1
|
Paz C, Glassey A, Frick A, Sattar S, Zaorsky NG, Blitzer GC, Kimple RJ. Cancer therapy-related salivary dysfunction. J Clin Invest 2024; 134:e182661. [PMID: 39225092 PMCID: PMC11364403 DOI: 10.1172/jci182661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Salivary gland dysfunction is a common side effect of cancer treatments. Salivary function plays key roles in critical daily activities. Consequently, changes in salivary function can profoundly impair quality of life for cancer patients. We discuss salivary gland anatomy and physiology to understand how anticancer therapies such as chemotherapy, bone marrow transplantation, immunotherapy, and radiation therapy impair salivary function. We discuss approaches to quantify xerostomia in the clinic, including the advantages and limitations of validated quality-of-life instruments and approaches to directly measuring salivary function. Current and emerging approaches to treat cancer therapy-induced dry mouth are presented using radiation-induced salivary dysfunction as a model. Limitations of current sialagogues and salivary analogues are presented. Emerging approaches, including cellular and gene therapy and novel pharmacologic approaches, are described.
Collapse
Affiliation(s)
- Cristina Paz
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Annemarie Glassey
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Abigail Frick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sarah Sattar
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nicholas G. Zaorsky
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Grace C. Blitzer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Carlander ALF, Gundestrup AK, Jansson PM, Follin B, Hoeeg C, Kousholt BS, Larsen RT, Jakobsen KK, Rimborg S, Fischer-Nielsen A, Grønhøj C, Buchwald CV, Lynggaard CD. Mesenchymal Stromal/Stem Cell Therapy Improves Salivary Flow Rate in Radiation-Induced Salivary Gland Hypofunction in Preclinical in vivo Models: A Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024; 20:1078-1092. [PMID: 38430363 PMCID: PMC11087340 DOI: 10.1007/s12015-024-10700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) have been suggested for salivary gland (SG) restoration following radio-induced salivary gland damage. This study aimed to determine the safety and effectiveness of MSC therapy on radio-induced SG damage and hypofunction in preclinical in vivo studies. METHODS PubMed and EMBASE were systematically searched for preclinical in vivo interventional studies evaluating efficacy and safety of MSC treatment following radio-induced salivary gland damage published before 10th of January 2022. The primary endpoint was salivary flow rate (SFR) evaluated in a meta-analysis. The study protocol was published and registered on PROSPERO ( www.crd.ac.uk/prospero ), registration number CRD42021227336. RESULTS A total of 16 preclinical in vivo studies were included for qualitative analysis (858 experimental animals) and 13 in the meta-analysis (404 experimental animals). MSCs originated from bone marrow (four studies), adipose tissue (10 studies) and salivary gland tissue (two studies) and were administered intravenously (three studies), intra-glandularly (11 studies) or subcutaneously (one study). No serious adverse events were reported. The overall effect on SFR was significantly increased with a standardized mean difference (SMD) of 6.99 (95% CI: 2.55-11.42). Studies reported improvements in acinar tissue, vascular areas and paracrine factors. CONCLUSION In conclusion, this systematic review and meta-analysis showed a significant effect of MSC therapy for restoring SG functioning and regenerating SG tissue following radiotherapy in preclinical in vivo studies without serious adverse events. MSC therapy holds significant therapeutic potential in the treatment of radio-induced xerostomia, but comprehensive, randomized, clinical trials in humans are required to ascertain their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Amanda-Louise Fenger Carlander
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University hospital, Copenhagen, Denmark.
| | - Anders Kierkegaard Gundestrup
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Per Marcus Jansson
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Saima Kousholt
- Department of Clinical Medicine, Aarhus University Group for Understanding Systematic Reviews and Meta analyses in Translational Preclinical Science, Aarhus University, Copenhagen, Denmark
| | - Rasmus Tolstrup Larsen
- Department of Occupational Therapy and Physiotherapy, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susie Rimborg
- The Royal Danish Library, Copenhagen University Library, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Department of Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Blitzer GC, Paz C, Glassey A, Ganz OR, Giri J, Pennati A, Meyers RO, Bates AM, Nickel KP, Weiss M, Morris ZS, Mattison RJ, McDowell KA, Croxford E, Chappell RJ, Glazer TA, Rogus-Pulia NM, Galipeau J, Kimple RJ. Functionality of bone marrow mesenchymal stromal cells derived from head and neck cancer patients - A FDA-IND enabling study regarding MSC-based treatments for radiation-induced xerostomia. Radiother Oncol 2024; 192:110093. [PMID: 38224919 PMCID: PMC10922976 DOI: 10.1016/j.radonc.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
PURPOSE Salivary dysfunction is a significant side effect of radiation therapy for head and neck cancer (HNC). Preliminary data suggests that mesenchymal stromal cells (MSCs) can improve salivary function. Whether MSCs from HNC patients who have completed chemoradiation are functionally similar to those from healthy patients is unknown. We performed a pilot clinical study to determine whether bone marrow-derived MSCs [MSC(M)] from HNC patients could be used for the treatment of RT-induced salivary dysfunction. METHODS An IRB-approved pilot clinical study was undertaken on HNC patients with xerostomia who had completed treatment two or more years prior. Patients underwent iliac crest bone marrow aspirate and MSC(M) were isolated and cultured. Culture-expanded MSC(M) were stimulated with IFNγ and cryopreserved prior to reanimation and profiling for functional markers by flow cytometry and ELISA. MSC(M) were additionally injected into mice with radiation-induced xerostomia and the changes in salivary gland histology and salivary production were examined. RESULTS A total of six subjects were enrolled. MSC(M) from all subjects were culture expanded to > 20 million cells in a median of 15.5 days (range 8-20 days). Flow cytometry confirmed that cultured cells from HNC patients were MSC(M). Functional flow cytometry demonstrated that these IFNγ-stimulated MSC(M) acquired an immunosuppressive phenotype. IFNγ-stimulated MSC(M) from HNC patients were found to express GDNF, WNT1, and R-spondin 1 as well as pro-angiogenesis and immunomodulatory cytokines. In mice, IFNγ-stimulated MSC(M) injection after radiation decreased the loss of acinar cells, decreased the formation of fibrosis, and increased salivary production. CONCLUSIONS MSC (M) from previously treated HNC patients can be expanded for auto-transplantation and are functionally active. Furthermore IFNγ-stimulated MSC(M) express proteins implicated in salivary gland regeneration. This study provides preliminary data supporting the feasibility of using autologous MSC(M) from HNC patients to treat RT-induced salivary dysfunction.
Collapse
Affiliation(s)
- Grace C Blitzer
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Cristina Paz
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Annemarie Glassey
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Olga R Ganz
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Jayeeta Giri
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Andrea Pennati
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Ross O Meyers
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Amber M Bates
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Kwangok P Nickel
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Marissa Weiss
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Zachary S Morris
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Ryan J Mattison
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Kimberly A McDowell
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Emma Croxford
- Department of Biostatistics and Medical Informatics, 610 Walnut Street, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726 USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, 610 Walnut Street, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Tiffany A Glazer
- Department of Surgery, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Nicole M Rogus-Pulia
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; Geriatric Research Education and Clinical Center, 2500 Overlook Terrace, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Jacques Galipeau
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Randall J Kimple
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA.
| |
Collapse
|
4
|
Zayed HM, Kheir El Din NH, Abu-Seida AM, Abo Zeid AA, Ezzatt OM. Gingival-derived mesenchymal stem cell therapy regenerated the radiated salivary glands: functional and histological evidence in murine model. Stem Cell Res Ther 2024; 15:46. [PMID: 38365799 PMCID: PMC10874004 DOI: 10.1186/s13287-024-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Radiotherapy in head and neck cancer management causes degeneration of the salivary glands (SG). This study was designed to determine the potential of gingival mesenchymal stem cells (GMSCs) as a cell-based therapy to regenerate irradiated parotid SG tissues and restore their function using a murine model. METHODS Cultured isolated cells from gingival tissues of 4 healthy guinea pigs at passage 3 were characterized as GMSCSs using flow cytometry for surface markers and multilineage differentiation capacity. Twenty-one Guinea pigs were equally divided into three groups: Group I/Test, received single local irradiation of 15 Gy to the head and neck field followed by intravenous injection of labeled GMSCs, Group II/Positive control, which received the same irradiation dose followed by injection of phosphate buffer solution (PBS), and Group III/Negative control, received (PBS) injection only. Body weight and salivary flow rate (SFR) were measured at baseline, 11 days, 8-, 13- and 16-weeks post-irradiation. At 16 weeks, parotid glands were harvested for assessment of gland weight and histological and immunohistochemical analysis. RESULTS The injected GMSCs homed to degenerated glands, with subsequent restoration of the normal gland histological acinar and tubular structure associated with a significant increase in cell proliferation and reduction in apoptotic activity. Subsequently, a significant increase in body weight and SFR, as well as an increase in gland weight at 16 weeks in comparison with the irradiated non-treated group were observed. CONCLUSION The study provided a new potential therapeutic strategy for the treatment of xerostomia by re-engineering radiated SG using GMSCs.
