1
|
Hwang JS, Seo JH, Kim HJ, Ryu Y, Lee Y, Shin YJ. Transcriptomic comparison of corneal endothelial cells in young versus old corneas. Sci Rep 2024; 14:31110. [PMID: 39732756 DOI: 10.1038/s41598-024-82423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Corneal endothelial cells, situated on the innermost layer of the cornea, are vital for maintaining its clarity and thickness by regulating fluid. In this study, we investigated the differences in the transcriptome between young and old corneal endothelial cells using next-generation sequencing (NGS). Cultured endothelial cells from both young and elderly donors were subjected to NGS to unravel the transcriptomic landscape. Subsequent analyses, facilitated by Metascape, allowed for the dissection of gene expression variances, unearthing pivotal biological pathways. A total of 568 genes showed differences, and were related to Endomembrane system organization, nuclear receptors meta pathway, efferocytosis, etc. Notably, a reduction in the expression of 260 genes was observed in the aged cells form old donors, and in the related analysis, eukaryotic translation initiation, integrator complex, and Hippo YAP signaling were significant. Conversely, 308 genes exhibited elevated expression levels in the elderly, correlating with processes including transition metal ion transport and glycoprotein biosynthesis. In conclusion, our investigation has revealed critical genes involved in the aging process of corneal endothelial cells and elucidated their underlying biological pathways. These insights are instrumental in selecting targets for therapeutic intervention, thereby facilitating the advancement of novel therapeutic approaches for the restoration and preservation of corneal endothelial cell function.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Hyeon Jung Kim
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yunkyoung Ryu
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Lee
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea.
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Xue X, Su L, Zhang T, Zhan J, Gu X. Effects of α-Particle Radiation on DNA Methylation in Human Hepatocytes. Dose Response 2024; 22:15593258241297871. [PMID: 39583032 PMCID: PMC11583490 DOI: 10.1177/15593258241297871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Objective: This paper explores the role of DNA methylation in α-irradiation damage at the cellular level. Methods: Human normal hepatocytes L-02 were irradiated using a 241 Am α source at doses of 0, 1.0, and 2.0 Gy. The methylation levels of the six differentially methylated genes were examined by pyrophosphate sequencing, and the mRNA expression levels of the six differentially methylated genes were examined by real-time fluorescence quantitative PCR. Results: The rate of γH2AX foci positive cells was significantly higher than that of the control group after irradiation of cells in different dose groups for 1 h and 2 h respectively (P < .05). The proportion of S-phase cells was significantly increased in the 1.0 Gy and 2.0 Gy dose groups compared with the control group (P < .05). The methylation levels of CDK2AP1, PDGFRL, PCDHB16 and FAS genes were significantly increased, while the mRNA expression levels were significantly decreased (P < .05). The expression levels of CDK2Apl, PCDHB16 and FAS were significantly negatively correlated with the methylation levels (P < .05). Conclusion: The α-particle radiation can affect gene expression at the epigenetic level, which led to the speculation that altered methylation levels of CDK2AP1, PCDHB16, and FAS genes may be involved in the α radiation damage process.
Collapse
Affiliation(s)
- Xiangming Xue
- China Institute of Radiation Protection, Taiyuan, China
| | - Lixia Su
- China Institute of Radiation Protection, Taiyuan, China
| | - Teng Zhang
- China Institute of Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- China Institute of Radiation Protection, Taiyuan, China
| | - Xiaona Gu
- China Institute of Radiation Protection, Taiyuan, China
| |
Collapse
|
3
|
Gambardella AR, Antonucci C, Zanetti C, Noto F, Andreone S, Vacca D, Pellerito V, Sicignano C, Parrottino G, Tirelli V, Tinari A, Falchi M, De Ninno A, Businaro L, Loffredo S, Varricchi G, Tripodo C, Afferni C, Parolini I, Mattei F, Schiavoni G. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J Exp Clin Cancer Res 2024; 43:209. [PMID: 39061080 PMCID: PMC11282757 DOI: 10.1186/s13046-024-03129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.
