice, Gli1/Tomato+ cells were rarely observed near endomucin+ blood vessels in the PDL. Osteoblasts lining the alveolar bone did not exhibit Gli1/Tomato fluorescence. To move the first molar of iGli1/Tomato mice medially, nickel-titanium closed-coil springs were attached between the upper anterior alveolar bone and the first molar. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased along with numerous PCNA+ cells in the PDL of the tension side. As some Gli1/Tomato+ cells exhibited positive expression of osterix, an osteoblast differentiation marker, Gli1+ cells probably differentiated into osteoblast progenitor cells. On day 10, the newly formed bone labeled by calcein administration during OTM was detected on the surface of the original alveolar bone of the tension side. Gli1/Tomato+ cells expressing osterix localized to the surface of the newly formed bone. In contrast, in the PDL of the compression side, Gli1/Tomato+ cells proliferated before day 10 and expressed type I collagen, suggesting that the Gli1+ cells also differentiated into fibroblasts. Collectively, these results demonstrate that Gli1+ cells in the PDL can differentiate into osteoblasts at the tension side and may function in bone remodeling as well as fibril formation in the PDL during OTM.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kazuharu Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
35
|
Nakamura S, Tanimoto K, Bhawal UK. Ribosomal Stress Couples with the Hypoxia Response in Dec1-Dependent Orthodontic Tooth Movement. Int J Mol Sci 2022; 24:ijms24010618. [PMID: 36614058 PMCID: PMC9820322 DOI: 10.3390/ijms24010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
This study characterized the effects of a deficiency of the hypoxia-responsive gene, differentiated embryonic chondrocyte gene 1 (Dec1), in attenuating the biological function of orthodontic tooth movement (OTM) and examined the roles of ribosomal proteins in the hypoxic environment during OTM. HIF-1α transgenic mice and control mice were used for hypoxic regulation of periodontal ligament (PDL) fibroblasts. Dec1 knockout (Dec1KO) and wild-type (WT) littermate C57BL/6 mice were used as in vivo models of OTM. The unstimulated contralateral side served as a control. In vitro, human PDL fibroblasts were exposed to compression forces for 2, 4, 6, 24, and 48 h. HIF-1α transgenic mice had high expression levels of Dec1, HSP105, and ribosomal proteins compared to control mice. The WT OTM mice displayed increased Dec1 expression in the PDL fibroblasts. Micro-CT analysis showed slower OTM in Dec1KO mice compared to WT mice. Increased immunostaining of ribosomal proteins was observed in WT OTM mice compared to Dec1KO OTM mice. Under hypoxia, Dec1 knockdown caused a significant suppression of ribosomal protein expression in PDL fibroblasts. These results reveal that the hypoxic environment in OTM could have implications for the functions of Dec1 and ribosomal proteins to rejuvenate periodontal tissue homeostasis.
Collapse
Affiliation(s)
- Shigeru Nakamura
- Department of Public and Preventive Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ujjal K. Bhawal
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: ; Tel.: +81-47-360-9328
| |
Collapse
|
36
|
Wang N, Zhao Q, Gong Z, Fu L, Li J, Hu L. CD301b+ Macrophages as Potential Target to Improve Orthodontic Treatment under Mild Inflammation. Cells 2022; 12:135. [PMID: 36611929 PMCID: PMC9818444 DOI: 10.3390/cells12010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Due to improvements of quality of life and the demand for aesthetics, more and more people are choosing orthodontic treatments, resulting in a surge in adult orthodontic patients in recent years. However, a large amount of clinical evidence shows that many orthodontic patients have mild periodontitis in the periodontal tissues, which affects the efficacy of the orthodontic treatment or aggravates the periodontal condition. Therefore, it is important to identify the key factors that affect orthodontic treatments in this inflammatory environment. The aim of this study was to investigate the role of macrophages in orthodontic treatments under inflammatory environments. By analyzing the functional groups of macrophages in the orthodontic rat model of periodontitis, we found that macrophages with high expression levels of CD301b could improve the periodontal microenvironment and improve the efficiency of the orthodontic tooth movement. CD301b+ macrophages transplanted into the model can promote osteogenesis around orthodontic moving teeth, improve bone remodeling during orthodontic treatment, and accelerate orthodontic tooth movement. Considered together, these results suggest that CD301b+ macrophages may play an active role in orthodontic treatments in inflammatory environments and may serve as potential regulatory targets.