Collapse
Affiliation(s)
- Hagar M Zayed
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
| | - Ashraf M Abu-Seida
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, 13736, Egypt
| | - Asmaa A Abo Zeid
- Department of Histology, and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Ola M Ezzatt
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt.
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Blitzer GC, Glazer T, Burr A, Gustafson S, Ganz O, Meyers R, McDowell KA, Nickel KP, Mattison RJ, Weiss M, Chappell R, Rogus-Pulia NM, Galipeau J, Kimple RJ. Marrow-Derived Autologous Stromal Cells for the Restoration of Salivary Hypofunction (MARSH): A pilot, first-in-human study of interferon gamma-stimulated marrow mesenchymal stromal cells for treatment of radiation-induced xerostomia. Cytotherapy 2023; 25:1139-1144. [PMID: 37589639 PMCID: PMC10615723 DOI: 10.1016/j.jcyt.2023.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AIMS Xerostomia, or the feeling of dry mouth, is a significant side effect of radiation therapy for patients with head and neck cancer (HNC). Preliminary data suggest that mesenchymal stromal/stem cells (MSCs) can improve salivary function. We performed a first-in-human pilot study of interferon gamma (IFNγ)-stimulated autologous bone marrow-derived MSCs, or MSC(M), for the treatment of radiation-induced xerostomia (RIX). Here we present the primary safety and secondary efficacy endpoints. METHODS A single-center pilot clinical trial was conducted investigating the safety and tolerability of autologous IFNγ-stimulated MSC(M). The study was conducted under an approved Food and Drug Administration Investigational New Drug application using an institutional review board-approved protocol (NCT04489732). Patients underwent iliac crest bone marrow aspirate and MSC(M) were isolated, cultured, stimulated with IFNγ and cryopreserved for later use. Banked cells were thawed and allowed to recover in culture before patients received a single injection of 10 × 106 MSC(M) into the right submandibular gland under ultrasound guidance. The primary objective was determination of safety and tolerability by evaluating dose-limiting toxicity (DLT). A DLT was defined as submandibular pain >5 on a standard 10-point pain scale or any serious adverse event (SAE) within 1 month after injection. Secondary objectives included analysis of efficacy as measured by salivary quantification and using three validated quality of life instruments. Quantitative results are reported as mean and standard deviation. RESULTS Six patients with radiation-induced xerostomia who had completed radiation at least 2 years previously (average 7.8 years previously) were enrolled in the pilot study. The median age was 71 (61-74) years. Five (83%) patients were male. Five patients (83%) were treated with chemoradiation and one patient (17%) with radiation alone. Grade 1 pain was seen in 50% of patients after submandibular gland injection; all pain resolved within 4 days. No patients reported pain 1 month after injection, with no SAE or other DLTs reported 1 month after injection. The analysis of secondary endpoints demonstrated a trend of increased salivary production. Three patients (50%) had an increase in unstimulated saliva at 1 and 3 months after MSC(M) injection. Quality of life surveys also showed a trend toward improvement. CONCLUSIONS Injection of autologous IFNγ-stimulated MSC(M) into a singular submandibular gland of patients with RIX is safe and well tolerated in this pilot study. A trend toward an improvement in secondary endpoints of salivary quantity and quality of life was observed. This first-in-human study provides support for further investigation into IFNγ-stimulated MSC(M) injected in both submandibular glands as an innovative approach to treat RIX and improve quality of life for patients with HNC.
Collapse
Affiliation(s)
- Grace C Blitzer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Tiffany Glazer
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Adam Burr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sara Gustafson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Olga Ganz
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ross Meyers
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kimberly A McDowell
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan J Mattison
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marissa Weiss
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard Chappell
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nicole M Rogus-Pulia
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jacques Galipeau
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Andreadis D, Angelopoulos I, Aggelidou E, Gousopoulou E, Volk J, Poulopoulos A, Kritis A, Geurtsen W, Bakopoulou A. Minor salivary gland stem cells: a comparative study of the biological properties under clinical-grade culture conditions. Cell Tissue Res 2023; 393:321-342. [PMID: 37249709 PMCID: PMC10406694 DOI: 10.1007/s00441-023-03789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Development of clinical-grade, cell preparations is central to cGMP (good manufacturing practice compliant) conditions. This study aimed to investigate the potential of two serum/xeno-free, cGMP (StemPro, StemMacs) culture media to maintain "stemness" of human minor salivary gland stem cell (mSG-SC) cultures compared to a complete culture medium (CCM). Overall, StemMacs resulted in higher proliferation rates after p.6 compared to the conventional serum-based medium, while StemPro showed substantial delays in cell proliferation after p.9. The mSG-SCs cultures exhibited two distinct cell populations at early passages a mesenchymal subpopulation and an epithelial-like subpopulation. Expression of several markers (CD146, STRO-1, SSEA-4, CD105, CD106, CD34, K 7/8, K14, K18) variably decreased with prolonged passaging (all three media). The percentage of SA-β-gal positive cells was initially higher for StemMacs compared to StemPro/CCM and increased with prolonged passaging in all cases. The telomere fragment length decreased with prolonged passaging in all three media but more pronouncedly for the CCM. Expansion under serum-free conditions caused pronounced upregulation of ALP and BMP-2, with parallel complete elimination of the baseline expressions of LPL (all three media) and ACAN (serum-free media), therefore, showing a preferential shift of the mSG-SCs towards osteogenic phenotypes. Finally, several markers (Nanog, SOX-2, PDX-1, OTX2, GSC, HCG) decreased with prolonged culture, indicating successive loss of "stemness". Based on the findings, it seems that StemPro preserve stemness of the mSG-SCs after prolonged culture. Nevertheless, there is still a vacant role for the ideal development of clinical-grade culture conditions.