Collapse
Affiliation(s)
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Valentina Pellerito
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Chiara Sicignano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppe Parrottino
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Antonella Tinari
- National Center for Gender Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Adele De Ninno
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Luca Businaro
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore Di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
- Laboratory of Molecular Medicine and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Xiao C, Wu X, Gallagher CS, Rasooly D, Jiang X, Morton CC. Genetic contribution of reproductive traits to risk of uterine leiomyomata: a large-scale, genome-wide, cross-trait analysis. Am J Obstet Gynecol 2024; 230:438.e1-438.e15. [PMID: 38191017 DOI: 10.1016/j.ajog.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.
Collapse
Affiliation(s)
- Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
5
|
Stabile R, Cabezas MR, Verhagen MP, Tucci FA, van den Bosch TPP, De Herdt MJ, van der Steen B, Nigg AL, Chen M, Ivan C, Shimizu M, Koljenović S, Hardillo JA, Verrijzer CP, Baatenburg de Jong RJ, Calin GA, Fodde R. The deleted in oral cancer (DOC1 aka CDK2AP1) tumor suppressor gene is downregulated in oral squamous cell carcinoma by multiple microRNAs. Cell Death Dis 2023; 14:337. [PMID: 37217493 DOI: 10.1038/s41419-023-05857-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.
Collapse
Affiliation(s)
- Roberto Stabile
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mario Román Cabezas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francesco A Tucci
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Maria J De Herdt
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meng Chen
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Science, Irving, TX, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Calin
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Gamallat Y, Bakker A, Khosh Kish E, Choudhry M, Walker S, Aldakheel S, Seyedi S, Huang KC, Ghosh S, Gotto G, Bismar TA. The Association between Cyclin Dependent Kinase 2 Associated Protein 1 (CDK2AP1) and Molecular Subtypes of Lethal Prostate Cancer. Int J Mol Sci 2022; 23:ijms232113326. [PMID: 36362115 PMCID: PMC9658869 DOI: 10.3390/ijms232113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed types of malignancy and is the second leading cause of cancer-related death in men in developed countries. Cyclin dependent kinase 2 associate protein 1(CDK2AP1) is an epigenetic and cell cycle regulator gene which has been downregulated in several malignancies, but its involvement in PCa has not yet been investigated in a clinical setting. We assessed the prognostic value of CDK2AP1 expression in a cohort of men diagnosed with PCa (n = 275) treated non-surgically by transurethral resection of the prostate (TURP) and studied the relationship between CDK2AP1 expression to various PCa molecular subtypes (ERG, PTEN, p53 and AR) and evaluated the association with clinical outcome. Further, we used bioinformatic tools to analyze the available TCGA PRAD transcriptomic data to explore the underlying mechanism. Our data confirmed increased expression of CDK2AP1 with higher Gleason Grade Group (GG) and metastatic PCa (p <0.0001). High CDK2AP1 expression was associated with worse overall survival (OS) (HR: 1.62, CI: 1.19−2.21, p = 0.002) and cause-specific survival (CSS) (HR: 2.012, CI 1.29−3.13, p = 0.002) using univariate analysis. When compared to each sub-molecular type. High CDK2AP1/PTEN-loss, abnormal AR or p53 expression showed even worse association to poorer OS and CCS and remained significant when adjusted for GG. Our data indicates that CDK2AP1 directly binds to p53 using the Co-Immunoprecipitation (Co-IP) technique, which was validated using molecular docking tools. This suggests that these two proteins have a significant association through several binding features and correlates with our observed clinical data. In conclusion, our results indicated that the CDK2AP1 overexpression is associate with worse OS and CSS when combined with certain PCa molecular subtypes; interaction between p53 stands out as the most prominent candidate which directly interacts with CDK2AP1.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| | - Andrea Bakker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Simon Walker
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Saood Aldakheel
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sima Seyedi
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Kuo-Cheng Huang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | | | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
