1
|
Kimura M, Nomura S, Ouchi T, Kurashima R, Nakano R, Sekiya H, Kuroda H, Kono K, Shibukawa Y. Intracellular cAMP signaling-induced Ca 2+ influx mediated by calcium homeostasis modulator 1 (CALHM1) in human odontoblasts. Pflugers Arch 2024:10.1007/s00424-024-03038-4. [PMID: 39528838 DOI: 10.1007/s00424-024-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In odontoblasts, intracellular Ca2+ signaling plays key roles in reactionary dentin formation and generation of dentinal pain. Odontoblasts also express several Gs protein-coupled receptors that promote production of cyclic AMP (cAMP). However, the crosstalk between intracellular cAMP and Ca2+ signaling, as well as the role of cAMP in the cellular functions of odontoblasts, remains unclear. In this study, we measured intracellular cAMP levels and intracellular free Ca2+ concentration ([Ca2+]i). We also investigated the effect of intracellular cAMP on mineralization by the odontoblasts. In the presence of extracellular Ca2+, the application of forskolin (adenylyl cyclase activator) or isoproterenol (Gs protein-coupled beta-2 adrenergic receptor agonist) increased intracellular cAMP levels and [Ca2+]i in odontoblasts. The [Ca2+]i increases could not be observed by removing extracellular Ca2+, indicating that cAMP is capable to activate Ca2+ entry. Forskolin-induced [Ca2+]i increase was inhibited by a protein kinase A inhibitor in odontoblasts. The [Ca2+]i increase was sensitive to Gd3+, 2APB, or Zn2+ but not verapamil, ML218, or La3+. In immunofluorescence analyses, odontoblasts were immunopositive for calcium homeostasis modulator 1 (CALHM1), which was found close to ionotropic ATP receptor subtype, P2X3 receptors. When CALHM1 was knocked down, forskolin-induced [Ca2+]i increase was suppressed. Alizarin red and von Kossa staining showed that forskolin decreased mineralization. These findings suggest that activation of adenylyl cyclase elicited increases in the intracellular cAMP level and Ca2+ influx via protein kinase A activation in odontoblasts. Subsequent cAMP-dependent Ca2+ influx was mediated by CALHM1 in odontoblasts. In addition, the intracellular cAMP signaling pathway in odontoblasts negatively mediated dentinogenesis.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Rei Nakano
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, 230-0045, Japan
- Japan Animal Specialty Medical Institute (JASMINE), Yokohama, 224-0001, Japan
| | - Hinako Sekiya
- Department of Endodontics, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
- Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, 238-8570, Japan
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
2
|
Herczegh A, Müller M. [Dentin hypersensitivity and its treatment]. Orv Hetil 2024; 165:1723-1727. [PMID: 39488802 DOI: 10.1556/650.2024.33145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
A dentin-túlérzékenység előfordulása napjainkban már szinte minden embert érint
élete folyamán. A különböző ingerek – mint például a hideg, a meleg, az
ozmotikus hatás – heves fájdalommal járhatnak, amennyiben a fog külső
szerkezete, a zománc-, illetve a cementréteg megsérül, vagy a zománc–cement
határ anatómiailag szabad dentinfelszínt idéz elő. A fájdalom a fogszuvasodáshoz
és annak következményes betegségeihez hasonló tüneteket válthat ki, így a
páciens számára nem egyértelmű, hogy mi is okozza a fájdalmát. A
dentin-túlérzékenység megállapítása a gyakorló fogorvos feladata. A kiváltó okok
megelőzése, a már fennálló probléma megoldása a mai modern kezelési lehetőségek
ismerete nélkül nem valósulhat meg. Összefoglaló tanulmányunk ismerteti a
dentin-túlérzékenység okait, hatásmechanizmusát és a lehetséges terápiás
megoldásokat. Orv Hetil. 2024; 165(44): 1723–1727.
Collapse
Affiliation(s)
- Anna Herczegh
- 1 Semmelweis Egyetem, Fogorvostudományi Kar, Helyreállító Fogászati és Endodonciai Klinika Budapest, Múzeum krt. 41., 1053 Magyarország
| | | |
Collapse
|
3
|
Kunka Á, Lisztes E, Bohács J, Racskó M, Kelemen B, Kovalecz G, Tóth ED, Hegedűs C, Bágyi K, Marincsák R, Tóth BI. TRPA1 up-regulation mediates oxidative stress in a pulpitis model in vitro. Br J Pharmacol 2024; 181:3246-3262. [PMID: 38744683 DOI: 10.1111/bph.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.
Collapse
Affiliation(s)
- Árpád Kunka
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Bohács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kelemen
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Kovalecz
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Etelka D Tóth
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kinga Bágyi
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Rita Marincsák
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
5
|
Dunne OM, Martin SL, Sergeant GP, McAuley DF, O'Kane CM, Button B, McGarvey LP, Lundy FT. TRPV2 modulates mechanically Induced ATP Release from Human bronchial epithelial cells. Respir Res 2024; 25:188. [PMID: 38678280 PMCID: PMC11056070 DOI: 10.1186/s12931-024-02807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.
Collapse
Affiliation(s)
- Orla M Dunne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Dundalk, Ireland
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorcan P McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
6
|
Ronan EA, Nagel M, Emrick JJ. The anatomy, neurophysiology, and cellular mechanisms of intradental sensation. FRONTIERS IN PAIN RESEARCH 2024; 5:1376564. [PMID: 38590718 PMCID: PMC11000636 DOI: 10.3389/fpain.2024.1376564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Somatosensory innervation of the oral cavity enables the detection of a range of environmental stimuli including minute and noxious mechanical forces. The trigeminal sensory neurons underlie sensation originating from the tooth. Prior work has provided important physiological and molecular characterization of dental pulp sensory innervation. Clinical dental experiences have informed our conception of the consequence of activating these neurons. However, the biological role of sensory innervation within the tooth is yet to be defined. Recent transcriptomic data, combined with mouse genetic tools, have the capacity to provide important cell-type resolution for the physiological and behavioral function of pulp-innervating sensory neurons. Importantly, these tools can be applied to determine the neuronal origin of acute dental pain that coincides with tooth damage as well as pain stemming from tissue inflammation (i.e., pulpitis) toward developing treatment strategies aimed at relieving these distinct forms of pain.
Collapse
Affiliation(s)
- Elizabeth A. Ronan
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Joshua J. Emrick
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Taniguchi J, Masuda T, Iwatani Y, Yamamoto K, Sakai N, Okada Y, Watanabe M. Rigorous evaluation of genetic and epigenetic effects on clinical laboratory measurements using Japanese monozygotic twins. Clin Genet 2024; 105:159-172. [PMID: 37899590 DOI: 10.1111/cge.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
The investigation of environmental effects on clinical measurements using individual samples is challenging because their genetic and environmental factors are different. However, using monozygotic twins (MZ) makes it possible to investigate the influence of environmental factors as they have the same genetic factors within pairs because the difference in the clinical traits within the MZ mostly reflect the influence of environmental factors. We hypothesized that the within-pair differences in the traits that are strongly affected by genetic factors become larger after genetic risk score (GRS) correction. Using 278 Japanese MZ pairs, we compared the change in within-pair differences in each of the 45 normalized clinical measurements before and after GRS correction, and we also attempted to correct for the effects of genetic factors to identify Cytosine-phosphodiester-Guanine (CpG) sites in DNA sequences with epigenetic effects that are regulated by genetic factors. Five traits were classified into the high heritability group, which was strongly affected by genetic factors. CpG sites could be classified into three groups: regulated only by environmental factors, regulated by environmental factors masked by genetic factors, and regulated only by genetic factors. Our method has the potential to identify trait-related methylation sites that have not yet been discovered.