Collapse
Affiliation(s)
- Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Angelopoulos
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Gousopoulou
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Athina Bakopoulou
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Phan TV, Oo Y, Ahmed K, Rodboon T, Rosa V, Yodmuang S, Ferreira JN. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS Technol 2023; 28:199-209. [PMID: 37019217 DOI: 10.1016/j.slast.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Hyposalivation and severe dry mouth syndrome are the most common complications in patients with head and neck cancer (HNC) after receiving radiation therapy. Conventional treatment for hyposalivation relies on the use of sialogogues such as pilocarpine; however, their efficacy is constrained by the limited number of remnant acinar cells after radiation. After radiotherapy, the salivary gland (SG) secretory parenchyma is largely destroyed, and due to the reduced stem cell niche, this gland has poor regenerative potential. To tackle this, researchers must be able to generate highly complex cellularized 3D constructs for clinical transplantation via technologies, including those that involve bioprinting of cells and biomaterials. A potential stem cell source with promising clinical outcomes to reserve dry mouth is adipose mesenchymal stem cells (AdMSC). MSC-like cells like human dental pulp stem cells (hDPSC) have been tested in novel magnetic bioprinting platforms using nanoparticles that can bind cell membranes by electrostatic interaction, as well as their paracrine signals arising from extracellular vesicles. Both magnetized cells and their secretome cues were found to increase epithelial and neuronal growth of in vitro and ex vivo irradiated SG models. Interestingly, these magnetic bioprinting platforms can be applied as a high-throughput drug screening system due to the consistency in structure and functions of their organoids. Recently, exogenous decellularized porcine ECM was added to this magnetic platform to stimulate an ideal environment for cell tethering, proliferation, and/or differentiation. The combination of these SG tissue biofabrication strategies will promptly allow for in vitro organoid formation and establishment of cellular senescent organoids for aging models, but challenges remain in terms of epithelial polarization and lumen formation for unidirectional fluid flow. Current magnetic bioprinting nanotechnologies can provide promising functional and aging features to in vitro craniofacial exocrine gland organoids, which can be utilized for novel drug discovery and/or clinical transplantation.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore; Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Salman A, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, El-Husseiny HM, Ibrahim WS, Doghish AS. The potential role of miRNAs in the pathogenesis of salivary gland cancer - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 247:154584. [PMID: 37267724 DOI: 10.1016/j.prp.2023.154584] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Wael S Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
10
|
Sheykhbahaei N, Bayramzadeh F, Koopaie M. Transdifferentiation of periodontal ligament stem cells into acinar cells using an indirect co-culture system. Cell Tissue Bank 2023; 24:241-251. [PMID: 35982342 DOI: 10.1007/s10561-022-10029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Serous Acinar Cells (ACs) are mature and functional secretory epithelial cells that develop and complete through other stem cells at the end of the ductal system. So, the regeneration of the salivary gland damaged by radiation does not occur without cell therapy. Todays, an accessible tissue like the Periodontal Ligament (PDL) of the tooth was considered to easily extract the Mesenchymal Stem Cells (MSCs). In-vitro differentiation of stem cells before transplantation to damaged tissue reduces the risk of tumorigenesis. This study was conducted to evaluate the feasibility of differentiation of PDLSCs into salivary acinar cells by a co-culture system. PDLSCs were isolated from adult human PDL tissue and co-cultured with rat parotid ACs using an indirect co-culture system. The transdifferentiation of PDLSCs was evaluated by PCR of Aquaporin 5 (AQP5) and Carbonic anhydrase 6 (CA6) genes, then quantitative real-time PCR was used to measure the gene expression levels. The data were analyzed by ANOVA. Specific bond with the correct size on 6% acrylamide gel and TBE5X buffer showed the expression of AQP5 and CA6 in PDLSCs co-cultured with acinar cells. RT-PCR revealed co-cultured PDLSCs with or without KGF (Keratinocyte Growth Factor) showed significantly increased expression of AQP5 genes in compared to the initial PDLSCs. Expression of AQP5 and CA6, indicating successful transdifferentiation of PDLSCs into ACs, in co-culture system for 3 weeks.
Collapse
Affiliation(s)
- Nafiseh Sheykhbahaei
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran
| | | | - Maryam Koopaie
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran.
| |
Collapse
|
11
|
Kano F, Hashimoto N, Liu Y, Xia L, Nishihara T, Oki W, Kawarabayashi K, Mizusawa N, Aota K, Sakai T, Azuma M, Hibi H, Iwasaki T, Iwamoto T, Horimai N, Yamamoto A. Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia. Sci Rep 2023; 13:2706. [PMID: 36792628 PMCID: PMC9932159 DOI: 10.1038/s41598-023-29176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Radiation therapy for head and neck cancers is frequently associated with adverse effects on the surrounding normal tissue. Irreversible damage to radiation-sensitive acinar cells in the salivary gland (SG) causes severe radiation-induced xerostomia (RIX). Currently, there are no effective drugs for treating RIX. We investigated the efficacy of treatment with conditioned medium derived from stem cells from human exfoliated deciduous teeth (SHED-CM) in a mouse RIX model. Intravenous administration of SHED-CM, but not fibroblast-CM (Fibro-CM), prevented radiation-induced cutaneous ulcer formation (p < 0.0001) and maintained SG function (p < 0.0001). SHED-CM treatment enhanced the expression of multiple antioxidant genes in mouse RIX and human acinar cells and strongly suppressed radiation-induced oxidative stress. The therapeutic effects of SHED-CM were abolished by the superoxide dismutase inhibitor diethyldithiocarbamate (p < 0.0001). Notably, quantitative liquid chromatography-tandem mass spectrometry shotgun proteomics of SHED-CM and Fibro-CM identified eight proteins activating the endogenous antioxidant system, which were more abundant in SHED-CM than in Fibro-CM (p < 0.0001). Neutralizing antibodies against those activators reduced antioxidant activity of SHED-CM (anti-PDGF-D; p = 0.0001, anti-HGF; p = 0.003). Our results suggest that SHED-CM may provide substantial therapeutic benefits for RIX primarily through the activation of multiple antioxidant enzyme genes in the target tissue.
Collapse
Affiliation(s)
- Fumiya Kano
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Noboru Hashimoto
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Yao Liu
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Linze Xia
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Takaaki Nishihara
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Wakana Oki
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Keita Kawarabayashi
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Noriko Mizusawa
- grid.267335.60000 0001 1092 3579Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Aota
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayoshi Sakai
- grid.136593.b0000 0004 0373 3971Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Azuma
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideharu Hibi
- grid.27476.300000 0001 0943 978XDepartment of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Iwasaki
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tsutomu Iwamoto
- grid.265073.50000 0001 1014 9130Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akihito Yamamoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| |
Collapse
|
12
|
A novel cell-based transplantation method using a Rho kinase inhibitor and a specific catheter device for the treatment of salivary gland damage after head and neck radiotherapy. Biochem Biophys Rep 2022; 32:101385. [DOI: 10.1016/j.bbrep.2022.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
13
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Mohamed NH, Shawkat S, Moussa MS, Ahmed N. Regeneration potential of bone marrow derived mesenchymal stem cells and platelet rich plasma (PRP) on irradiation-induced damage of submandibular salivary gland in albino rats. Tissue Cell 2022; 76:101780. [PMID: 35395489 DOI: 10.1016/j.tice.2022.101780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Radiation-induced damage to salivary glands (SG) is a consequence of radiotherapy for head and neck cancers. Recovery of the irradiated SG has been studied using various regenerative approaches. This study aims to compare the regenerative potentials of platelet-rich plasma (PRP) and bone marrow mononuclear cells (BMMCs) on irradiated rat submandibular salivary glands (SMD). 32 healthy male albino rats were irradiated with a single dose of 6 Gy then classified into four groups. Group A received no treatment while the other 3 groups were injected 24 h post-radiation with a single dose of either; BMMCs (Group B), PRP (Group C), or BMMCs suspended in PRP (Group D). SMD regeneration was assessed in terms of histological changes and TGF- β1 gene expression. The results showed that compared to the untreated group all groups showed successful regeneration with group D showing the best results. A statistically significant increase in the surface area of acini and TGF- β1 gene expression was observed in group D, followed by group C, then B. Our results prove that using PRP and BMMCs could be promising in decreasing irradiation side effects on SG. Moreover, combining PRP and BMMCs gives better effects compared to each therapy alone.
Collapse
Affiliation(s)
- N H Mohamed
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt; Oral Histopathology Department, Faculty of Oral and Dental Medicine, Misr International University, Km 28 Misr-Ismailia Road, Cairo, Egypt
| | - S Shawkat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt
| | - M S Moussa
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt.
| | - Neb Ahmed
- Department of Oro-dental Genetics, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt; Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Radioprotective effects and mechanism of HL-003 on radiation-induced salivary gland damage in mice. Sci Rep 2022; 12:8419. [PMID: 35589816 PMCID: PMC9120142 DOI: 10.1038/s41598-022-12581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Ionizing radiation (IR) can cause damage to the structure and function of salivary glands. Our research group independently synthesized the ROS scavenger, HL-003. The aim of this study was to explore the protective effects and underlying mechanisms of HL-003 on radiation-induced salivary gland injury. Salivary flow rate measurement, H&E staining, immunohistochemistry, FRAP, TUNEL, and western blotting were used to evaluate the radioprotective effect on salivary glands. The results showed that HL-003 protected the salivary secretion function by protecting the AQP-5 protein, on the salivary epithelial cell membrane, from IR damage. HL-003 reduced oxidative stress in the salivary gland by regulating the expression of ROS-related proteins NOX4, SOD2, and 8-OHdG. Furthermore, HL-003 downregulated the expression of p-p53, Bax, caspase 3, and caspase 9, and upregulated the expression of Bcl-2, suggesting that it could inhibit the activation of p53 to reduce cell apoptosis. In conclusion, HL-003 is an effective radioprotector that prevents damage of the radiation-induced salivary gland.