Collapse
Affiliation(s)
- Nan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
37
|
Inhibitory effect of infliximab on orthodontic tooth movement in male rats. Arch Oral Biol 2022; 144:105573. [DOI: 10.1016/j.archoralbio.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
|
38
|
Zhao Z, Behm C, Tian Z, Rausch MA, Rausch-Fan X, Andrukhov O. Cyclic tensile strain-induced yes-associated protein activity modulates the response of human periodontal ligament mesenchymal stromal cells to tumor necrosis factor-α. Arch Oral Biol 2022; 143:105527. [DOI: 10.1016/j.archoralbio.2022.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
39
|
Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading. J World Fed Orthod 2022; 11:139-145. [DOI: 10.1016/j.ejwf.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
|
40
|
Şen S, Erber R. Neuronal Guidance Molecules in Bone Remodeling and Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms231710077. [PMID: 36077474 PMCID: PMC9456342 DOI: 10.3390/ijms231710077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
During orthodontic tooth movement, mechanically induced remodeling occurs in the alveolar bone due to the action of orthodontic forces. The number of factors identified to be involved in mechanically induced bone remodeling is growing steadily. With the uncovering of the functions of neuronal guidance molecules (NGMs) for skeletal development as well as for bone homeostasis, NGMs are now also among the potentially significant factors for the regulation of bone remodeling during orthodontic tooth movement. This narrative review attempts to summarize the functions of NGMs in bone homeostasis and provides insight into the currently sparse literature on the functions of these molecules during orthodontic tooth movement. Presently, four families of NGMs are known: Netrins, Slits, Semaphorins, ephrins and Eph receptors. A search of electronic databases revealed roles in bone homeostasis for representatives from all four NGM families. Functions during orthodontic tooth movement, however, were only identified for Semaphorins, ephrins and Eph receptors. For these, crucial prerequisites for participation in the regulation of orthodontically induced bone remodeling, such as expression in cells of the periodontal ligament and in the alveolar bone, as well as mechanical inducibility, were shown, which suggests that the importance of NGMs in orthodontic tooth movement may be underappreciated to date and further research might be warranted.
Collapse
Affiliation(s)
- Sinan Şen
- Department of Orthodontics, University Medical Center Schleswig-Holstein, Campus Kiel, Christian Albrechts University, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-5002-6301
| | - Ralf Erber
- Department of Orthodontics and Dentofacial Orthopedics, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Zhang Y, Zhang T, Zhang Z, Su J, Wu X, Chen L, Ge X, Wang X, Jiang N. Periodontal ligament cells derived small extracellular vesicles are involved in orthodontic tooth movement. Eur J Orthod 2022; 44:690-697. [PMID: 35980351 DOI: 10.1093/ejo/cjac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) from human periodontal ligament cells (hPDLCs) are closely associated with periodontal homeostasis. Far less is known about EVs association with orthodontic tooth movement (OTM). This study aimed to explore the role of small EVs originated from hPDLCs during OTM. MATERIALS AND METHODS Adult C57BL/6 mice were used. Springs were bonded to the upper first molars of mice for 7 days to induce OTM in vivo. To block small EVs release, GW4869 was intraperitoneally injected and the efficacy of small EVs inhibition in periodontal ligament was verified by transmission electron microscope (TEM). Tooth movement distance and osteoclastic activity were studied. In vitro, hPDLCs were isolated and administered compressive force in the EV-free culture media. The cell morphologies and CD63 expression of hPDLCs were studied. Small EVs were purified and characterized using a scanning electron microscope, TEM, western blot, and nanoparticle tracking analysis. The expression of proteins in the small EVs was further processed and validated using a human immuno-regulated cytokines array and an enzyme-linked immunosorbent assay (ELISA). RESULTS The small EV depletion significantly decreased the distance and osteoclastic activity of OTM in the mice. The hPDLCs displayed different morphologies under force compression and CD63 expression level decreased verified by western blot and immunofluorescence staining. Small EVs purified from supernatants of the hPDLCs showed features with <200 nm diameter, the positive EVs marker CD63, and the negative Golgi body marker GM130. The number of small EVs particles increased in hPDLCs suffering force stimuli. According to the proteome array, the level of soluble intercellular adhesion molecule-1 (sICAM-1) displayed the most significant fold change in small EVs under compressive force and this was further confirmed using an ELISA. LIMITATIONS Further mechanism studies are warranted to validate the hPDLC-originated small EVs function in OTM through proteins delivery. CONCLUSIONS The notable decrease in the OTM distance after small EV blocking and the significant alteration of the sICAM-1 level in the hPDLC-originated small EVs under compression provide a new vista into small EV-related OTM biology.