Collapse
Affiliation(s)
- Jumpei Taniguchi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Masuda
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Sakai
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
8
|
Kim YS, Otgonsuren MO. Transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) in human odontoblast-like cells participate in lipopolysaccharide-induced immune response. Arch Oral Biol 2023; 155:105800. [PMID: 37683373 DOI: 10.1016/j.archoralbio.2023.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVES To investigate whether transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) have a function in responding to environmental stimuli in human odontoblast-like cells (hOLCs). Additionally, to explore whether activation of TRPA1 and TRPM8 in hOLCs participates in the regulation of the inflammatory process. DESIGN Changes in gene and protein expression levels of TRPA1 and TRPM8 in cultured hOLCs following lipopolysaccharide (LPS) stimulation, which mimics inflammation, were examined using quantitative reverse transcription-polymerase chain reaction and western blot analysis. Furthermore, we compared the expression profiles of 80 cytokines between LPS- and vehicle-treated hOLCs and investigated how the production of highly increased cytokines in LPS-treated hOLCs was affected by the pharmacological inhibition of TRPA1 and TRPM8. RESULTS The expression of TRPA1 and TRPM8 in hOLCs was observed and their mRNAs and proteins were upregulated in hOLCs after LPS treatment. Moreover, cytokine antibody assays revealed that monocyte chemoattractant protein-1 (MCP-1, CCL2), growth-regulated protein α (GROα, CXCL1), interleukin-6 (IL-6), and IL-8 (CXCL8) were significantly upregulated by LPS. The pharmacological inhibition of TRPA1 (HC-030031) during LPS treatment attenuated the expression of CCL2, CXCL1, and IL-8, whereas the pharmacological inhibition of TRPM8 (PF05105679) suppressed the expression of CCL2, CXCL1, and IL-8 as well as IL-6. CONCLUSIONS These results indicate that hOLCs express TRPA1 and TRPM8, which are upregulated during inflammation. In addition to being sensors of potentially harmful stimuli, TRPA1 and TRPM8 in hOLCs play important roles in regulating inflammatory responses.
Collapse
Affiliation(s)
- Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, the Republic of Korea.
| | - Munkh-Ochir Otgonsuren
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, the Republic of Korea
| |
Collapse
|
9
|
Chen X, Lu W, Lu C, Zhang L, Xu F, Dong H. The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function. Acta Physiol (Oxf) 2023; 237:e13926. [PMID: 36606511 DOI: 10.1111/apha.13926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling. METHODS The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA. RESULTS We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice. CONCLUSION We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+ -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.
Collapse
Affiliation(s)
- Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Hossain MZ, Ando H, Unno S, Roy RR, Kitagawa J. Pharmacological activation of transient receptor potential vanilloid 4 promotes triggering of the swallowing reflex in rats. Front Cell Neurosci 2023; 17:1149793. [PMID: 36909278 PMCID: PMC9992545 DOI: 10.3389/fncel.2023.1149793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The swallowing reflex is an essential physiological reflex that allows food or liquid to pass into the esophagus from the oral cavity. Delayed triggering of this reflex is a significant health problem in patients with oropharyngeal dysphagia for which no pharmacological treatments exist. Transient receptor potential channels have recently been discovered as potential targets to facilitate triggering of the swallowing reflex. However, the ability of transient receptor potential vanilloid 4 (TRPV4) to trigger the swallowing reflex has not been studied. Here, we demonstrate the involvement of TRPV4 in triggering the swallowing reflex in rats. TRPV4 immunoreactive nerve fibers were observed in the superior laryngeal nerve (SLN)-innervated swallowing-related regions. Retrograde tracing with fluorogold revealed localization of TRPV4 on approximately 25% of SLN-afferent neurons in the nodose-petrosal-jugular ganglionic complex. Among them, approximately 49% were large, 35% medium, and 15% small-sized SLN-afferent neurons. Topical application of a TRPV4 agonist (GSK1016790A) to the SLN-innervated regions dose-dependently facilitated triggering of the swallowing reflex, with the highest number of reflexes triggered at a concentration of 250 μM. The number of agonist-induced swallowing reflexes was significantly reduced by prior topical application of a TRPV4 antagonist. These findings indicate that TRPV4 is expressed on sensory nerves innervating the swallowing-related regions, and that its activation by an agonist can facilitate swallowing. TRPV4 is a potential pharmacological target for the management of oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Rita Rani Roy
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
11
|
2-hydroxyethyl methacrylate-derived reactive oxygen species stimulate ATP release via TRPA1 in human dental pulp cells. Sci Rep 2022; 12:12343. [PMID: 35853988 PMCID: PMC9296549 DOI: 10.1038/s41598-022-16559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP (adenosine triphosphate) and transient receptor potential ankyrin 1 (TRPA1) channels are involved in calcium signaling in odontoblasts and dental pain. The resin monomer 2-hydroxyethyl methacrylate (HEMA), used in dental restorative procedures, is related to apoptotic cell death via oxidative stress. Although the TRPA1 channel is highly sensitive to reactive oxygen species (ROS), the effect of HEMA-induced ROS on ATP release to the extracellular space and the TRPA1 channel has not been clarified in human dental pulp. In this study, we investigated the extracellular ATP signaling and TRPA1 activation by HEMA-derived ROS in immortalized human dental pulp cells (hDPSC-K4DT). Among the ROS-sensitive TRP channels, TRPA1 expression was highest in undifferentiated hDPSC-K4DT cells, and its expression levels were further enhanced by osteogenic differentiation. In differentiated hDPSC-K4DT cells, 30 mM HEMA increased intracellular ROS production and ATP release, although 3 mM HEMA had no effect. Pretreatment with the free radical scavenger PBN (N-tert-butyl-α-phenylnitrone) or TRPA1 antagonist HC-030031 suppressed HEMA-induced responses. These results suggest that ROS production induced by a higher dose of HEMA activates the TRPA1 channel in human dental pulp cells, leading to ATP release. These findings may contribute to the understanding of the molecular and cellular pathogenesis of tertiary dentin formation and pain in response to dental biomaterials.
Collapse
|
12
|
Inhibition of TRPA1 Ameliorates Periodontitis by Reducing Periodontal Ligament Cell Oxidative Stress and Apoptosis via PERK/eIF2 α/ATF-4/CHOP Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107915. [PMID: 35720191 PMCID: PMC9205716 DOI: 10.1155/2022/4107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
Abstract
Objective In periodontitis, excessive oxidative stress combined with subsequent apoptosis and cell death further exacerbated periodontium destruction. TRPA1, an important transient receptor potential (TRP) cation channel, may participate in the process. This study is aimed at exploring the role and the novel therapeutic function of TRPA1 in periodontitis. Methods Periodontal ligament cells or tissues derived from healthy and periodontitis (PDLCs/Ts and P-PDLCs/Ts) were used to analyze the oxidative and apoptotic levels and TRPA1 expression. TRPA1 inhibitor (HC030031) was administrated in inflammation induced by P. gingivalis lipopolysaccharide (P.g.LPS) to investigate the oxidative and apoptotic levels of PDLCs. The morphology of the endoplasmic reticulum (ER) and mitochondria was identified by transmission electron microscope, and the PERK/eIF2α/ATF-4/CHOP signal pathways were detected. Finally, HC030031 was administered to periodontitis mice to evaluate its effect on apoptotic and oxidative levels in the periodontium and the relieving of periodontitis. Results The oxidative, apoptotic levels and TRPA1 expression were higher in P-PDLC/Ts from periodontitis patients and in P.g.LPS-induced inflammatory PDLCs. TRPA1 inhibitor significantly decreased the intracellular calcium, oxidative stress, and apoptosis of inflammatory PDLCs and decreased ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. Meanwhile, the overall calcium ion decrease induced by EGTA also exerted similar antiapoptosis and antioxidative stress functions. In vivo, HC030031 significantly reduced oxidative stress and apoptosis in the gingiva and periodontal ligament, and less periodontium destruction was observed. Conclusion TRPA1 was highly related to periodontitis, and TRPA1 inhibitor significantly reduced oxidative and apoptotic levels in inflammatory PDLCs via inhibiting ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. It also reduced the oxidative stress and apoptosis in periodontitis mice thus ameliorating the development of periodontitis.