Collapse
|
16
|
Kim J, Eom MR, Ji Jeong E, Choi JS, Kwon SK. Multiple stimulation with spheroids comprising salivary gland and adipose-derived stem cells enhances regeneration of radiation-damaged salivary glands. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ahamad N, Sun Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CRD, Natarajan M, Singh BB. Differential activation of Ca 2+ influx channels modulate stem cell potency, their proliferation/viability and tissue regeneration. NPJ Regen Med 2021; 6:67. [PMID: 34671058 PMCID: PMC8528841 DOI: 10.1038/s41536-021-00180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Caroline R D Xavier Paul Ezhilan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
18
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
19
|
Mona M, Kobeissy F, Park YJ, Miller R, Saleh W, Koh J, Yoo MJ, Chen S, Cha S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int J Mol Sci 2020; 21:E9055. [PMID: 33260559 PMCID: PMC7730006 DOI: 10.3390/ijms21239055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Severe dry mouth in patients with Sjögren's Syndrome, or radiation therapy for patients with head and neck cancer, significantly compromises their oral health and quality of life. The current clinical management of xerostomia is limited to palliative care as there are no clinically-proven treatments available. Previously, our studies demonstrated that mouse bone marrow-derived mesenchymal stem cells (mMSCs) can differentiate into salivary progenitors when co-cultured with primary salivary epithelial cells. Transcription factors that were upregulated in co-cultured mMSCs were identified concomitantly with morphological changes and the expression of acinar cell markers, such as α-amylase (AMY1), muscarinic-type-3-receptor(M3R), aquaporin-5(AQP5), and a ductal cell marker known as cytokeratin 19(CK19). In the present study, we further explored inductive molecules in the conditioned media that led to mMSC reprogramming by high-throughput liquid chromatography with tandem mass spectrometry and systems biology. Our approach identified ten differentially expressed proteins based on their putative roles in salivary gland embryogenesis and development. Additionally, systems biology analysis revealed six candidate proteins, namely insulin-like growth factor binding protein-7 (IGFBP7), cysteine-rich, angiogenetic inducer, 61(CYR61), agrin(AGRN), laminin, beta 2 (LAMB2), follistatin-like 1(FSTL1), and fibronectin 1(FN1), for their potential contribution to mMSC transdifferentiation during co-culture. To our knowledge, our study is the first in the field to identify soluble inductive molecules that drive mMSC into salivary progenitors, which crosses lineage boundaries.
Collapse
Affiliation(s)
- Mahmoud Mona
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Rehae Miller
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
| | - Wafaa Saleh
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Prevention of irradiation-induced damage to salivary glands by local delivery of adipose-derived stem cells via hyaluronic acid-based hydrogels. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Marrosu V, Carta F, Quartu D, Tatti M, Mariani C, De Seta D, Puxeddu R, Angeletti D, Campo F, Petrone P, Spinato G, Scarpa A, Molteni G, Mannelli G, Capasso P, Ralli M, Casoli V, Salzano FA, Mocella SA, Barbara F, Dadduzio S, Berardi A, Berardi C. The secretory senescence in otorhinolaryngology: principles of treatment. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Rocchi C, Emmerson E. Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends Mol Med 2020; 26:649-669. [PMID: 32371171 DOI: 10.1016/j.molmed.2020.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia. By overcoming the limitations of stem cell transplants and better understanding the mechanisms of cellular plasticity in the adult salivary gland, such studies provide encouraging evidence that a regenerative strategy for patients will be available in the near future.
Collapse
Affiliation(s)
- Cecilia Rocchi
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
23
|
Abstract
Head and neck structures govern the vital functions of breathing and swallowing. Additionally, these structures facilitate our sense of self through vocal communication, hearing, facial animation, and physical appearance. Loss of these functions can lead to loss of life or greatly affect quality of life. Regenerative medicine is a rapidly developing field that aims to repair or replace damaged cells, tissues, and organs. Although the field is largely in its nascence, regenerative medicine holds promise for improving on conventional treatments for head and neck disorders or providing therapies where no current standard exists. This review presents milestones in the research of regenerative medicine in head and neck surgery.
Collapse
Affiliation(s)
- Michael J McPhail
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jeffrey R Janus
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Florida, Jacksonville, FL, USA
| | - David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
24
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
25
|
Mesenchymal Stem Cell Therapy in Submandibular Salivary Gland Allotransplantation: Experimental Study. Transplantation 2019; 103:1111-1120. [DOI: 10.1097/tp.0000000000002612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Du ZH, Ding C, Zhang Q, Zhang Y, Ge XY, Li SL, Yu GY. Stem cells from exfoliated deciduous teeth alleviate hyposalivation caused by Sjögren syndrome. Oral Dis 2019; 25:1530-1544. [PMID: 31046162 DOI: 10.1111/odi.13113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To evaluate the effect of stem cells from exfoliated deciduous teeth on the hyposalivation caused by Sjögren syndrome (SS) and investigate the mechanism. METHODS Stem cells were injected into the tail veins of non-obese diabetic mice, the animal model of SS. The saliva flow was measured after pilocarpine intraperitoneal injection. Apoptosis and autophagy were evaluated by TUNEL and Western blot. Lymphocyte proportions were detected by flow cytometer. RESULTS Fluid secretion was decreased in 21-week-old mice. Stem cell treatment increased fluid secretion, alleviated inflammation in the submandibular glands and reduced inflammatory cytokine levels in the serum, submandibular glands and saliva. Stem cells decreased the apoptotic cell number and the expressions of ATG5 and Beclin-1 in the submandibular glands. Stem cells have no effect on other organs. Furthermore, the infused stem cells migrated to the spleen and liver, not the submandibular gland. Stem cells directed T cells towards Treg cells and suppressed Th1 and Tfh cells in spleen lymphocytes. CONCLUSION Stem cells from exfoliated deciduous teeth alleviate the hyposalivation caused by SS via decreasing the inflammatory cytokines, regulating the inflammatory microenvironment and decreasing the apoptosis and autophagy. The stem cells regulated in T-cell differentiation are involved in the immunomodulatory effects.
Collapse
Affiliation(s)
- Zhi-Hao Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qian Zhang
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xi-Yuan Ge
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Sheng-Lin Li
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
27
|
Elsaadany B, Zakaria M, Mousa MR. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells Preserve the Salivary Glands Structure after Head and Neck Radiation in Rats. Open Access Maced J Med Sci 2019; 7:1588-1592. [PMID: 31210805 PMCID: PMC6560309 DOI: 10.3889/oamjms.2019.350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The salivary glands are one of the radiation sensitive tissues during radiotherapy in the treatment of head and neck cancer. Within the first weeks of radiotherapy, the radiation causes progressive loss of gland function, then continue throughout the later of the patient's life. AIM The present work was designed to discover the potential effect of bone marrow-derived mesenchymal stem cells (MSCs) injected locally and in decreasing the unwanted effects of radiation on rats salivary gland. MATERIAL AND METHODS 6 rats used as the control group (N) and 12 rats had a single radiation dose of 13Gy in the head and neck then, they were equally allocated into two groups: Irradiated only as a group (C), Irradiated then treated with MSCs as a group (S). The animals were euthanised 7 days post radiation. Then, submandibular salivary glands were cut up; the histological examination was done. RESULTS Histological examination of the treated group(S) shown an apparent improvement in the SG structure and function compared to the irradiated group (C), this improvement represented mainly as preserving acini diameter (mean diameter in µm group (C) 183.1 ± 4.5, in group (S) 356.3 ± 33.5 while, in (N) group 408.9 ± 5.9) and decrease in fibrotic areas in the gland (mean fibrosis parentage in group (C) 26.5 ± 5.9 in (C) group , in group (S) 11.7 ± 4.13 while in (N) group 0.2 ± 0.31). CONCLUSION BM-MSCs has revealed to be promising in mitigating the side effects of radiotherapy on salivary glands structure.