Collapse
Affiliation(s)
- Yimei Zhang
- First Clinic Division, Peking University Hospital of Stomatology, Beijing, PR China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Ziqian Zhang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Junxiang Su
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Xiaowen Wu
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xuejun Ge
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Xiujing Wang
- First Clinic Division, Peking University Hospital of Stomatology, Beijing, PR China
| | - Nan Jiang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
42
|
Köse E, Ay Ünüvar Y, Uzun M. Assessment of the relationship between fractal analysis of mandibular bone and orthodontic treatment duration : A retrospective study. J Orofac Orthop 2022; 83:102-110. [PMID: 35776177 DOI: 10.1007/s00056-022-00406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE This retrospective study aimed to determine whether a correlation exists between the fractal dimension value and overall orthodontic treatment duration in children and young adults. METHODS The study included a total of 643 patients (age: 10-25 years) who received orthodontic treatment between January 2015 and March 2020. Patient records and pretreatment panoramic radiographs were evaluated. The regions of interest selected for calculating fractal dimension were the bilateral mental foramen regions of the mandible. Fractal dimension was set in relation to orthodontic treatment duration using a linear regression model which was also adjusted for potential confounding variables. Total treatment duration was the outcome variable of interest used as a continuous variable. The predictor variables of interest included age, gender, type of dental and skeletal malocclusion, vertical growth pattern, extraction type, and fractal dimension. RESULTS The mean age, treatment duration, and fractal dimension were 14.56 years, 27.01 months, and 1.23 mm, respectively. Multiple linear regression analysis showed that the fractal dimension had a significant influence on overall treatment duration (P < 0.001). From the other variables, Angle class II malocclusion significantly influenced treatment duration (P < 0.01), age showed a significant negative correlation with treatment duration (P < 0.01), and treatment duration significantly increased for patients with tooth extractions (P < 0.001). CONCLUSION There was a negative correlation between fractal dimensions at the mandibular mental region and total orthodontic treatment duration. Fractal dimension analysis may help to understand physiologic features of alveolar bone and predict orthodontic tooth movement.
Collapse
Affiliation(s)
- Emre Köse
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey.
| | - Yazgı Ay Ünüvar
- Department of Orthodontics, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mustafa Uzun
- Department of Orthodontics, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
43
|
Thant L, Kakihara Y, Kaku M, Kitami M, Kitami K, Mizukoshi M, Maeda T, Saito I, Saeki M. Involvement of Rab11 in osteoblastic differentiation: Its up-regulation during the differentiation and by tensile stress. Biochem Biophys Res Commun 2022; 624:16-22. [DOI: 10.1016/j.bbrc.2022.07.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
|
44
|
Paddenberg E, Krenmayr B, Jantsch J, Kirschneck C, Proff P, Schröder A. Dietary salt and myeloid NFAT5 (nuclear factor of activated T cells 5) impact on the number of bone-remodelling cells and frequency of root resorption during orthodontic tooth movement. Ann Anat 2022; 244:151979. [PMID: 35787442 DOI: 10.1016/j.aanat.2022.151979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE The aim of the study was to investigate the impact of dietary salt and the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) in myeloid cells on bone remodelling cells as osteocytes, osteoblasts and osteoclasts and on force-induced dental root resorptions in a mouse model. METHODS Control mice and mice lacking myeloid NFAT5 (nuclear factor of activated T cells 5) were either kept on low, normal or high salt diets. After one week on the specified diet an elastic band was inserted between the first and second molar to induce orthodontic tooth movement. One week later the mice were euthanised and jaws were fixed for histological analysis. Osteocyte, osteoblast and osteoclast numbers as well as extent of root resorptions were assessed histologically. RESULTS Osteocyte number was diminished with high salt diet in wildtype mice. Osteoblast numbers increased with low salt diet in control mice and reduced with high salt diet in mice without NFAT5 in myeloid cells. High salt diet tended to increase osteoclast number in control mice. In mice without myeloid NFAT5, numbers of osteoclasts were reduced under high salt diet. Frequency of force-induced root resorptions tended to be dependent on dietary salt content in control mice. CONCLUSION During orthodontic tooth movement dietary salt impacts on the frequency of root resorptions and the number of osteoclasts and osteoblasts in alveolar bone of mice. This can affect bone remodelling during orthodontic treatment. Myeloid NFAT5 impacts on this salt-dependent reaction.