Collapse
|
13
|
TRPA1s act as chemosensors but not as cold sensors or mechanosensors to trigger the swallowing reflex in rats. Sci Rep 2022; 12:3431. [PMID: 35236901 PMCID: PMC8891345 DOI: 10.1038/s41598-022-07400-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
We examined the role of TRPA1s in triggering the swallowing reflex. TRPA1s predominantly localized on thin nerve fibers and fibroblast-like cells in swallowing-related regions and on small to medium-sized superior laryngeal nerve-afferents in the nodose–petrosal–jugular ganglionic complex. Topical application of a TRPA1 agonist, allyl isothiocyanate (AITC), dose-dependently triggered swallowing reflexes. Prior topical application of a TRPA1 antagonist significantly attenuated the AITC-induced reflexes. Application of cold AITC (4 °C) very briefly reduced the on-site temperature to < 17 °C (temperature at which TRPA1s can be activated), but had no effect on triggering of the reflex. By contrast, reducing the on-site temperature to < 17 °C for a longer time by continuous flow of cold AITC or by application of iced AITC paradoxically delayed/prevented the triggering of AITC-induced reflexes. Prior application of the TRPA1 antagonist had no effect on the threshold for the punctate mechanical stimuli-induced reflex or the number of low-force or high-force continuous mechanical pressure stimuli-induced reflexes. TRPA1s are functional and act as chemosensors, but not as cold sensors or mechanosensors, for triggering of the swallowing reflex. A brief cold stimulus has no effect on triggering of the reflex. However, a longer cold stimulus delays/prevents triggering of the reflex because of cold anesthesia.
Collapse
|
14
|
Wang LN, Wang XZ, Li YJ, Li BR, Huang M, Wang XY, Grygorczyk R, Ding GH, Schwarz W. Activation of Subcutaneous Mast Cells in Acupuncture Points Triggers Analgesia. Cells 2022; 11:809. [PMID: 35269431 PMCID: PMC8909735 DOI: 10.3390/cells11050809] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
This review summarizes experimental evidence indicating that subcutaneous mast cells are involved in the trigger mechanism of analgesia induced by acupuncture, a traditional oriental therapy, which has gradually become accepted worldwide. The results are essentially based on work from our laboratories. Skin mast cells are present at a high density in acupuncture points where fine needles are inserted and manipulated during acupuncture intervention. Mast cells are sensitive to mechanical stimulation because they express multiple types of mechanosensitive channels, including TRPV1, TRPV2, TRPV4, receptors and chloride channels. Acupuncture manipulation generates force and torque that indirectly activate the mast cells via the collagen network. Subsequently, various mediators, for example, histamine, serotonin, adenosine triphosphate and adenosine, are released from activated mast cells to the interstitial space; they or their downstream products activate the corresponding receptors situated at local nerve terminals of sensory neurons in peripheral ganglia. The analgesic effects are thought to be generated via the reduced electrical activities of the primary sensory neurons. Alternatively, these neurons project such signals to pain-relevant regions in spinal cord and/or higher centers of the brain.
Collapse
Affiliation(s)
- Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Xue-Zhi Wang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Bing-Rong Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China;
| | - Xiao-Yu Wang
- Laboratory of Immunology and Virology, Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Wolfgang Schwarz
- Institute for Biophysics, Department of Physics, Goethe-University Frankfurt, Max-von-Laue St. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Sun XF, Qiao WW, Meng LY, Bian Z. PIEZO1 Ion Channels Mediate Mechanotransduction in Odontoblasts. J Endod 2022; 48:749-758. [DOI: 10.1016/j.joen.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
|
16
|
Chalazias A, Plemmenos G, Evangeliou E, Piperi C. Pivotal role of Transient Receptor Potential Channels in oral physiology. Curr Med Chem 2021; 29:1408-1425. [PMID: 34365940 DOI: 10.2174/0929867328666210806113132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transient Receptor Potential (TRP) Channels constitute a large family of non-selective permeable ion channels involved in the perception of environmental stimuli with a central and continuously expanding role in oral tissue homeostasis. Recent studies indicate the regulatory role of TRPs in pulp physiology, oral mucosa sensation, dental pain nociception and salivary gland secretion. This review provides an update on the diverse functions of TRP channels in the physiology of oral cavity, with emphasis on their cellular location, the underlying molecular mechanisms and clinical significance. METHODS A structured search of bibliographic databases (PubMed and MEDLINE) was performed for peer reviewed studies on TRP channels function on oral cavity physiology the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS TRPs expression has been detected in major cell types of the oral cavity, including odontoblasts, periodontal ligament, oral epithelial, salivary gland cells, and chondrocytes of temporomandibular joints, where they mediate signal perception and transduction of mechanical, thermal, and osmotic stimuli. They contribute to pulp physiology through dentin formation, mineralization, and periodontal ligament formation along with alveolar bone remodeling in dental pulp and periodontal ligament cells. TRPs are also involved in oral mucosa sensation, dental pain nociception, saliva secretion, swallowing reflex and temporomandibular joints' development. CONCLUSION Various TRP channels regulate oral cavity homeostasis, playing an important role in the transduction of external stimuli to intracellular signals in a cell type-specific manner and presenting promising drug targets for the development of pharmacological strategies to manage oral diseases.
Collapse
Affiliation(s)
- Andreas Chalazias
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Evangelos Evangeliou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens. Greece
| |
Collapse
|
17
|
Current Concepts of Dentinal Hypersensitivity. J Endod 2021; 47:1696-1702. [PMID: 34302871 DOI: 10.1016/j.joen.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Although many clinical studies have reported on the prevalence of dental pain, far fewer studies have focused on the mechanisms of dental pain. This is an important gap because increased understanding of dental pain mechanisms may lead to improved diagnostic tests or therapeutic interventions. The aim of this study was to comprehensively review the literature on the mechanisms of dentinal sensitivity. METHODS PubMed and Ovid were searched for articles that addressed dentinal pain and or pulpal sensitivity. Because of the breadth of research ranging from cellular/molecular studies to clinical trials, a narrative review on the mechanisms of dentinal sensitivity was constructed based on the literature. RESULTS Five various mechanisms for dentinal sensitivity have been proposed: (1) the classic hydrodynamic theory, (2) direct innervation of dentinal tubules, (3) neuroplasticity and sensitization of nociceptors, (4) odontoblasts serving as sensory receptors, and (5) algoneurons. CONCLUSIONS These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.
Collapse
|
18
|
Byers MR, Calkins DF. Trigeminal sensory nerve patterns in dentine and their responses to attrition in rat molars. Arch Oral Biol 2021; 129:105197. [PMID: 34146928 DOI: 10.1016/j.archoralbio.2021.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Our goal was to define trigeminal nerve ending quantities and patterns in rat molar dentine, their responses to attrition (tooth wear), and their associated odontoblasts and connections with pulpal plexuses. DESIGN Trigeminal ganglia were labeled for axonal transport of 3H-proteins to dentinal nerve endings in male rats (3-13 months old). Autoradiography detected radio-labeled dentinal tubules as indicators of nerve ending locations. Quantitative morphometry was done (ANOVA, t-tests), and littermates were compared for attrition and innervation. RESULTS There were six dentinal patterns, only two of which had an associated neural plexus of Raschkow and cell-free zone (Den-1, Den-2). Other nerves entered dentin from bush-like endings near elongated odontoblasts (Den-B), as single fibers (Den-X), as networks in predentine (PdN), or as single fibers in tertiary dentine at cusp tips (Den-S). There were at least 186,600 innervated dentinal tubules within the set of three right maxillary molars of the best-labeled rat, and similar densities were found in other rats. Attrition levels differed among cusps and in littermates (t-test p < 0.02-0.0001), but the matched right/left cusps per rat were similar. Innervations of tertiary and enamel-free dentine (Den-S, Den-X) were preserved in all rats. Den-B and Den-2 coronal patterns were unchanged unless displaced by dentinogenesis. Den-1 losses occurred in older cusps, while Den-2 patterns increased near cervical and intercuspal odontoblasts. CONCLUSIONS The extensive molar dentinal innervation had unique distributions per rat per cusp that depended on region (buccal, middle, palatal) and attrition, but only two of six patterns connected to a plexus of Raschkow.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA.