Collapse
Affiliation(s)
- Basma Elsaadany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Mai Zakaria
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Mohamed Refat Mousa
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
28
|
Mulyani SWM, Astuti ER, Wahyuni OR, Ernawati DS, Ramadhani NF. Xerostomia Therapy Due to Ionized Radiation Using Preconditioned Bone Marrow-Derived Mesenchymal Stem Cells. Eur J Dent 2019; 13:238-242. [PMID: 31509876 PMCID: PMC6777157 DOI: 10.1055/s-0039-1694697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to describe the process of regeneration of damaged salivary glands due to ionizing radiations by bone marrow mesenchymal stem cells (BM-MSCs) transplantation that have been given hypoxic preconditioning with 1% O2 concentration. MATERIALS AND METHODS Stem cell culture was performed under normoxic (O2: 21%) and hypoxic conditions by incubating the cells for 48 hours in a low oxygen tension chamber consisting of 95% N2, 5% CO2, and 1% O2. Thirty male Wistar rats were divided into four groups: two groups of control and two groups of treatment. A single dose of 15 Gy radiation was provided to the ventral region of the neck in all treatment groups, damaging the salivary glands. BM-MSCs transplantation was performed in the treatment groups for normoxia and hypoxia 24-hour postradiation. STATISTICAL ANALYSIS Statistical analysis was done using normality test, followed by MANOVA test (p < 0.05). RESULTS There was a significant difference in the expression of binding SDF1-CXCR4, Bcl-2 (p < 0.05) and also the activity of the enzyme α-amylase in all groups of hypoxia. CONCLUSION BM-MSCs transplantation with hypoxic precondition increases the expression of binding SDF1-CXCR4, Bcl-2 that contributes to cell migration, cell survival, and cell differentiation.
Collapse
Affiliation(s)
- Sri Wigati Mardi Mulyani
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Eha Renwi Astuti
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Otty Ratna Wahyuni
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
29
|
Developing a novel cholesterol-based nanocarrier with high transfection efficiency and serum compatibility for gene therapy. J Formos Med Assoc 2018; 118:766-775. [PMID: 30579664 DOI: 10.1016/j.jfma.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/22/2018] [Accepted: 08/31/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/PURPOSE Primary cells are sensitive to culture conditions, which can be more difficult to get efficient transfection. The purpose of this study is to develop a serum-compatible cholesterol-based nanocarrier for delivering therapeutic nucleic acids into cells efficiently for future clinical gene therapy. METHODS A novel cationic 3-β-[N-(2-guanidinoethyl)carbamoyl]-cholesterol (GEC-Chol) was mixed with cholesterol and superparamagnetic iron oxide (SPIO) nanoparticles to form GCC-Fe3O4 nanocarrier. Transfection efficiency and cytotoxicity in serum and non-serum conditions were evaluated. Florescent-labeled oligonucleotides (ODNs) were transfected as indicators. Fluorescent microscopy, confocal microscopy, and flow cytometry analysis were used for evaluations. Besides, we also delivered functional antisense c-myc ODNs as surrogates for specific gene manipulation in vitro. RESULTS Results indicated that GCC-Fe3O4 nanocarrier could have size down to less than 135 nm, which structure was highly stable and consistent over time. It also showed great transfection efficiency and low cytotoxicity in both serum and non-serum conditions. Our results demonstrated that GCC-Fe3O4 nanocarrier had exceeded 90% transfection efficiency, which was much better than common commercialized transfection reagents under same conditions. Such nanocarrier not only worked well in cell lines, but also ideal for gene delivery in primary cells. CONCLUSION With high transfection efficiency and serum compatibility, this novel biocompatible cholesterol-based nanocarrier provides an ideal platform especially for RNAi-based gene manipulation. It also opens a wide range of biomedical applications for in vivo cell tracking and gene therapeutics for clinical usage.
Collapse
|
30
|
Mulyani SWM, Ernawati DS, Astuti ER, Rantam FA. Hypoxic preconditioning effect on stromal cells derived factor-1 and C-X-C chemokine receptor type 4 expression in Wistar rat's ( Rattus norvegicus) bone marrow mesenchymal stem cells ( in vitro study). Vet World 2018; 11:965-970. [PMID: 30147267 PMCID: PMC6097555 DOI: 10.14202/vetworld.2018.965-970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Aim To examine the effect of hypoxic preconditions on the ability of bone marrow stem cells culture mediated expression C-X-C chemokine receptor type 4 (CXCR4) and stromal cells derived factor-1 (SDF-1) in vitro. Materials and Methods Bone marrow mesenchymal stem cells (BMSCs) were derived from 12 femurs of 200 g Wistar male rats. The animals were euthanized before BMSCs isolation. BMSCs were divided into two groups, control group: Normoxic condition 21% O2 and treatment group: Hypoxic condition 1% O2. The characterization of BMSCs was analyzed using flow cytometry by cluster differentiation 34 and cluster differentiation 105. The expression of CXCR4 and SDF-1 measured using immunocytochemistry immunofluorescence label after 48-h incubation in a low-tension oxygen chamber with an internal atmosphere consisting of 95% N2, 5% CO2, and 1% O2. All data were subjected to a normality test and then analyzed using t-test statistic (p<0.05). Results The characterization of bone marrow stem cells showed positive cluster differentiation 34 and cluster differentiation 105. A hypoxic precondition (1% O2) in culture increases CXCR4 (p=0.000) and SDF-1 expression than normoxic conditions (p=0.000) (p<0.05). Conclusion Hypoxic preconditioning with 1% O2 increase CXCR4 and SDF1 expression.
Collapse
Affiliation(s)
- Sri Wigati Mardi Mulyani
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Eha Renwi Astuti
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research Center and Development, Airlangga University Surabaya, Indonesia.,Lab of Virology and Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Duan HG, Ji F, Zheng CQ, Li J, Wang J. Conditioned medium from umbilical cord mesenchymal stem cells improves nasal mucosa damage by radiation. Biotechnol Lett 2018; 40:999-1007. [PMID: 29666957 DOI: 10.1007/s10529-018-2553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To explore therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (hUC-MSCs) on nasal mucosa radiation damage both in vivo and in vitro. RESULTS The mucus cilia clearance time (7 and 30 days), degree of mucosal edema (7, 30, 90 and 180 days), cilia coverage (180 days) of concentrated conditioned medium group improved compared with radiotherapy control group. The proliferation and migration abilities of irradiated and non-irradiated nasal epithelial cells significantly increased after culture in bronchial epithelial cell growth medium (BEGM) containing 10% conditioned medium of hUC-MSCs compared to cells cultured in BEGM alone. CONCLUSIONS Soluble factors secreted by hUC-MSCs may promote nasal epithelial cell proliferation and migration. Intranasal administration of hUC-MSC conditioned medium effectively repairs nasal mucosa radiation damage.
Collapse
Affiliation(s)
- Hong-Gang Duan
- Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qin-chun Road 79, Hangzhou, 310003, China.