Collapse
Affiliation(s)
- Eva Paddenberg
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany
| | - Bernhard Krenmayr
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany; Institute for Medical Microbiology, Immunology and Hygiene, University Cologne
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11; 93053 Regensburg, Germany.
| |
Collapse
|
45
|
Wang C, Yang Q, Han Y, Liu H, Wang Y, Huang Y, Zheng Y, Li W. A reduced level of the long non-coding RNA SNHG8 activates the NF-kappaB pathway by releasing functional HIF-1alpha in a hypoxic inflammatory microenvironment. Stem Cell Res Ther 2022; 13:229. [PMID: 35659362 PMCID: PMC9166574 DOI: 10.1186/s13287-022-02897-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A series of biochemical responses, including hypoxia and aseptic inflammation, occur in periodontal ligament cells (PDLCs) during periodontal tissue remodeling of orthodontic tooth movement (OTM). However, the role of long non-coding RNA (lncRNA) in these responses is still largely unknown. We investigated the role of the lncRNA SNHG8 in hypoxic and inflammatory responses during OTM and explored the underlying mechanisms. METHODS The expression pattern of SNHG8, and hypoxic and inflammatory responses under compressive force were analyzed by qRT-PCR, immunohistochemistry, and western blotting, in vivo and in vitro. The effect of overexpression or knockdown of SNHG8 on the nuclear factor-kappaB (NF-κB) pathway was evaluated. RNA sequencing was performed for mechanistic analysis. The interaction between SNHG8 and hypoxia-inducible factor (HIF)-1α was studied using catRAPID, RNA immunoprecipitation, and RNA pulldown assays. The effect of the SNHG8-HIF-1α interaction on the NF-κB pathway was determined by western blotting. RESULTS The NF-κB pathway was activated, and HIF-1α release was stabilized, in PDLCs under compressive force as well as in OTM model rats. The SNHG8 level markedly decreased both in vivo and in vitro. Overexpression of SNHG8 decreased the expression levels of inflammatory cytokines, the phosphorylation of p65, and the degradation of IκBα in PDLCs, whereas knockdown of SNHG8 reversed these effects. Mechanically, RNA sequencing showed that differentially expressed genes were enriched in cellular response to hypoxia after SNHG8 overexpression. SNHG8 binds to HIF-1α, thus preventing HIF-1 from activating downstream genes, including those related to the NF-κB pathway. CONCLUSION SNHG8 binds to HIF-1α. During OTM, the expression of SNHG8 dramatically decreased, releasing free functional HIF-1α and activating the downstream NF-κB pathway. These data suggest a novel lncRNA-regulated mechanism during periodontal tissue remodeling in OTM.