| | - Dianne F Calkins
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA
| |
Collapse
|
19
|
Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D, Shen X, Wang L. Mechanosensitive TRPV4 Channel-Induced Extracellular ATP Accumulation at the Acupoint Mediates Acupuncture Analgesia of Ankle Arthritis in Rats. Life (Basel) 2021; 11:513. [PMID: 34073103 PMCID: PMC8228741 DOI: 10.3390/life11060513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Acupuncture (AP) is a safe and effective analgesic therapy. Understanding how fine needles trigger biological signals can help us optimize needling manipulation to improve its efficiency. Adenosine accumulation in treated acupoints is a vital related event. Here, we hypothesized that extracellular ATP (eATP) mobilization preceded adenosine accumulation, which involved local activation of mechanosensitive channels, especially TRPV4 protein. (2) Methods: AP was applied at the injured-side Zusanli acupoint (ST36) of acute ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in microdialysate from the acupoints was determined by luminescence assay. (3) Results: AP analgesic effect was significantly suppressed by pre-injection of GdCl3 or ruthenium red in ST36, the wide-spectrum inhibitors of mechanosensitive channels, or by HC067047, a specific antagonist of TRPV4 channels. Microdialysate determination revealed a needling-induced transient eATP accumulation that was significantly decreased by pre-injection of HC067047. Additionally, preventing eATP hydrolysis by pre-injection of ARL67156, a non-specific inhibitor of ecto-ATPases, led to the increase in eATP levels and the abolishment of AP analgesic effect. (4) Conclusions: These observations indicate that needling-induced transient accumulation of eATP, due to the activation of mechanosensitive TRPV4 channels and the activities of ecto-ATPases, is involved in the trigger mechanism of AP analgesia.
Collapse
Affiliation(s)
- Yawen Zheng
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weimin Zuo
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaiyu Cui
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xueyong Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Lina Wang
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| |
Collapse
|
20
|
Wu CK, Lin JF, Lee TS, Kou YR, Tarng DC. Role of TRPA1 in Tissue Damage and Kidney Disease. Int J Mol Sci 2021; 22:3415. [PMID: 33810314 PMCID: PMC8036557 DOI: 10.3390/ijms22073415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and induce protective responses via the release of neuropeptides after the activation of the channel by chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation after repeated noxious stimuli may result in the development of several diseases. In addition to sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate hypoxia-reoxygenation injury in vitro and ischaemia-reperfusion-induced kidney injury in vivo through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different roles in different cell types accordingly. These findings depict the important role of TRPA1 and warrant further investigation.
Collapse
Affiliation(s)
- Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Ji-Fan Lin
- Precision Medicine Center, Department of Research, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Tzong-Shyuan Lee
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Yu Ru Kou
- Department of Institue of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Der-Cherng Tarng
- Department of Institue of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu 300, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
21
|
Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A, Winter Z, Hein A, Touska F, Reinhardt S, Tragl A, Kusuda R, Wartenberg P, Sclaroff A, Pfeifer JD, Ectors F, Dahl A, Freichel M, Vlachova V, Brauchi S, Roza C, Boehm U, Clapham DE, Lennerz JK, Zimmermann K. Odontoblast TRPC5 channels signal cold pain in teeth. SCIENCE ADVANCES 2021; 7:7/13/eabf5567. [PMID: 33771873 PMCID: PMC7997515 DOI: 10.1126/sciadv.abf5567] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 05/21/2023]
Abstract
Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.
Collapse
Affiliation(s)
- Laura Bernal
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Pamela Sotelo-Hitschfeld
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Physiology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Christine König
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Viktor Sinica
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Zoltan Winter
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Alexander Hein
- HHMI, Cardiovascular Division, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Filip Touska
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Susanne Reinhardt
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Aaron Tragl
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ricardo Kusuda
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Allen Sclaroff
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO, USA
| | - John D Pfeifer
- Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Andreas Dahl
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sebastian Brauchi
- Institute of Physiology, Faculty of Medicine and Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Santiago, Chile
| | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David E Clapham
- HHMI, Cardiovascular Division, Boston Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Katharina Zimmermann
- Department of Anesthesiology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
| |
Collapse
|
22
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
23
|
Pei F, Liu J, Zhang L, Pan X, Huang W, Cen X, Huang S, Jin Y, Zhao Z. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal 2020; 78:109877. [PMID: 33296740 DOI: 10.1016/j.cellsig.2020.109877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Tooth and bone are independent tissues with a close relationship. Both are composed of a highly calcified outer structure and soft inner tissue, and both are constantly under mechanical stress. In particular, the alveolar bone and tooth constitute an occlusion system and suffer from masticatory and occlusal force. Thus, mechanotransduction is a key process in many developmental, physiological and pathological processes in tooth and bone. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important participants in mechanotransduction, but their functions in tooth and bone are poorly understood. This review summarizes our current understanding of mechanosensitive ion channels and their roles in tooth and bone tissues. Research in these areas may shed new light on the regulation of tooth and bone tissues and potential treatments for diseases affecting these tissues.
Collapse
Affiliation(s)
- Fang Pei
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Wei Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiao Cen
- Department of the Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
24
|
Kim JH, Won J, Oh SB. Expression of Ca V3.1 T-type Calcium Channels in Acutely Isolated Adult Rat Odontoblasts. Arch Oral Biol 2020; 118:104864. [PMID: 32847753 DOI: 10.1016/j.archoralbio.2020.104864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Odontoblasts, which consist the outermost compartment of the dental pulp, are primarily engaged in dentin formation. Earlier evidence suggests that voltage-gated calcium channels, such as the high voltage-activated L-type calcium channels, serve as a calcium entry route to mediate dentin formation in odontoblasts. However, the involvement of other voltage-gated calcium channels in regulating intracellular Ca2+ remain unanswered. DESIGN The expression of voltage-gated calcium channel subtypes of the P/Q- (CaV2.1), N-(CaV2.2), R- (CaV2.3), and T- (CaV3.1-3.3) type were screened in adult rat odontoblasts by single cell RT-PCR. Among these candidates, immunopositivity against CaV3.1 was examined in the odontoblastic layer in teeth sections and dissociated odontoblasts. To confirm the functional expression of CaV3.1 in odontoblasts, intracellular Ca2+ increase in response to membrane depolarization was monitored with Fura-2-based ratiometric calcium imaging. RESULTS Among the candidate calcium channels, we found that mRNA for CaV3.1 is mainly detected in odontoblasts, with its expression being detected in the odontoblastic layer and dissociated odontoblasts. High extracellular K+-induced membrane depolarization was inhibited by pharmacological blockers for T-type calcium channels such as amiloride or ML218. CONCLUSION Our results demonstrate that among P/Q-, N-, R-, and T-type calcium channels, CaV3.1 is mainly expressed in odontoblasts to mediate intracellular Ca2+ signaling in response to membrane depolarization. These findings suggest that CaV3.1 may facilitate intracellular Ca2+ dynamics especially in the range of subliminal depolarizations near resting membrane potentials where other high voltage-gated calcium channels such as the L-type are likely to be inactive.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Liu XX, Tenenbaum HC, Wilder RS, Quock R, Hewlett ER, Ren YF. Pathogenesis, diagnosis and management of dentin hypersensitivity: an evidence-based overview for dental practitioners. BMC Oral Health 2020; 20:220. [PMID: 32762733 PMCID: PMC7409672 DOI: 10.1186/s12903-020-01199-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Though dentin hypersensitivity (DHS) is one of the most common complaints from patients in dental clinics, there are no universally accepted guidelines for differential diagnosis as well as selection of reliable treatment modalities for this condition. The neurosensory mechanisms underlying DHS remain unclear, but fluid movements within exposed dentinal tubules, i.e., the hydrodynamic theory, has been a widely accepted explanation for DHS pain. As several dental conditions have symptoms that mimic DHS at different stages of their progression, diagnosis and treatment of DHS are often confusing, especially for inexperienced dental practitioners. In this paper we provide an up-to-date review on risk factors that play a role in the development and chronicity of DHS and summarize the current principles and strategies for differential diagnosis and management of DHS in dental practices. We will outline the etiology, predisposing factors and the underlying putative mechanisms of DHS, and provide principles and indications for its diagnosis and management. Though desensitization remains to be the first choice for DHS for many dental practitioners and most of desensitizing agents reduce the symptoms of DHS by occluding patent dentinal tubules, the long-term outcome of such treatment is uncertain. With improved understanding of the underlying nociceptive mechanisms of DHS, it is expected that promising novel therapies will emerge and provide more effective relief for patients with DHS.