| | - Chun-Quan Zheng
- Department of Otolaryngology, Affiliated Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing Wang
- Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Shin HS, Lee S, Kim YM, Lim JY. Hypoxia-Activated Adipose Mesenchymal Stem Cells Prevents Irradiation-Induced Salivary Hypofunction by Enhanced Paracrine Effect Through Fibroblast Growth Factor 10. Stem Cells 2018; 36:1020-1032. [PMID: 29569790 DOI: 10.1002/stem.2818] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
To explore the effects and mechanisms of paracrine factors secreted from human adipose mesenchymal stem cell (hAdMSCs) that are activated by hypoxia on radioprotection against irradiation-induced salivary hypofunction in subjects undergoing radiotherapy for head and neck cancers. An organotypic spheroid coculture model to mimic irradiation (IR)-induced salivary hypofunction was set up for in vitro experiments. Human parotid gland epithelial cells were organized to form three-dimensional (3D) acinus-like spheroids on growth factor reduced -Matrigel. Cellular, structural, and functional damage following IR were examined after cells were cocultured with hAdMSCs preconditioned with either normoxia (hAdMSCNMX ) or hypoxia (hAdMSCHPX ). A key paracrine factor secreted by hAdMSCsHPX was identified by high-throughput microarray-based enzyme-linked immunosorbent assay. Molecular mechanisms and signaling pathways on radioprotection were explored. Therapeutic effects of hAdMSCsHPX were evaluated after in vivo transplant into mice with IR-induced salivary hypofunction. In our 3D coculture experiment, hAdMSCsHPX significantly enhanced radioresistance of spheroidal human parotid epithelial cells, and led to greater preservation of salivary epithelial integrity and acinar secretory function relative to hAdMSCsNMX . Coculture with hAdMSCsHPX promoted FGFR expression and suppressed FGFR diminished antiapoptotic activity of hAdMSCsHPX . Among FGFR-binding secreted factors, we found that fibroblast growth factor 10 (FGF10) contributed to therapeutic effects of hAdMSCsHPX by enhancing antiapoptotic effect, which was dependent on FGFR-PI3K signaling. An in vivo transplant of hAdMSCsHPX into irradiated salivary glands of mice reversed IR-induced salivary hypofunction where hAdMSC-released FGF10 contributed to tissue remodeling. Our results suggest that hAdMSCsHPX protect salivary glands from IR-induced apoptosis and preserve acinar structure and functions by activation of FGFR-PI3K signaling via actions of hAdMSC-secreted factors, including FGF10. Stem Cells 2018;36:1020-1032.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Songyi Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Kim JH, Kim KM, Jung MH, Jung JH, Kang KM, Jeong BK, Kim JP, Park JJ, Woo SH. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats. Oncotarget 2018; 7:29143-53. [PMID: 27072584 PMCID: PMC5045384 DOI: 10.18632/oncotarget.8661] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. Results ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. Materials and Methods Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. Conclusions Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea.,Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Mi Kim
- Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jung Hwa Jung
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Internal Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Ki Mun Kang
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Bae Kwon Jeong
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jin Pyeong Kim
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Jung Je Park
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Seung Hoon Woo
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea.,Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
34
|
Hany E, Sobh MA, ElKhier MTA, ElSabaa HM, Zaher AR. The Effect of Different Routes of Injection of Bone Marrow Mesenchymal Stem Cells on Parotid Glands of Rats Receiving Cisplatin: A Comparative Study. Int J Stem Cells 2017; 10:169-178. [PMID: 28844126 PMCID: PMC5741198 DOI: 10.15283/ijsc17022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives Cisplatin is a powerful antitumor chemotherapeutic agent that is widely used in the treatment of many cancers but it has many side effects on many organs including salivary glands. Bone marrow is considered to be a rich environment that comprises many types of stem cells of which BMSCs (Bone marrow mesenchymal stem cells) are the most studied with potentiality to differentiate into many cell types. This study was conducted to evaluate the effect of different routes of injection of BMSCs on parotid glands of rats receiving cisplatin. Methods and Results Sprague-Dawley rats were divided into 3 groups: a negative control group receiving phosphate buffered saline, a positive control group receiving cisplatin, and an experimental group where rats received cisplatin and then received iron oxide-labeled BMSCs by either intravenous or intraparotid routes or both. Animals were sacrificed at periods of 3,6,10 and 15 days after cisplatin injection, then histological, ultrastructural and immunohistochemical studies were done. The experimental stem cell treated group showed better histological features and increased PCNA proliferation index when compared to the control. The systemic and combination groups showed better results than the local group. Iron oxide-labeled cells were detected with Prussian blue stain. Conclusions This study proved that BMSCs can improve cisplatin induced cytotoxicity in parotid glands. Systemic administration showed to have a better effect than local intraparotid administration and comparable effect to combined administration.
Collapse
Affiliation(s)
- Eman Hany
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohammed A Sobh
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mazen T Abou ElKhier
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Heba M ElSabaa
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Department of Oral Biology, School of Dentistry, Badr University, Cairo, Egypt
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Fang D, Shang S, Liu Y, Bakkar M, Sumita Y, Seuntjens J, Tran SD. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation. J Tissue Eng Regen Med 2017; 12:e1195-e1205. [PMID: 28714550 DOI: 10.1002/term.2513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 03/07/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice.
Collapse
Affiliation(s)
- Dongdong Fang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Sixia Shang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada.,Department of Stomatology, People's Hospital of Dongying, Dongying, China
| | - Younan Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Mohammed Bakkar
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Nagasaki University, Nagasaki, Japan
| | - Jan Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Wang SQ, Wang YX, Hua H. Characteristics of Labial Gland Mesenchymal Stem Cells of Healthy Individuals and Patients with Sjögren's Syndrome: A Preliminary Study. Stem Cells Dev 2017; 26:1171-1185. [PMID: 28537471 DOI: 10.1089/scd.2017.0045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease that is characterized by focal lymphocytic infiltration into exocrine organs such as salivary and lacrimal glands, resulting in dry mouth and eyes, and other systemic injuries. There is no curative clinical therapy for SS, and stem cell therapy has shown great potential in this area. The mesenchymal stem cells (MSCs) in the salivary glands of healthy individuals and in patients with SS have not been extensively studied. The aim of this study was to elucidate the characteristics of MSCs from the labial glands of healthy controls and of those from patients with SS to elucidate the related pathogenesis and to uncover potential avenues for novel clinical interventions. Labial glands from patients with SS and healthy subjects were obtained, and MSCs were isolated and cultured by using the tissue adherent method. The MSC characteristics of the cultured cells were confirmed by using morphology, proliferation, colony forming-unit (CFU) efficiency, and multipotentiality, including osteogenic, adipogenic, and salivary gland differentiation. The MSCs from the healthy controls and SS patients expressed characteristic MSC markers, including CD29, CD44, CD73, CD90, and CD105; they were negative for CD34, CD45, and CD106, and also negative for the salivary gland epithelium markers (CD49f and CD117). Labial gland MSCs from both groups were capable of osteogenic and adipogenic differentiation. The CFU efficiency and adipogenic differentiation potential of MSCs were significantly lower in the SS group compared with the healthy controls. Cells from both groups could also be induced into salivary gland-like cells. Real-time polymerase chain reaction and immunofluorescence staining showed that the gene and protein expression of AMY1, AQP5, and ZO-1 in cells from the SS group was lower than that in cells from the healthy group. Thus, MSCs from the labial glands in patients with SS could lack certain characteristics and functions, especially related to salivary secretion. These preliminary data provided insights that could lead to the development of novel therapeutic strategies for the treatment of SS.
Collapse
Affiliation(s)
- Shi-Qin Wang
- 1 Department of Oral Medicine, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| | - Yi-Xiang Wang
- 2 Department of Oral Surgery, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| | - Hong Hua
- 1 Department of Oral Medicine, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| |
Collapse
|
37
|
Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD. Induction of Salivary Gland-Like Cells from Dental Follicle Epithelial Cells. J Dent Res 2017; 96:1035-1043. [PMID: 28541773 DOI: 10.1177/0022034517711146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dental follicle (DF), most often associated with unerupted teeth, is a condensation of ectomesenchymal cells that surrounds the tooth germ in early stages of tooth development. In the present study, we aim to isolate epithelial stem-like cells from the human DF and explore their potential differentiation into salivary gland (SG) cells. We demonstrated the expression of stem cell-related genes in the epithelial components of human DF tissues, and these epithelial progenitor cells could be isolated and ex vivo expanded in a reproducible manner. The human DF-derived epithelial cells possessed clonogenic and sphere-forming capabilities, as well as expressed a panel of epithelial stem cell-related genes, thus conferring stem cell properties (hDF-EpiSCs). When cultured under in vitro 3-dimensional induction conditions, hDF-EpiSCs were capable to differentiate into SG acinar and duct cells. Furthermore, transplantation of hDF-EpiSC-loaded native de-cellularized rat parotid gland scaffolds into the renal capsule of nude mice led to the differentiation of transplanted hDF-EpiSCs into salivary gland-like cells. These findings suggest that hDF-EpiSCs might be a promising source of epithelial stem cells for the development of stem cell-based therapy or bioengineering SG tissues to repair/regenerate SG dysfunction.