7
|
Che Y, Wang G, Xia Q. CDK2AP1 influences immune infiltrates and serves as a prognostic indicator for hepatocellular carcinoma. Front Genet 2022; 13:937310. [PMID: 36105112 PMCID: PMC9465009 DOI: 10.3389/fgene.2022.937310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a tumor with high malignancy and poor 5-years survival rate. Excellent tumor markers are very important for early clinical diagnosis and prognosis evaluation. Previous studies have shown that CDK2AP1 (Cyclin-dependent kinase 2-associated protein 1) is involved in cell-cycle and epigenetic regulation. In the present study, we assess CDK2AP1 expression, prognostic value, immunomodulatory and possible influencing pathways in HCC.Method: The Cancer Genome Atlas (TCGA) database was used to analyse gene expression, clinicopathology and prognosis. The protein level of CDK2AP1 in HCC tissues was detected in the Human Protein Atlas (HPA) database. The immune score in HCC to CDKAP1 expression were analyzed using ESTIMATE. Furthermore, we use Tumor IMmune Estimation Resource (TIMER) database to study CDK2AP1 expression and Immune Infiltration Levels in HCC. Co-expressed genes of CDK2AP1 were predicted and elaborated by LinkedOmics.Results: In normal liver tissues, the expression of CDK2AP1 was significantly lower than tumor tissues, and was correlated with the level of clinical stage and histologic grade in HCC patients. Patients with high expression of CDK2AP1 have a poor prognosis than patients with low CDK2AP1 expression. CDK2AP1 expression level exhibits significantly positive correlations with the number of infiltrating B cells, CD4+ T cells, CD8+ T cells, Macrophages, Neutrophils, and DCs in HCC tissues. KEGG enrichment analysis showed that the related pathways affected by CDK2AP1 mainly include: Fc gamma R-mediated phagocytosis, Th1 and Th2 cell differentiation, Cell cycle, etc. Both in vitro and in vivo experiments confirmed that CDK2AP1 promotes the proliferation and metastasis in hepatocellular carcinoma. Our results highlight the role of CDK2AP1 as an important prognostic indicator and immunotherapy target for HCC patients.Conclusion: We found CDK2AP1 as a new prognostic biomarker for HCC, which could help explain changes in the biological processes and immune environment lead to liver cancer development. Therefore, CDK2AP1 is a potential new target for HCC therapy.
Collapse
Affiliation(s)
- Yibin Che
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Qiang Xia,
| |
Collapse
|
8
|
Modzelewski AJ, Shao W, Chen J, Lee A, Qi X, Noon M, Tjokro K, Sales G, Biton A, Anand A, Speed TP, Xuan Z, Wang T, Risso D, He L. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 2021; 184:5541-5558.e22. [PMID: 34644528 PMCID: PMC8787082 DOI: 10.1016/j.cell.2021.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.
Collapse
Affiliation(s)
- Andrew J Modzelewski
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wanqing Shao
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqi Chen
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Lee
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xin Qi
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mackenzie Noon
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristy Tjokro
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova 35122, Italy
| | - Anne Biton
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris 75015, France
| | - Aparna Anand
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence P Speed
- Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova 35122, Italy.
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Li QS, De Muynck L. Differentially expressed genes in Alzheimer's disease highlighting the roles of microglia genes including OLR1 and astrocyte gene CDK2AP1. Brain Behav Immun Health 2021; 13:100227. [PMID: 34589742 PMCID: PMC8474442 DOI: 10.1016/j.bbih.2021.100227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with abnormal tau and amyloid-β accumulation in the brain, leading to neurofibrillary tangles, neuropil threads and extracellular amyloid-β plaques. Treatment is limited to symptom management, a disease-modifying therapy is not available. To advance search of therapy approaches, there is a continued need to identify targets for disease intervention both by confirming existing hypotheses and generating new hypotheses. METHODS We conducted a mRNA-seq study to identify genes associated with AD in post-mortem brain samples from the superior temporal gyrus (STG, n = 76), and inferior frontal gyrus (IFG, n = 65) brain regions. Differentially expressed genes (DEGs) were identified correcting for gender and surrogate variables to capture hidden variation not accounted for by pre-planned covariates. The