Collapse
Affiliation(s)
- Xiu-Xin Liu
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, NY, 14620, USA.,Department of Dentistry, Atlanta VA Medical Center, Atlanta, GA, USA
| | - Howard C Tenenbaum
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca S Wilder
- Office for Professional Development and Faculty Affairs, Adams School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Quock
- Department of Restorative Dentistry & Prosthodontics, University of Texas School of Dentistry at Houston, Houston, TX, USA
| | - Edmond R Hewlett
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, California, USA
| | - Yan-Fang Ren
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, NY, 14620, USA. .,Outreach and Diversity, UCLA School of Dentistry, Los Angeles, California, USA.
| |
Collapse
|
26
|
Liu J, Que K, Liu Y, Zang C, Wen J. Tumor Necrosis Factor-α Regulates the TRPA1 Expression in Human Odontoblast-Like Cells. J Pain Res 2020; 13:1655-1664. [PMID: 32753941 PMCID: PMC7352379 DOI: 10.2147/jpr.s255288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is a promiscuous chemical nociceptor involved in the perception of cold hypersensitivity, mechanical hyperalgesia and inflammatory pain in human odontoblasts (HODs). Here, we aimed to study the underlying mechanism in which inflammatory cytokine tumor necrosis factor (TNF)-α regulated the expression of TRPA1 channel at both cellular and subcellular levels. Materials and Methods Immunohistochemistry was used to confirm the expression of TRPA1 channel in HODs. Dental pulp cells were induced and differentiated to HOD-like cells and used in succedent experiments. Real-time quantitative polymerase chain reaction assay and Western blotting were used to examine the expression changes of TRPA1 channel with the presence and absence of TNF-α and TNF receptor (TNFR) inhibitor, R 7050. Finally, immunoelectron microscopy (IEM) and quantitative analysis were performed to directly display the TNF-α-regulated distribution change of TRPA1 channel in HOD-like cells. Results TRPA1 channel was positively expressed in the cell bodies and processes of HODs. The expression TRPA1 channel was significantly up-regulated by high concentration of TNF-α, which could be suppressed by R 7050. Under IEM, TNF-α treatment could increase the expression of TRPA1 in the ER membrane, cytoplasm and mitochondria. Conclusion Our study demonstrated that TRPA1 expression in HOD-like cells was evidently upregulated by TNF-α, presumably via TNFR1. TNF-α induced significant increasement in the intracellular distributions of TRPA1 proteins, with increases in the cytoplasm, ER membrane, and mitochondria, to actively participate in noxious external stimuli perception and transduction of hyperalgesia.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chengcheng Zang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Wen
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China.,Lotus Dental Clinic, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
27
|
Tanaka A, Shibukawa Y, Yamamoto M, Abe S, Yamamoto H, Shintani S. Developmental studies on the acquisition of perception conducting pathways via TRP channels in rat molar odontoblasts using immunohistochemistry and RT-qPCR. Anat Sci Int 2019; 95:251-257. [PMID: 31848975 PMCID: PMC7012969 DOI: 10.1007/s12565-019-00517-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
Odontoblasts act as dentin formation and sensory receptors. Recently, it was reported that transient receptor potential ankyrin (TRPA) 1, TRP vanilloid (TRPV) 4 and pannexin 1 (PANX-1) play important roles in odontoblast sensory reception. However, it is not known when odontoblasts begin to possess a sense reception function. The aim of this study was to clarify the development of odontoblasts as sense receptors. Sections of mandibular first molars from postnatal day (PN) 0 to PN12 Wistar rats were prepared for hematoxylin–eosin staining. Immunohistochemically, we used anti-dentin sialoprotein (DSP), anti-TRPA1, anti-TRPV4, anti-PANX-1, and anti-neurofilament (NF) antibodies. In addition, we investigated TRPA1 and TRPV4 expression by reverse transcriptional quantitative polymerase chain reaction (RT-qPCR). At PN0, undifferentiated odontoblasts showed no immunoreaction to anti-DSP, anti-TRPA1, anti-TRPV4, or anti-PANX-1 antibodies. However, immunopositive reactions of these antibodies increased during odontoblast differentiation at PN3 and PN6. An immunopositive reaction of the anti-NF antibody appeared in the odontoblast neighborhood at PN12, when the odontoblasts began to form root dentin, and this appeared later than that of the other antibodies. By RT-qPCR, expression of TRPA1 at PN6 was significantly lower than that at PN0 (p < 0.05) and PN3 (p < 0.01). Expression of TRPV4 at PN6 was significantly lower than that at PN0 (p < 0.01) and PN3 (p < 0.01). The results of this study suggest that odontoblasts may acquire sensory receptor function after beginning to form root dentin, when TRPA1, TRPV4, PANX-1 channels, and nerve fibers are completely formed.
Collapse
Affiliation(s)
- Aoi Tanaka
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| |
Collapse
|
28
|
Mizuhara M, Kometani-Gunjigake K, Nakao-Kuroishi K, Toyono T, Hitomi S, Morii A, Shiga M, Seta Y, Ono K, Kawamoto T. Vesicular nucleotide transporter mediates adenosine triphosphate release in compressed human periodontal ligament fibroblast cells and participates in tooth movement-induced nociception in rats. Arch Oral Biol 2019; 110:104607. [PMID: 31810015 DOI: 10.1016/j.archoralbio.2019.104607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Pain control is imperative in orthodontic treatment. Adenosine triphosphate (ATP) is a key mediator released from periodontal ligament cells that excites nociceptive nerve endings. Vesicular nucleotide transporter (VNUT), encoded by the Solute carrier family 17 member 9 (SLC17A9) gene, participates in ATP uptake into secretory vesicles; thus, it may mediate tooth movement-induced pain. In the present study, we examined whether VNUT in periodontal ligament cells participates in tooth movement-induced nociception. DESIGN Expression levels of SLC17A9, connexin 43, and pannexin 1 in human periodontal ligament fibroblasts (HPDLFs) were examined by quantitative reverse transcription-polymerase chain reaction. Mechanical force via centrifugation-induced ATP release was measured using an ATP bioluminescence assay. Inhibitors were used to evaluate the role of ATP transporters. Face-grooming behaviors were assessed as indicators of nociceptive responses after experimental tooth movement in rats, as well as the effects of drugs for the pain-like behavior. RESULTS After HPDLFs underwent mechanical stimulation by centrifugation, SLC17A9 mRNA expression in the cells was significantly upregulated. Increased ATP release from HPDLFs after mechanical stimulation was suppressed by treatment with clodronic acid, a VNUT inhibitor, at concentrations of 0.1 and 1.0 μM. In rats, face-grooming behaviors (indicators of nociception) were significantly increased on day 1 after experimental tooth movement. Increased face-grooming behaviors were suppressed by systemic administration of clodronic acid (0.1 mg/kg). CONCLUSIONS These results indicate that release of ATP from periodontal ligament cells via VNUT is important for nociceptive transduction during orthodontic treatment. Thus, VNUT may provide a novel drug target for tooth movement-induced pain.