Collapse
Affiliation(s)
- Chenxin Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yue Wang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
46
|
Evaluation of RANK, RANKL and OPG Levels in Gingival Crevicular Fluid After Surgically Assisted Rapid Maxillary Expansion. J Maxillofac Oral Surg 2022; 21:487-492. [DOI: 10.1007/s12663-020-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/07/2020] [Indexed: 10/22/2022] Open
|
47
|
Wei T, Shan Z, Wen X, Zhao N, Shen G. Dynamic alternations of RANKL/OPG ratio expressed by cementocytes in response to orthodontic‑induced external apical root resorption in a rat model. Mol Med Rep 2022; 26:228. [PMID: 35593309 PMCID: PMC9178691 DOI: 10.3892/mmr.2022.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the alterations in the formation of cementocytes in response to orthodontic forces and to evaluate the contribution of these cells in the biological changes of tooth movement and associated root resorption. A total of 90 Sprague Dawley rats were randomly assigned to the control, high force, and low force groups. Intrusion forces of 10 and 50 g were applied on the rat molar to induce tooth intrusion. The tooth movement was observed from 0 to 14 days by micro-computed tomography, bone histometric analysis, tartrate-resistant acid phosphatase staining, as well as reverse transcription-quantitative PCR and immunofluorescence staining assays. The results suggested that under low force conditions, osteoclasts were distributed at a higher frequency on the bone side than on the root side. Under high force conditions, both sides suffered osteoclast infiltration. In the low force group, the cementocytes exhibited downregulated sclerostin (SOST) and osteoprotegerin (OPG) mRNA levels and a lower receptor activator of nuclear factor-κB ligand (RANKL)/OPG ratio over a certain period of time. The expression levels of these genes were lower compared with those of the osteocytes at each time-point. In the high force group, both cementocytes and osteocytes upregulated the SOST and RANKL/OPG ratio on days 7 and 14, while the cementocytes expressed higher levels of SOST mRNA than those noted in the osteocytes. These data suggested that cementocytes responded to the orthodontic force via modulation of the RANKL/OPG ratio and SOST expression. The biological response of cementocytes contributed to the mechanotransduction and homoeostasis of the roots under compression. Excessive forces may act as a negative factor of this regulatory role. These results expand our knowledge on the function of cementocytes.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Preventive Dentistry, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhiyi Shan
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Xin Wen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Shen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
48
|
Marcantonio CC, Lopes MES, Mofatto LS, Salmon CR, Deschner J, Nociti-Junior FH, Cirelli JA, Nogueira AVB. Obesity affects the proteome profile of periodontal ligament submitted to mechanical forces induced by orthodontic tooth movement in rats. J Proteomics 2022; 263:104616. [PMID: 35595054 DOI: 10.1016/j.jprot.2022.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has increased significantly worldwide. Therefore, this study aimed to evaluate the influence of obesity on the proteomic profile of periodontal ligament (PDL) tissues of rat first maxillary molars (1 M) submitted to orthodontic tooth movement (OTM). Ten Holtzman rats were distributed into two groups (n = 5): the M group (OTM), and the OM group (obesity induction plus OTM). Obesity was induced by a high-fat diet for the entire experimental periods After that period, the animals were euthanized and the hemimaxillae removed and processed for laser capture microdissection of the PDL tissues of the 1 M. Peptide extracts were obtained and analyzed by LC-MS/MS. Data are available via ProteomeXchange with identifier PXD033647. Out of the 109 proteins with differential abundance, 49 were identified in the OM group, including Vinculin, Cathepsin D, and Osteopontin, which were selected for in situ localization by immunohistochemistry analysis (IHC). Overall, Gene Ontology (GO) analysis indicated that enriched proteins were related to the GO component cellular category. IHC validated the trends for selected proteins. Our study highlights the differences in the PDL proteome profiling of healthy and obese subjects undergoing OTM. These findings may provide valuable information needed to better understand the mechanisms involved in tissue remodeling in obese patients submitted to orthodontic treatment. SIGNIFICANCE: The prevalence of obesity is increasing worldwide. Emerging findings in the field of dentistry suggest that obesity influences the tissues around the teeth, especially those in the periodontal ligament. Therefore, evaluation of the effect of obesity on periodontal tissues remodeling during orthodontic tooth movement is a relevant research topic. To our knowledge, this is the first study to evaluate proteomic changes in periodontal ligament tissue in response to the association between orthodontic tooth movement and obesity. Our study identified a novel protein profile associated with obesity by using laser microdissection and proteomic analysis, providing new information to increase understanding of the mechanisms involved in obese patients undergoing orthodontic treatment which can lead to a more personalized orthodontic treatment approach.
Collapse
Affiliation(s)
- Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Francisco Humberto Nociti-Junior
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil.