results from this study were compared with the transcriptome studies from the Accelerated Medicine Partnership - Alzheimer's Disease (AMP-AD) initiative. Over-representation and gene set enrichment analysis (GSEA) was used to identify disease-associated pathways. Protein-protein interaction (PPI) and weighted gene co-expression network analysis (WGCNA) analyses were carried out and co-expressed gene modules and their hub genes were identified and associated with additional phenotypic traits of interest. RESULTS Several hundred mRNAs were differentially expressed between AD cases and cognitively normal controls in the STG, while no and few transcripts met the same criteria (adjusted p less than 0.05 and fold change greater than 1.2) in the IFG. The findings were consistent at the gene set level with two out of three cohorts from AMP-AD. PPI analysis suggested that the DEGs were enriched in protein-protein interactions than expected by random chance. Over-representation and GSEA analysis suggested genes playing roles in neuroinflammation, amyloid-β, autophagy and trafficking being important for the AD disease process. At the gene level, 10 genes from the STG that were consistently differentially expressed in this study and in the MSBB study (one of the three cohorts within the AMP-AD initiative) were enriched in microglial genes (TREM2, C3AR1, ITGAX, OLR1, CD74, and HLA-DRA), but also included genes with a broader cell type expression pattern such as CDK2AP1. Among the DEGs with supporting evidence from an independent study, CDK2AP1 (most abundantly expressed in astrocyte) was the transcript with strongest association with antemortem cognitive measure (last Mini-Mental State Examination score) and neurofibril tangle burden but also associated with amyloid plaque burden, while OLR1 was the transcript with strongest association with amyloid plaque burden. GSEA and over-representation analyses revealed gene sets related to immune processes including neutrophil degranulation, interleukin 10 signaling, and interferon gamma signaling, complement and coagulation cascades, phosphatidylinositol signaling system, phagosome and neurotransmitter receptors and postsynaptic signal transmission were enriched from this study and replicated in an independent study. CONCLUSION This study identified differential gene sets, common with two out of three AMP-AD cohorts (ROSMAP and MSBB) and highlights microglia and astrocyte as the key cell-types with DGEs associated with AD clinical diagnosis, and/or antemortem cognitive measure as well as neuropathological indices. Future meta-analysis and causal inferential analysis will be helpful in pinpointing the most relevant pathways and genes to intervene.
Collapse
Affiliation(s)
- Qingqin S. Li
- Neuroscience Department, Janssen Research & Development, LLC, 1125 Trenton-Harbourton Road, Titusville, NJ, 08560, USA
| | - Louis De Muynck
- Neuroscience Department, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| |
Collapse
|
10
|
Establishment and Characterization of a Sclerosing Spindle Cell Rhabdomyosarcoma Cell Line with a Complex Genomic Profile. Cells 2020; 9:cells9122668. [PMID: 33322555 PMCID: PMC7763666 DOI: 10.3390/cells9122668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Sclerosing spindle cell rhabdomyosarcoma (SSRMS) is a rare rhabdomyosarcomas (RMS) subtype. Especially cases bearing a myogenic differentiation 1 (MYOD1) mutation are characterized by a high recurrence and metastasis rate, often leading to a fatal outcome. SSRMS cell lines are valuable in vitro models for studying disease mechanisms and for the preclinical evaluation of new therapeutic approaches. In this study, a cell line established from a primary SSRMS tumor of a 24-year-old female after multimodal chemotherapeutic pretreatment has been characterized in detail, including immunohistochemistry, growth characteristics, cytogenetic analysis, mutation analysis, evaluation of stem cell marker expression, differentiation potential, and tumorigenicity in mice. The cell line which was designated SRH exhibited a complex genomic profile, including several translocations and deletions. Array-comparative genomic hybridization (CGH) revealed an overall predominating loss of gene loci. The mesenchymal tumor origin was underlined by the expression of mesenchymal markers and potential to undergo adipogenic and osteogenic differentiation. Despite myogenic marker expression, terminal myogenic differentiation was inhibited, which might be elicited by the MYOD1 hotspot mutation. In vivo tumorigenicity could be confirmed after subcutaneous injection into NOD/SCID/γcnull mice. Summarized, the SRH cell line is the first adult SSRMS cell line available for preclinical research on this rare RMS subtype.