Collapse
Affiliation(s)
- Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Takashi Toyono
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Aoi Morii
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Yuji Seta
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| |
Collapse
|
29
|
Wang Z, Ye D, Ye J, Wang M, Liu J, Jiang H, Xu Y, Zhang J, Chen J, Wan J. The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges. Front Pharmacol 2019; 10:1253. [PMID: 31680989 PMCID: PMC6813932 DOI: 10.3389/fphar.2019.01253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a calcium-permeable nonselective cation channel in the plasma membrane that belongs to the transient receptor potential (TRP) channel superfamily. Recent studies have suggested that the TRPA1 channel plays an essential role in the development and progression of several cardiovascular conditions, such as atherosclerosis, heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, arrhythmia, vasodilation, and hypertension. Activation of the TRPA1 channel has a protective effect against the development of atherosclerosis. Furthermore, TRPA1 channel activation elicits peripheral vasodilation and induces a biphasic blood pressure response. However, loss of channel expression or blockade of its activation suppressed heart failure, myocardial ischemia-reperfusion injury, myocardial fibrosis, and arrhythmia. In this paper, we review recent research progress on the TRPA1 channel and discuss its potential role in the cardiovascular system.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
30
|
The structural changes of the mutated ankyrin repeat domain of the human TRPV4 channel alter its ATP binding ability. J Mech Behav Biomed Mater 2019; 101:103407. [PMID: 31493693 DOI: 10.1016/j.jmbbm.2019.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/24/2019] [Indexed: 11/20/2022]
Abstract
The transient receptor potential (TRP) channel TRPV4 is a calcium-permeable cation channel protein which plays a mechanosensory and osmosensory role in several musculoskeletal tissues. Previous studies have shown that some specific mutations in the ankyrin repeat domain (ARD) of TRPV4 can reduce channel activity and further cause the osteoarthropathy related disease. Mutations in this region probably influence the constitutive activity of the channel, which mainly regulated by the binding of a small ligand such as adenosine triphosphate (ATP). These findings suggest that it is crucial to understand the fundamental mechanisms regulated by chemical ligands such as ATP binding with the ankyrin repeat domain (ARD) of TRPV4. However, how these mutations at the molecular level resulting in the related diseases are still unclear. Here we use full atomistic simulations to investigate the mutation induced conformational changes and ATP binding ability differences of TRPV4-ARD. Conformation characteristics of different mutations of TRPV4-ARD are explored. Optimal communication paths are studied to explain how a point mutation away from aim region (Finger 3) can cause a significant alteration on the conformation. We identify two molecular mechanisms through the conformation of Finger 3 and through alter the ATP binding mechanism correspondently to explain these unknowns. Our study provides fundamental insights into the mutation induced structural changes of the TRPV4-ARD and helps to explain how the mutations alter the ATP binding ability of the TRPV4-ARD.
Collapse
|
31
|
Kozyreva T, Kozaruk V, Meyta E. Skin TRPA1 ion channel participates in thermoregulatory response to cold. Comparison with the effect of TRPM8. J Therm Biol 2019; 84:208-213. [DOI: 10.1016/j.jtherbio.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022]
|
32
|
Byers MR. Chewing causes rapid changes in immunoreactive nerve patterns in rat molar teeth: Implications for dental proprioception and pain. Arch Oral Biol 2019; 107:104511. [PMID: 31445382 DOI: 10.1016/j.archoralbio.2019.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study tests the hypothesis that normal use of teeth (chewing) causes changes in immunoreactive-(IR) patterns for endings of large Aβ and CGRP axons in rat molar cusps. DESIGN First, a new paradigm to test chewing in adult male rats was developed. Then IR patterns for large dental axons were analysed for a calcium-binding protein, parvalbumin (PV), heavy neurofilament protein-200 (NFP), and vesicle-release molecule synaptophysin (SYN) that all typify large dental axons and proprioceptors for comparison with endings of CGRP-IR neuropeptide axons. The behavior groups were: (1) daytime sleeping/fasting (Group:SF); (2) brief feeding after 8-11 h of daytime sleeping/fasting (Group:SF-C); (3) normal nocturnal feeding (Group:N); (4) nocturnal fasting (Group:NF); (5) brief feeding/chewing after nocturnal fasting (Group:NF-C). RESULTS Nerve endings with NFP-, PV-, or SYN-IR were lost or altered in pulp and dentin in all chewing groups. Other endings with CGRP-IR were near those with PV-, NFP- and SYN-IR at the pulp-dentin border and in dentin, and they also lost immunoreactivity in all chewing groups. The special beaded regions along the crown pulp/dentin borders lost neural labeling in all chewing groups. Nerves of molar roots and periodontal ligament were not changed. CONCLUSIONS Rapid neural reactions to chewing show extensive, reversible, non-nociceptive depletions of crown innervation. Those changes were rapid enough to occur during normal feeding followed by recovery during rest. The new dental paradigm related to chewing and fasting allows dissection of intradental proprioceptive-like mechanisms during normal tooth functions for comparison with nociceptive and mechanosensitive reactions after injury or inflammation.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195-6540 USA.
| |
Collapse
|
33
|
Liu J, Zhao Z, Wen J, Wang Y, Zhao M, Peng L, Zang C, Que K. TNF-α differently regulates TRPV2 and TRPV4 channels in human dental pulp cells. Int Endod J 2019; 52:1617-1628. [PMID: 31206742 DOI: 10.1111/iej.13174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
AIM To investigate the influence of tumour necrosis factor (TNF)-α on transient receptor potential channel vanilloid subfamily type 2 (TRPV2) and TRPV4 channels in human dental pulp cells (HDPCs), and explore the potential downstream signalling pathway mediating this process. METHODOLOGY Immunofluorescence staining and ratiometric calcium imaging were used to confirm the expression and activation of TRPV2 and TRPV4 channels. Different regulations of 1 and 10 ng mL-1 as well as short- and long-term TNF-α treatments to TRPV2 and TRPV4 response were examined by RT-qPCR, Western blot analysis, flow cytometry and ratiometric calcium imaging. Functions of TNF receptor (TNFR)1 and p38 MAPK signalling pathways in this process were also detected by respective inhibitors. Immunoelectron microscopy (IEM) was used to examine long-term effect of TNF-α on TRPV2 expression at the subcellular level. Data were analysed statistically with t-test, and one-way analysis of variance was used with the non-parametric Mann-Whitney and Kruskal-Wallis tests. The level of significance was set at P < 0.05. RESULTS TRPV2 and TRPV4 channels were activated by respective agonists in HDPCs. Neither TRPV2 nor TRPV4 channels were upregulated by 1 ng mL-1 TNF-α (P > 0.05). TRPV2, but not TRPV4, was upregulated by 10 ng mL-1 TNF-α (P < 0.05). Both short- and long-term treatments with 10 ng mL-1 TNF-α significantly enhanced TRPV2 responses, whereas only short-term treatment of TNF-α increased TRPV4 response (P < 0.05). Moreover, the inhibitors of TNFR and p38 both significantly decreased the TNF-α-induced up-regulation of TRPV channels (P < 0.05). At the subcellular level, prolonged TNF-α treatment significantly increased the functional expression of the TRPV2 channel especially in the nucleus, endoplasmic reticulum and mitochondria. CONCLUSIONS Low and high concentrations, as well as short- and long-term TNF-α treatments regulated the activity of TRPV2 and TRPV4 channels in HDPCs differently, and this effect might be mediated by TNFR1 and p38 MAPK signalling pathways. IEM was used to confirm that prolonged TNF-α treatment significantly increased the functional expression of the TRPV2 channel at a subcellular level.