Collapse
Affiliation(s)
- Q L Xu
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Furuhashi
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,2 Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Q Z Zhang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - C M Jiang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - T-H Chang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,3 Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Galvão-Moreira LV, Santana T, da Cruz MCFN. A closer look at strategies for preserving salivary gland function after radiotherapy in the head and neck region. Oral Oncol 2016; 60:137-41. [DOI: 10.1016/j.oraloncology.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/30/2016] [Accepted: 07/09/2016] [Indexed: 11/26/2022]
|
39
|
Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2016; 35:97-105. [PMID: 27406006 PMCID: PMC6310135 DOI: 10.1002/stem.2455] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Abstract
The human salivary gland (SG) has an elegant architecture of epithelial acini, connecting ductal branching structures, vascular and neuronal networks that together function to produce and secrete saliva. This review focuses on the translation of cell- and tissue-based research toward therapies for patients suffering from SG hypofunction and related dry mouth syndrome (xerostomia), as a consequence of radiation therapy or systemic disease. We will broadly review the recent literature and discuss the clinical prospects of stem/progenitor cell and tissue-based therapies for SG repair and/or regeneration. Thus far, several strategies have been proposed for the purpose of restoring SG function: (1) transplanting autologous SG-derived epithelial stem/progenitor cells; (2) exploiting nonepithelial cells and/or their bioactive lysates; and (3) tissue engineering approaches using 3D (three-dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in vivo SGs. We predict that further scientific improvement in each of these areas will translate to effective therapies toward the repair of damaged glands and the development of miniature SG organoids for the fundamental restoration of saliva secretion.
Collapse
Affiliation(s)
- Isabelle Lombaert
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, North Campus Research Complex, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad M Movahednia
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 119083, Singapore
| | - Christabella Adine
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| | - Joao N Ferreira
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
40
|
Su CH, Lee KS, Tseng TM, Tseng H, Ding YF, Koch M, Hung SH. Intraductal injection as an effective drug delivery route in the management of salivary gland diseases. Eur Arch Otorhinolaryngol 2016; 274:399-404. [PMID: 27395068 DOI: 10.1007/s00405-016-4199-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
While conservative approaches for chronic sialoadenitis are in current use, the utility of intraductal injection therapy remains unclear. The purpose of this study is to provide evidence that substances delivered through intraductal injection of the salivary gland are able to be effectively distributed throughout the gland. Methylene blue dye (0.1 %) was injected intraductally into a porcine parotid gland (5 ml) of one group and the porcine submandibular gland (1 or 2 ml, n = 6 for each preparation) of another group. After the injection, the ductal systems were evaluated, sectioned, and observed microscopically. Color area analysis was performed on submandibular gland sections, and the infiltration ratio of the dye was calculated. The papillae of both Stensen's and Wharton's duct openings were easily identified with intraductally delivered methylene blue dye. The dye infiltration began from the central ductal region of the gland and could be easily observed to gradually disperse to the peripheral regions in each acinar. There were no statistically significant differences in infiltration ratios between anterior, midline, and posterior section of the submandibular gland. Also, there were no statistically significant differences in the ratios between 1 and 2 ml injections at all the three section positions. This study demonstrated that desired substances can be evenly delivered throughout the salivary gland through intraductal injections. The use of intraductal injections might serve as a potential therapeutic procedure in the management of salivary gland diseases.
Collapse
Affiliation(s)
- Chin-Hui Su
- Department of Otorhinolaryngology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Sheng Lee
- Department of Otorhinolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Ming Tseng
- Department of Otolaryngology, Taipei Medical University Hospital, No. 252, Wu-Hsing Street, Taipei, 110, Taiwan
| | - How Tseng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Koch
- Department of Otorhinolaryngology Head and Neck Surgery, FAU Medical School, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Otolaryngology, Taipei Medical University Hospital, No. 252, Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
41
|
Xerostomia: current streams of investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:53-60. [PMID: 27189896 DOI: 10.1016/j.oooo.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Xerostomia is the subjective feeling of dry mouth, and it is often related to salivary hypofunction. Besides medication-related salivary hypofunction, Sjögren syndrome and head-and-neck radiation are two common etiologies that have garnered considerable attention. Approaches to treating and/or preventing salivary hypofunction in patients with these conditions will likely incorporate gene therapy, stem cell therapy, and tissue engineering. Advances in these disciplines are central to current research in the cure for xerostomia and will be key to eventual treatment.
Collapse
|
42
|
Kawakami M, Ishikawa H, Tanaka A, Mataga I. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells. Hum Cell 2016; 29:101-10. [PMID: 26842556 PMCID: PMC4930478 DOI: 10.1007/s13577-016-0132-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues.
Collapse
Affiliation(s)
- Miyuki Kawakami
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan.
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, Niigata Hospital, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
- Division of Cell Regeneration and Transplantation, Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Izumi Mataga
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
43
|
An HY, Shin HS, Choi JS, Kim HJ, Lim JY, Kim YM. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage. PLoS One 2015; 10:e0141862. [PMID: 26529411 PMCID: PMC4631328 DOI: 10.1371/journal.pone.0141862] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia-cultured hAdMSC secretome. Conclusion These results show that the hAdMSC secretome from hypoxic-conditioned medium may provide radioprotection and tissue remodeling via release of paracrine mediators.
Collapse
Affiliation(s)
- Hye-Young An
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hyun-Soo Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hun Jung Kim
- Department of Radiation Oncology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
- * E-mail: (JL); (YK)
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
- * E-mail: (JL); (YK)
| |
Collapse
|
44
|
Nicolay NH, Lopez Perez R, Debus J, Huber PE. Mesenchymal stem cells – A new hope for radiotherapy-induced tissue damage? Cancer Lett 2015; 366:133-40. [DOI: 10.1016/j.canlet.2015.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
|
45
|
Furukawa S, Kuwajima Y, Chosa N, Satoh K, Ohtsuka M, Miura H, Kimura M, Inoko H, Ishisaki A, Fujimura A, Miura H. Establishment of immortalized mesenchymal stem cells derived from the submandibular glands of tdTomato transgenic mice. Exp Ther Med 2015; 10:1380-1386. [PMID: 26622494 PMCID: PMC4578048 DOI: 10.3892/etm.2015.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
Transgenic mice that overexpress the red fluorescent protein tdTomato (tdTomato mice) are well suited for use in regenerative medicine studies. Cultured cells from this murine model exhibit strong red fluorescence, enabling real-time in vivo imaging through the body surface of grafted animals. Mesenchymal stem cells (MSCs) have marked potential for use in cell therapy and regenerative medicine; however, the mechanisms that regulate their dynamics in vivo are poorly understood. In the present study, an MSC line was derived from the submandibular gland fibroblasts of tdTomato mice. The fluorescent signal from this cell line was observed in organs throughout the body, as well as in salivary glands. Primary culture cells derived from the submandibular gland were immortalized with SV40 large T antigen (GManSV cells); these cells exhibited increased migratory ability, as compared with those isolated from the sublingual gland. GManSV cells were tdTomato-positive and exhibited spindle-shaped fibroblastic morphology; they also robustly expressed mouse MSC markers: Stem cell antigen-1 (Sca-1), CD44, and CD90. This cell line retained multipotent stem cell characteristics, as evidenced by its ability to differentiate into both osteogenic and adipogenic lineages. These results indicate that Sca-1+/CD44+/CD90+-GManSV cells may be useful for kinetic studies of submandibular gland-derived MSCs in the context of in vitro co-culture with other types of salivary gland-derived cells. These cells may also be used for in vivo imaging studies, in order to identify novel cell therapy and regenerative medicine for the treatment of salivary gland diseases.