Collapse
|
11
|
Li T, Liu Y, Yue S, Liao Z, Luo Z, Wang M, Cao C, Ding Y, Lin Z. Analyzing the Effects of Intrauterine Hypoxia on Gene Expression in Oocytes of Rat Offspring by Single Cell Transcriptome Sequencing. Front Genet 2019; 10:1102. [PMID: 31798625 PMCID: PMC6874118 DOI: 10.3389/fgene.2019.01102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023] Open
Abstract
Intrauterine hypoxia is one of the most frequently occurring complications during pregnancy, and the effects of antenatal hypoxia in offspring are not restricted to the perinatal period. Previous studies have reported on this phenomenon, which is usually described as multigenerational or transgenerational inheritance. However, the exact mechanism of this type of inheritance is still not clear. Therefore, in the present study, we investigated the alteration in the gene expression of oocytes, derived from intrauterine hypoxia rats and their offspring, by transcriptome sequencing. Our results showed that 11 differentially expressed genes were inherited from the F1 to F2 generation. Interestingly, these differentially expressed genes were enriched in processes predominantly involved in lipid and insulin metabolism. Overall, our data indicated that alteration in the gene expression of oocytes may be associated with some metabolic diseases and could potentially be the basis of transgenerational or multigenerational inheritance, induced by an adverse perinatal environment.
Collapse
Affiliation(s)
- Ting Li
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Liu
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shaojie Yue
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengchang Liao
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine Central South University, Changsha, China
| | - Mingjie Wang
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chuanding Cao
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Ding
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziling Lin
- Deparment of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Plasterer C, Tsaih SW, Peck AR, Chervoneva I, O’Meara C, Sun Y, Lemke A, Murphy D, Smith J, Ran S, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Mitchell EP, Bergom C, Joshi A, Auer P, Prokop J, Rui H, Flister MJ. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 2019; 177:77-91. [DOI: 10.1007/s10549-019-05307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
13
|
Maretina M, Egorova A, Baranov V, Kiselev A. DYNC1H1 gene methylation correlates with severity of spinal muscular atrophy. Ann Hum Genet 2018; 83:73-81. [PMID: 30246859 DOI: 10.1111/ahg.12288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
Methylation profiles of CpG islands within the SLC23A2, CDK2AP1, and DYNC1H1 genes and their association with spinal muscular atrophy (SMA) severity were studied. High clinical heterogeneity of SMA suggests the existence of different factors modifying SMA phenotype with gene methylation as a plausible one. The genes picked up in our earlier genome-wide methylation studies of SMA patients demonstrated obvious differences in their methylation patterns, thus suggesting the likely involvement of their protein products in SMA development. Significantly decreased methylation of CpG islands within exon 37 of the DYNC1H1 gene was observed in patients with a severe SMA manifestation (type I) compared to mildly affected SMA patients (types III-IV). This finding provides new information on peculiarities of methylation in clinically different types of SMA patients and gives a clue for identification of new SMA modifiers.
Collapse
Affiliation(s)
- Marianna Maretina
- Laboratory of Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia.,Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anna Egorova
- Laboratory of Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia
| | - Vladislav Baranov
- Laboratory of Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia.,Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anton Kiselev
- Laboratory of Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia
| |
Collapse
|
14
|
Alsayegh KN, Sheridan SD, Iyer S, Rao RR. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation. PLoS One 2018; 13:e0196817. [PMID: 29734353 PMCID: PMC5937771 DOI: 10.1371/journal.pone.0196817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/22/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1) in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs) derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb) or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs). Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs) formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.