Collapse
Affiliation(s)
- J Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - Z Zhao
- Department of Stomatology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - J Wen
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - Y Wang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - M Zhao
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - L Peng
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - C Zang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| | - K Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin
| |
Collapse
|
34
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
35
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
36
|
Välimaa S, Perea-Lowery L, Smått JH, Peltonen J, Budde T, Vallittu PK. Grit blasted aggregates of hydroxyl apatite functionalized calcium carbonate in occluding dentinal tubules. Heliyon 2019; 4:e01049. [PMID: 30603691 PMCID: PMC6307103 DOI: 10.1016/j.heliyon.2018.e01049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/03/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
Objectives This study aimed to investigate the effects of using hydroxyl apatite functionalized calcium carbonate (FCC) particles on occluding dentinal tubules. Methods Dentine specimens extracted from eighteen human molars with exposed dentinal tubules were divided into three groups (n = 6/group): a) Cut surface with smear layer; b) EDTA (smear layer removed with 17% EDTA for 1 min); and c) Grit blasted functionalized calcium carbonate (FCC) with and air pressure of 280 kPa. Microscopic dentinal tubule occlusion, tubule diameter and tubule area were evaluated using scanning electron microscopy (SEM) before and after grit blasting. Biomineralization of specimens was carried out in a simulated body fluid (SBF). Elemental analysis of occluding materials was carried out using energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) analysis was performed to demonstrate the crystal structure of the biomineralized layer on dentine. Results FCC particles showed penetration into the dentinal tubules by breakage of their original particle shape and size. EDTA treated surface had higher number and larger size tubules than those with smear layer or grit blasted (p < 0.005). SEM-EDX analysis revealed mineral precipitation of calcium phosphate on the SBF immersed dentin specimens. XRD analysis showed typical crystal structure of hydroxyl apatite for the biomineralized surface layer on dentine. Conclusions Grit blasted FCC particles initially occluded effectively the opened dentinal tubules and biomineralization occurred in tubules primarily occluded by the FCC particles. However, in the optimal in vitro conditions in SBF, no difference between biomineralization was found between the grit blasted surface and the control surface. Clinical significance Several materials and methods have been established for treatment of dentinal hypersensitivity although a golden standard treatment has not been discovered. Grit blasted functionalized calcium carbonate has a potential to occlude and remineralize exposed dentinal tubules. This could offer a more biological approach on treatment of dentin hypersensitivity.
Collapse
Affiliation(s)
- S Välimaa
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland
| | - L Perea-Lowery
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland
| | - J-H Smått
- Laboratory of Physical Chemistry, Faculty of Science and Engineering and Center for Functional Materials, Åbo Akademi University, Finland
| | - J Peltonen
- Laboratory of Physical Chemistry, Faculty of Science and Engineering and Center for Functional Materials, Åbo Akademi University, Finland
| | - T Budde
- Omya International AG, Oftringen, Switzerland
| | - P K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Finland.,City of Turku, Welfare Division, Finland
| |
Collapse
|
37
|
Zhang S, Ye D, Ma L, Ren Y, Dirksen RT, Liu X. Purinergic Signaling Modulates Survival/Proliferation of Human Dental Pulp Stem Cells. J Dent Res 2018; 98:242-249. [PMID: 30383477 DOI: 10.1177/0022034518807920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) reside in postnatal dental pulp and exhibit the potential to differentiate into odontoblasts as well as neurons. However, the intercellular signaling niches necessary for hDPSC survival and self-renewal remain largely unknown. The objective of this study is to demonstrate the existence of intercellular purinergic signaling in hDPSCs and to assess the impact of purinergic signaling on hDPSC survival and proliferation. hDPSCs were isolated from extracted third molars and cultured in minimum essential medium. To demonstrate responsiveness to ATP application and inhibitions by purinergic receptor antagonists, whole cell patch-clamp recordings of ATP-induced currents were recorded from cultured hDPSCs. Immunofluorescence and enzymatic histochemistry staining were performed to assess purinergic receptor expression and ectonucleotidase activity in hDPSCs, respectively. To determine the effects of purinergic signaling on hDPSC, purinergic receptor antagonists and an ectonucleotidase inhibitor were applied in culture medium, and hDPSC survival and proliferation were assessed with DAPI staining and Ki67 immunofluorescence staining, respectively. We demonstrated that ATP application induced inward currents in hDPSCs. P2X and P2Y receptors are involved in the generation of ATP-induced inward currents. We also detected expression of NTPDase3 and ectonucleotidase activity in hDPSCs. We further demonstrated that purinergic receptors were tonically activated in hDPSCs and that inhibition of ectonucleotidase activity enhanced ATP-induced inward currents. Furthermore, we found that blocking P2Y and P2X receptors reduced-and inhibition of ecto-ATPase activity enhanced-the survival and proliferation of hDPSCs, while blocking P2X receptors alone affected only hDPSC proliferation. Autocrine/paracrine purinergic signaling is essential for hDPSC survival and proliferation. These results reveal potential targets to manipulate hDPSCs to promote tooth/dental pulp repair and regeneration.
Collapse
Affiliation(s)
- S Zhang
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D Ye
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - L Ma
- 2 Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China, China
| | - Y Ren
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R T Dirksen
- 3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - X Liu
- 1 Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,3 Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,4 Department of Dentistry, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
38
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
39
|
Ohsaki A, Tanuma SI, Tsukimoto M. TRPV4 Channel-Regulated ATP Release Contributes to γ-Irradiation-Induced Production of IL-6 and IL-8 in Epidermal Keratinocytes. Biol Pharm Bull 2018; 41:1620-1626. [PMID: 30022772 DOI: 10.1248/bpb.b18-00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
External stimuli, such as radiation, induce inflammatory cytokine and chemokine production in skin, but the mechanisms involved are not completely understood. We previously showed that the P2Y11 nucleotide receptor, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) all participate in interleukin (IL)-6 production induced by γ-irradiation. Here, we focused on the transient receptor potential vanilloid 4 (TRPV4) channel, which is expressed in skin keratinocytes and has been reported to play a role in inflammation. We found that irradiation of human epidermal keratinocytes HaCaT cells with 5 Gy of γ-rays (137Cs: 0.75 Gy/min) induced IL-6 and IL-8 production. HaCaT cells treated with TRPV4 channel agonist GSK1016790A also showed increased IL-6 and IL-8 production. In both cases, IL-6/IL-8 production was not increased at 24 h after stimulation, but was increased at 48 h. ATP was released from cells exposed to γ-irradiation or TRPV4 channel agonist, and the release was suppressed by TRPV4 channel inhibitors. The γ-irradiation-induced increase in IL-6 and IL-8 production was suppressed by apyrase (ecto-nucleotidase), NF157 (selective P2Y11 receptor antagonist) and SB203580 (p38 MAPK inhibitor). GSK1016790A-induced inhibitor of kappa B-alpha (IκBα) decomposition, which causes NF-κB activation was suppressed by NF157 and SB203580, and γ-irradiation-induced IκBα decomposition was suppressed by TRPV4 channel inhibitors. Our results suggest that γ-irradiation of keratinocytes induces ATP release via activation of the TRPV4 channel, and then ATP activates P2Y11 receptor and p38 MAPK-NF-κB signaling, resulting in IL-6/IL-8 production.
Collapse
Affiliation(s)
- Airi Ohsaki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
40
|
Sato M, Ogura K, Kimura M, Nishi K, Ando M, Tazaki M, Shibukawa Y. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B 4-negative Medium-sized Trigeminal Ganglion Neurons. J Endod 2018; 44:984-991.e2. [PMID: 29709295 DOI: 10.1016/j.joen.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. METHODS We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. RESULTS We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X3), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B4-negative medium-sized neurons. Action potentials in these isolectin B4-negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. CONCLUSIONS Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain.
Collapse
Affiliation(s)
- Masaki Sato
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Kazuhiro Ogura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
41
|
Bakri MM, Yahya F, Munawar KMM, Kitagawa J, Hossain MZ. Transient receptor potential vanilloid 4 (TRPV4) expression on the nerve fibers of human dental pulp is upregulated under inflammatory condition. Arch Oral Biol 2018; 89:94-98. [PMID: 29499561 DOI: 10.1016/j.archoralbio.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/27/2017] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Transient receptor potential vanilloid 4 (TRPV4) has been considered as a mechano-, thermo- and osmo-receptor. Under inflammatory conditions in dental pulp, teeth can become sensitive upon exposure to a variety of innocuous stimuli. The objective of the present study was to investigate the expression of the TRPV4 channel on nerve fibers in human dental pulp of non-symptomatic and symptomatic teeth associated with inflammatory conditions. DESIGN Dental pulp from extracted human permanent teeth was processed for fluorescence immunohistochemistry. Ten asymptomatic (normal) and 10 symptomatic (symptoms associated with pulpitis) teeth were used in this study. Nerve fibers were identified by immunostaining for a marker, protein gene product 9.5, and the cells were counterstained with 4',6-diamidino-2-phenylindole. An anti-TRPV4 antibody was used to trace TRPV4 expression. RESULTS TRPV4 expression was co-localized with the nerve fiber marker. Immunoreactivity for TRPV4 was more intense (p < 0.05) in the nerves of symptomatic teeth than those of normal teeth. The number of co-localization spots was increased significantly (p < 0.05) in the dental pulp of symptomatic teeth compared with that of asymptomatic (normal) teeth. CONCLUSIONS There is expression of TRPV4 channels on the nerve fibers of human dental pulp. Our findings suggest upregulation of TRPV4 expression under inflammatory conditions in the pulp. The upregulation of TRPV4 channels may be associated with the exaggerated response of dental pulp to innocuous mechanical, thermal and osmotic stimuli under inflammatory conditions.