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
49
|
Seidel CL, Gerlach RG, Weider M, Wölfel T, Schwarz V, Ströbel A, Schmetzer H, Bogdan C, Gölz L. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB Trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial. BMC Oral Health 2022; 22:148. [PMID: 35477563 PMCID: PMC9044659 DOI: 10.1186/s12903-022-02180-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Orthodontic treatment with fixed appliances is often necessary to correct malocclusions in adolescence or adulthood. However, oral hygiene is complicated by appliances, and prior studies indicate that they may trigger oral inflammation and dysbiosis of the oral microbiota, especially during the first 3 months after insertion, and, thus, may present a risk for inflammatory oral diseases. In recent periodontal therapeutic studies, probiotics have been applied to improve clinical parameters and reduce local inflammation. However, limited knowledge exists concerning the effects of probiotics in orthodontics. Therefore, the aim of our study is to evaluate the impact of probiotics during orthodontic treatment. METHODS This study is a monocentric, randomized, double blind, controlled clinical study to investigate the effectiveness of daily adjuvant use of Limosilactobacillus reuteri (Prodentis®-lozenges, DSM 17938, ATCC PTA 5289) versus control lozenges during the first three months of orthodontic treatment with fixed appliances. Following power analysis, a total of 34 adolescent patients (age 12-17) and 34 adult patients (18 years and older) undergoing orthodontic treatment at the University Hospital Erlangen will be assigned into 2 parallel groups using a randomization plan for each age group. The primary outcome measure is the change of the gingival index after 4 weeks. Secondary outcomes include the probing pocket depth, the modified plaque index, the composition of the oral microbiota, the local cytokine expression and-only for adults-serum cytokine levels and the frequencies of cells of the innate and adaptive immune system in peripheral blood. DISCUSSION Preventive strategies in everyday orthodontic practice include oral hygiene instructions and regular dental cleaning. Innovative methods, like adjuvant use of oral probiotics, are missing. The aim of this study is to analyse, whether probiotics can improve clinical parameters, reduce inflammation and prevent dysbiosis of the oral microbiota during orthodontic treatment. If successful, this study will provide the basis for a new strategy of prophylaxis of oral dysbiosis-related diseases during treatment with fixed appliances. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov in two parts under the number NCT04598633 (Adolescents, registration date 10/22/2020), and NCT04606186 (Adults, registration date 10/28/2020).
Collapse
Affiliation(s)
- Corinna L Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany.
| | - Roman G Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Theresa Wölfel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Vincent Schwarz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Armin Ströbel
- Center for Clinical Studies (CCS), Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Helga Schmetzer
- Med III, University Hospital of Munich, Workgroup: Immune Modulation, Marchioninistraße 15, 81377, Munich, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| |
Collapse
|
50
|
Nam YS, Yang DW, Moon JS, Kang JH, Cho JH, Kim OS, Kim MS, Koh JT, Kim YJ, Kim SH. Sclerostin in Periodontal Ligament: Homeostatic Regulator in Biophysical Force-Induced Tooth Movement. J Clin Periodontol 2022; 49:932-944. [PMID: 35373367 DOI: 10.1111/jcpe.13624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
AIM This study elucidates the role of sclerostin in periodontal ligament (PDL) as a homeostatic regulator in biophysical force-induced tooth movement (BFTM). MATERIALS AND METHODS BFTM was performed in rats, followed by microarray, immunofluorescence, in situ hybridization, and real-time PCR for detection and identification of the molecules. The periodontal space was analyzed via micro-computed tomography. Effects on osteoclastogenesis and bone resorption were evaluated in mouse bone marrow-derived cells. In vitro human PDL cells were subjected to biophysical forces. RESULTS In the absence of BFTM, sclerostin was hardly detected in the periodontium except the PDL and alveolar bone in the furcation region and apex of the molar roots. However, sclerostin was upregulated in the PDL in vivo by adaptable force, which induced typical transfiguration without changes in periodontal space as well as in vitro PDL cells under compression and tension. In contrast, the sclerostin level was unaffected by heavy force, which caused severe degeneration of the PDL and narrowed periodontal space. Sclerostin inhibited osteoclastogenesis and bone resorption, which corroborates the accelerated tooth movement by the heavy force. CONCLUSIONS Sclerostin in PDL may be a key homeostatic molecule in the periodontium and a biological target for the therapeutic modulation of BFTM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yoo-Sung Nam
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Dong-Wook Yang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jin-Hyoung Cho
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Young-Jun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|