Collapse
Affiliation(s)
- Khaled N. Alsayegh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Steven D. Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail: (RR); (SI)
| | - Raj Raghavendra Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail: (RR); (SI)
| |
Collapse
|
15
|
Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, Oole E, van Ijcken WFJ, van de Werken HJG, Demmers JA, Fodde R, Verrijzer CP. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. Cell Rep 2018; 20:61-75. [PMID: 28683324 DOI: 10.1016/j.celrep.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/24/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Alice G Bot
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Diana Zatreanu
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Dysregulated expression of microRNAs and mRNAs in pulmonary artery remodeling in ascites syndrome in broiler chickens. Oncotarget 2018; 8:1993-2007. [PMID: 27791988 PMCID: PMC5356772 DOI: 10.18632/oncotarget.12888] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Ascites syndrome (AS), also known as pulmonary artery hypertension, remains a challenging disease that severely affects both humans and broiler chickens. Pulmonary artery remodeling presents a key step in the development of AS. In this study, we obtained pulmonary artery tissues from broilers with and without AS to perform miRNA sequencing analysis, miRNA-mRNA association analysis and pathological examinations. 29 significantly differentially expressed miRNAs were found both in known and novel miRNAs with 18 up-regulated and 11 down-regulated miRNAs. Their predicted potential targets were involved in a wide range of functional clusters as indicated via GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. The upregulation of miR-155, miR-23b-3p, miR-146b-5p and miR-146b-3p were found closely associated with the pathogenesis of pulmonary artery remodeling in AS progression. The association analysis for the miRNAs-mRNAs showed that these 29 significantly differentially expressed miRNAs regulate 162 differentially expressed target genes. Among them, 20 miRNAs correlated with 18 predicted target genes that appear to be involved in pulmonary artery remodeling, mainly in three broad physiological processes: the hypoxia sensing response (HIF1α, NHE1, STAT5 and STAT3), endothelial permeability dysfunction (CD44, TRAF2, CDK2AP1, LZTFL1, JAZF1, PEBP1, LRP1B, RPS14 and THBS2) and inflammation (MEOX2, STAT5, STAT3, IRF8, MAP3K8, IL-1BETA and TNFRSF1B). Pathological pulmonary artery remodeling in the AS broilers was consistently observed in the present study. Taken together, the current analysis further illuminates the molecular mechanism of pulmonary artery remodeling underlying AS progression.
Collapse
|
17
|
Bode D, Yu L, Tate P, Pardo M, Choudhary J. Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells. Mol Cell Proteomics 2015; 15:878-91. [PMID: 26714524 PMCID: PMC4813707 DOI: 10.1074/mcp.m115.053207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/26/2022] Open
Abstract
Pluripotency and self-renewal, the defining properties of embryonic stem cells, are brought about by transcriptional programs involving an intricate network of transcription factors and chromatin remodeling complexes. The Nucleosome Remodeling and Deacetylase (NuRD) complex plays a crucial and dynamic role in the regulation of stemness and differentiation. Several NuRD-associated factors have been reported but how they are organized has not been investigated in detail. Here, we have combined affinity purification and blue native polyacrylamide gel electrophoresis followed by protein identification by mass spectrometry and protein correlation profiling to characterize the topology of the NuRD complex. Our data show that in mouse embryonic stem cells the NuRD complex is present as two distinct assemblies of differing topology with different binding partners. Cell cycle regulator Cdk2ap1 and transcription factor Sall4 associate only with the higher mass NuRD assembly. We further establish that only isoform Sall4a, and not Sall4b, associates with NuRD. By contrast, Suz12, a component of the PRC2 Polycomb repressor complex, associates with the lower mass entity. In addition, we identify and validate a novel NuRD-associated protein, Wdr5, a regulatory subunit of the MLL histone methyltransferase complex, which associates with both NuRD entities. Bioinformatic analyses of published target gene sets of these chromatin binding proteins are in agreement with these structural observations. In summary, this study provides an interesting insight into mechanistic aspects of NuRD function in stem cell biology. The relevance of our work has broader implications because of the ubiquitous nature of the NuRD complex. The strategy described here can be more broadly applicable to investigate the topology of the multiple complexes an individual protein can participate in.
Collapse
Affiliation(s)
- Daniel Bode
- From the ‡Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Lu Yu
- From the ‡Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Peri Tate
- §Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Mercedes Pardo
- From the ‡Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK;
| | - Jyoti Choudhary
- From the ‡Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
18
|
Zheleznyakova GY, Nilsson EK, Kiselev AV, Maretina MA, Tishchenko LI, Fredriksson R, Baranov VS, Schiöth HB. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity. PLoS One 2015; 10:e0121964. [PMID: 25821969 PMCID: PMC4378931 DOI: 10.1371/journal.pone.0121964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic neurodegenerative disorder subdivided into four different types. Whole genome methylation analysis revealed 40 CpG sites associated with genes that are significantly differentially methylated between SMA patients and healthy individuals of the same age. To investigate the contribution of methylation changes to SMA severity, we compared the methylation level of found CpG sites, designed as "targets", as well as the nearest CpG sites in regulatory regions of ARHGAP22, CDK2AP1, CHML, NCOR2, SLC23A2 and RPL9 in three groups of SMA patients. Of notable interest, compared to type I SMA male patients, the methylation level of a target CpG site and one nearby CpG site belonging to the 5'UTR of SLC23A2 were significantly hypomethylated 19-22% in type III-IV patients. In contrast to type I SMA male patients, type III-IV patients demonstrated a 16% decrease in the methylation levels of a target CpG site, belonging to the 5'UTR of NCOR2. To conclude, this study validates the data of our previous study and confirms significant methylation changes in the SLC23A2 and NCOR2 regulatory regions correlates with SMA severity.