Collapse
Affiliation(s)
- Shinji Furukawa
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Yukinori Kuwajima
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Akira Fujimura
- Division of Functional Morphology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Hiroyuki Miura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
46
|
Duan HG, Ji F, Zheng CQ, Wang CH, Li J. Human umbilical cord mesenchymal stem cells alleviate nasal mucosa radiation damage in a guinea pig model. J Cell Biochem 2015; 116:331-8. [PMID: 25209829 DOI: 10.1002/jcb.24975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023]
Abstract
Nasal complications after radiotherapy severely affect the quality of life of nasopharyngeal carcinoma patients, and there is a compelling need to find novel therapies for nasal epithelial cell radiation damage. Therefore, we investigated the therapeutic effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) in guinea pig model of nasal mucosa radiation damage and explored its therapeutic mechanism. Cultured hUC-MSCs were injected intravenously immediately after radiation in the nasal mucosa-radiation-damage guinea pig model. Migration of hUC-MSCs into the nasal mucosa and the potential for differentiation into nasal epithelial cells were evaluated by immunofluorescence. The therapeutic effects of hUC-MSCs were evaluated by mucus clearance time (MCT), degree of nasal mucosa edema, and the nasal mucosa cilia form and coverage ratio. Results indicate that the hUC-MSCs migrated to the nasal mucosa lamina propria and did not differentiate into nasal epithelial cells in this model. The MCT and degree of mucosal edema were improved at 1 week and 1 month after radiation, respectively, but no difference was found at 3 months and 6 months after radiation. The nasal mucosa cilia form and coverage ratio was not improved 6 months after radiation. Thus, hUC-MSCs can migrate to the nasal mucosa lamina propria and improve MCT and mucosa edema within a short time period, but these cells are unable to differentiate into nasal epithelial cells and improve nasal epithelial regeneration in the nasal mucosa radiation damage guinea pig model.
Collapse
Affiliation(s)
- Hong-Gang Duan
- Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Li Z, Wang Y, Xing H, Wang Z, Hu H, An R, Xu H, Liu Y, Liu B. Protective efficacy of intravenous transplantation of adipose-derived stem cells for the prevention of radiation-induced salivary gland damage. Arch Oral Biol 2015; 60:1488-96. [PMID: 26263537 DOI: 10.1016/j.archoralbio.2015.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/25/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE High-dose radiation therapy in the head and neck area can lead to irreversible damage to salivary glands (SGs) with consequent xerostomia. Adipose-derived stem cells (ADSCs) have been shown to repair or rescue damaged SGs. Thus, we investigated the protective efficacy of ADSCs in the prevention of SG damage induced by high dose radiation. METHODS Third-passage ADSCs (1×10(6)) were transplanted by intravenous infusion into the tail-vein of 8-week-old C57BL/6 mice, immediately after local irritation at a dose of 18Gy. The process was repeated twice a week during a period of six consecutive weeks. Eight weeks after radiation, functional evaluations were conducted by measuring salivary flow rate (SFR). Histological, immunohistochemical and transmission electron microscopic (TEM) examinations were performed to analyze microstructural and ultrastructural changes, microvessel density, amylase production, apoptosis, and proliferation activity. RESULTS Intravenously administrated ADSCs could home to irradiated SGs within 24h after infusion, significantly increasing SG weights, improving SFR, and preserving the microscopic morphologies of SGs eight weeks post-radiation. More functional acini, higher amylase production levels, and higher microvessel densities were observed in ADSC-treated SGs than in irradiated SGs. Additionally, enhanced cell proliferation activity and reduced radiation-induced SG apoptosis was observed in the ADSC-treated group when compared with the irradiated group. CONCLUSION Systemic administration of ADSCs immediately after radiation at a dose of 18Gy can protect both the morphology and function of SGs eight weeks after radiation in mice, and can be used as a protective measure for the prevention of SG damage induced by high-dose radiation.
Collapse
Affiliation(s)
- Zhijin Li
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yan Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Hongyan Xing
- Department of Stomatology, Xinzhou 2nd People's Hospital, 120 Yong Xing Nan Road, Xinzhou, Shanxi Province 034100, PR China
| | - Zhifa Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Hanqing Hu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ran An
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Haiyan Xu
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bin Liu
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
48
|
Kamiya M, Kawase T, Hayama K, Tsuchimochi M, Okuda K, Yoshie H. X-Ray-Induced Damage to the Submandibular Salivary Glands in Mice: An Analysis of Strain-Specific Responses. Biores Open Access 2015; 4:307-18. [PMID: 26309806 PMCID: PMC4497710 DOI: 10.1089/biores.2015.0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Radiation therapy for head and neck cancers often causes xerostomia (dry mouth) by acutely damaging the salivary glands through the induction of severe acute inflammation. By contrast, the mechanism underlying the X-ray-induced delayed salivary dysfunction is unknown and has attracted increasing attention. To identify and develop a mouse model that distinguishes the delayed from the acute effects, we examined three different mouse strains (C57BL/6, ICR, and ICR-nu/nu) that showed distinct T-cell activities to comparatively analyze their responses to X-ray irradiation. Three strains were irradiated with X-rays (25 Gy), and functional changes of the submandibular glands were examined by determining pilocarpine-induced saliva secretion. Structural changes were evaluated using histopathological and immunohistochemical examinations of CD3, cleaved poly (ADP-ribose) polymerase (PARP), and Bcl-xL. In C57BL/6 mice, the X-ray irradiation induced acute inflammation accompanied by severe inflammatory cell infiltration at 4 days postirradiation, causing substantial destruction and significant dysfunction at 2 weeks. Fibrotic repair was observed at 16 weeks. In ICR-nu/nu mice, the inflammation and organ destruction were much milder than in the other mice strains, but increased apoptotic cells and a significant reduction in salivary secretion were observed at 4 and 8 weeks and beyond, respectively. These results suggest that in C57BL/6 mice, X-ray-induced functional and structural damage to the salivary glands is caused mainly by acute inflammation. By contrast, although neither acute inflammation nor organ destruction was observed in ICR-nu/nu mice, apoptotic cell death preceded the dysfunction in salivary secretion in the later phase. These data suggest that the X-ray-irradiated ICR-nu/nu mouse may be a useful animal model for developing more specific therapeutic methods for the delayed dysfunction of salivary glands.
Collapse
Affiliation(s)
- Mana Kamiya
- Division of Oral Bioengineering, Department of Tissue Regeneration and Reconstitution, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
- Division of Periodontology, Department of Oral Biological Science, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Department of Tissue Regeneration and Reconstitution, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kazuhide Hayama
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Makoto Tsuchimochi
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kazuhiro Okuda
- Division of Periodontology, Department of Oral Biological Science, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Hiromasa Yoshie
- Division of Periodontology, Department of Oral Biological Science, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| |
Collapse
|
49
|
Lim JY, Yi T, Lee S, Kim J, Kim SN, Song SU, Kim YM. Establishment and Characterization of Mesenchymal Stem Cell-Like Clonal Stem Cells from Mouse Salivary Glands. Tissue Eng Part C Methods 2015; 21:447-57. [DOI: 10.1089/ten.tec.2014.0204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - TacGhee Yi
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Songyi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Junghee Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Si-na Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sun U. Song
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
50
|
Gao Z, Wu T, Xu J, Liu G, Xie Y, Zhang C, Wang J, Wang S. Generation of Bioartificial Salivary Gland Using Whole-Organ Decellularized Bioscaffold. Cells Tissues Organs 2015; 200:171-80. [PMID: 25824480 DOI: 10.1159/000371873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
Salivary gland hypofunction resulting in xerostomia occurs as a result of various pathological conditions such as radiotherapy for head and neck cancers, Sjögren's syndrome or salivary gland tumor resection. It can induce a large number of problems, including dental decay, periodontitis, dysgeusia, difficulty with mastication and swallowing and a reduced quality of life. Current therapies for xerostomia mostly focus on saliva substitutes, oral lubricants and medications which stimulate salivation from residual glands. However, these treatments are not sufficient to restore gland secretory function. Tissue engineering-based organ regeneration has emerged as a potential therapeutic alternative for end- organ failure. Here, we decellularized rat submandibular glands (SMG) by detergent immersion. Histological, immunofluorescent, Western blot, DNA and collagen quantitative analyses demonstrated that our protocol effectively removed cellular components and that extracellular matrix proteins and native structures were well preserved. We then reseeded the decellularized SMG as scaffolds with rat primary SMG cells in a rotary cell culture system. Histological staining and electron microscopy analyses illustrated that the decellularized SMG could support cellular adhesion. Furthermore, with immunofluorescent staining, we proved that bioartificially generated SMG showed some differentiation markers in vitro. Taken together, our findings might provide a potential scaffold for tissue-engineered regeneration of the salivary glands.
Collapse
|