Collapse
Affiliation(s)
- Galina Yu. Zheleznyakova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
- * E-mail:
| | - Emil K. Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anton V. Kiselev
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | - Marianna A. Maretina
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | | | | | - Vladislav S. Baranov
- Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Prenatal Diagnostics of Inherited Diseases, D.O. Ott Research Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russia
| | | |
Collapse
|
19
|
Xu Y, Wang J, Fu S, Wang Z. Knockdown of CDK2AP1 by RNA interference inhibits cell growth and tumorigenesis of human glioma. Neurol Res 2013; 36:659-65. [DOI: 10.1179/1743132813y.0000000298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Sun M, Jiang R, Wang G, Zhang C, Li J, Jin C, Zhang X. Cyclin-dependent kinase 2-associated protein 1 suppresses growth and tumorigenesis of lung cancer. Int J Oncol 2013; 42:1376-82. [PMID: 23404055 DOI: 10.3892/ijo.2013.1813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/11/2013] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1), a growth suppressor that negatively regulates CDK2 activity, has been implicated in various types of cancer; yet its role in lung cancer remains unclear. In the present study, a lentivirus-based system was used to specifically downregulate or upregulate CDK2AP1 expression. A549 lung cancer cells were treated with RNAi (RNA interference) or lentiviral vectors for overexpression. Ectopic overexpression of CDK2AP1 in A549 cells in vitro greatly impaired their proliferation and colony-forming ability and enhanced their chemosensitivity to cisplatin and paclitaxel and caused cell cycle arrest at G1/S transition accompanied by the reduction of expression of CDK4 and CDK7. Injection of the ectopically CDK2AP1-overexpressing A549 cells into nude mice resulted in growth arrest of solid lung cancer tumors in vivo. Knockdown of CDK2AP1 in A549 cells, however, gave rise to the opposite effects including promoting cell proliferation/growth, cell cycling in vitro and enhancing tumorigenesis in vivo. These results suggest that CDK2AP1 plays an important role in modulating the growth and tumorigenesis of lung cancer cells and also has significant effects on the chemosensitivity of pulmonary malignancies to chemotherapeutics. Hence, this study extends our knowledge on the relationship between CDK2AP1 and oncogenesis of lung cancer, indicating that CDK2AP1 may serve as a new molecular target for future lung cancer therapy.
Collapse
Affiliation(s)
- Mei Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur J Hum Genet 2013; 21:988-93. [PMID: 23299920 DOI: 10.1038/ejhg.2012.293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic disorder that is subdivided into four different types and caused by survival motor neuron gene 1 (SMN1) deletion. Discordant cases of SMA suggest that there exist additional severity modifying factors, apart from the SMN2 gene copy number. Here we performed the first genome-wide methylation profiling of SMA patients and healthy individuals to study the association of DNA methylation status with the severity of the SMA phenotype. We identified strong significant differences in methylation level between SMA patients and healthy controls in CpG sites close to the genes CHML, ARHGAP22, CYTSB, CDK2AP1 and SLC23A2. Interestingly, the CHML and ARHGAP22 genes are associated with the activity of Rab and Rho GTPases, which are important regulators of vesicle formation, actin dynamics, axonogenesis, processes that could be critical for SMA development. We suggest that epigenetic modifications may influence the severity of SMA and that these novel genetic positions could prove to be valuable biomarkers for the understanding of SMA pathogenesis.
Collapse
|