Collapse
Affiliation(s)
- Marina M Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan
| | - Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
42
|
Ogata K, Tsumuraya T, Oka K, Shin M, Okamoto F, Kajiya H, Katagiri C, Ozaki M, Matsushita M, Okabe K. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci Rep 2017; 7:18099. [PMID: 29273814 PMCID: PMC5741708 DOI: 10.1038/s41598-017-18291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin-7 (TRPM7) is a bi-functional protein containing a kinase domain fused to an ion channel. TRPM7 is highly expressed in ameloblasts during tooth development. Here we show that TRPM7 kinase-inactive knock-in mutant mice (TRPM7 KR mice) exhibited small enamel volume with opaque white-colored incisors. The TRPM7 channel function of ameloblast-lineage cells from TRPM7 KR mice was normal. Interestingly, phosphorylation of intracellular molecules including Smad1/5/9, p38 and cAMP response element binding protein (CREB) was inhibited in ameloblasts from TRPM7 KR mice at the pre-secretory stage. An immunoprecipitation assay showed that CREB was bound to TRPM7, suggesting that direct phosphorylation of CREB by TRPM7 was inhibited in ameloblast-lineage cells from TRPM7 KR mice. These results indicate that the function of the TRPM7 kinase domain plays an important role in ameloblast differentiation, independent of TRPM7 channel activity, via phosphorylation of CREB.
Collapse
Affiliation(s)
- Kayoko Ogata
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Tomoyuki Tsumuraya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan.
| | - Masashi Shin
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masao Ozaki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
43
|
Le Fur-Bonnabesse A, Bodéré C, Hélou C, Chevalier V, Goulet JP. Dental pain induced by an ambient thermal differential: pathophysiological hypothesis. J Pain Res 2017; 10:2845-2851. [PMID: 29290692 PMCID: PMC5736355 DOI: 10.2147/jpr.s142539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dental pain triggered by temperature differential is a misrecognized condition and a form of dental allodynia. Dental allodynia is characterized by recurrent episodes of diffuse, dull and throbbing tooth pain that develops when returning to an indoor room temperature after being exposed for a long period to cold weather. The pain episode may last up to few hours before subsiding. Effective treatment is to properly shield the pulpal tissue of the offending tooth by increasing the protective layer of the dentin/enamel complex. This review underscores the difference in dentin hypersensitivity and offers a mechanistic hypothesis based on the following processes. Repeated exposure to significant positive temperature gradients (from cold to warm) generates phenotypic changes of dental primary afferents on selected teeth with subsequent development of a “low-grade” neurogenic inflammation. As a result, nociceptive C-fibers become sensitized and responsive to innocuous temperature gradients because the activation threshold of specific TRP ion channels is lowered and central sensitization takes place. Comprehensive overviews that cover dental innervation and sensory modalities, thermodynamics of tooth structure, mechanisms of dental nociception and the thermal pain are also provided.
Collapse
Affiliation(s)
- Anaïs Le Fur-Bonnabesse
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Dental School, University of Western Brittany, Brest, France
| | - Céline Bodéré
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Dental School, University of Western Brittany, Brest, France.,Assessment and Treatment Center of Pain, Regional and University Hospital Center, Brest, France
| | - Cyrielle Hélou
- Dental School, University of Western Brittany, Brest, France
| | - Valérie Chevalier
- Dental School, University of Western Brittany, Brest, France.,Laboratory IRDL, FRE CNRS 3744, University of Western Brittany, Brest, France
| | | |
Collapse
|
44
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
45
|
Expression and distribution of three transient receptor potential vanilloid(TRPV) channel proteins in human odontoblast-like cells. J Mol Histol 2017; 48:367-377. [PMID: 28905239 DOI: 10.1007/s10735-017-9735-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Odontoblasts have been suggested to contribute to nociceptive sensation in the tooth via expression of the transient receptor potential (TRP) channels. The TRP channels as a family of nonselective cation permeable channels play an important role in sensory transduction of human. In this study, we examined the expression of transient receptor potential vanilloid-1 (TRPV1), transient receptor potential vanilloid-2 (TRPV2) and transient receptor potential vanilloid-3 (TRPV3) channels in native human odontoblasts (HODs) and long-term cultured human dental pulp cells with odontoblast phenotyoe (LHOPs) obtained from healthy wisdom teeth with the use of immunohistochemistry (IHC), immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR),western blotting (WB) and immunoelectron microscopy (IEM) assay. LHOPs samples were made into ultrathin sections, mounted on nickel grids, floated of three TRPV antibodies conjugated with 10 nm colloidal gold particles and observed under IEM at 60,000 magnifications. The relative intracellular distributions of these three channels were analyzed quantitatively on IEM images using a robust sampling, stereological estimation and statistical evaluation method. The results of IHC and IF convinced that TRPV1, TRPV2 and TRPV3 channels were expressed in native HODs and (LHOPs). The result of qRT-PCR and WB confirmed that the gene and protein expression of TRPV1, TRPV2, and TRPV3 channels and TRPV1 mRNA are more abundantly expressed than TRPV2 and TRPV3 in HODs (P < 0.05). Quantitative analysis of IEM images showed that the relative intracellular distributions of these three channels are similar, and TRPV1, TRPV2 and TRPV3 proteins were preferential labeled in human odontoblast processes, mitochondria, and endoplasmic reticulum. Thus, HODs could play an important role in mediating pulp thermo-sensation due to the expression of these three TRPV channels. The difference of relative intracellular distributions of three channels suggests that special structures such as processes may have an important role to sensing of the outer stimuli first.
Collapse
|
46
|
Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol 2017; 594:4151-69. [PMID: 27079970 DOI: 10.1113/jp270935] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023] Open
Abstract
TRPA1 is a non-selective cation channel expressed in mammalian peripheral pain receptors, with a major role in chemonociception. TRPA1 has also been implicated in noxious cold and mechanical pain sensation. TRPA1 has an ancient origin and plays important functions in lower organisms, including thermotaxis, mechanotransduction and modulation of lifespan. Here we highlight the role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage. Sensing roles span beyond the peripheral nervous system to include major barrier tissues: gut, skin and lung. Tissue injury, environmental irritants and microbial pathogens are danger signals that can threaten the health of organisms. These signals lead to the coordinated activation of the nociceptive and the innate immune system to provide a homeostatic response trying to re-establish physiological conditions including tissue repair. Activation of TRPA1 participates in protective neuroimmune interactions at multiple levels, sensing ROS and bacterial products and triggering the release of neuropeptides. However, an exaggerated response to danger signals is maladaptive and can lead to the development of chronic inflammatory conditions.
Collapse
Affiliation(s)
- Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
47
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
48
|
The Role of Adenosine Signaling in Headache: A Review. Brain Sci 2017; 7:brainsci7030030. [PMID: 28335379 PMCID: PMC5366829 DOI: 10.3390/brainsci7030030] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Migraine is the third most prevalent disease on the planet, yet our understanding of its mechanisms and pathophysiology is surprisingly incomplete. Recent studies have built upon decades of evidence that adenosine, a purine nucleoside that can act as a neuromodulator, is involved in pain transmission and sensitization. Clinical evidence and rodent studies have suggested that adenosine signaling also plays a critical role in migraine headache. This is further supported by the widespread use of caffeine, an adenosine receptor antagonist, in several headache treatments. In this review, we highlight evidence that supports the involvement of adenosine signaling in different forms of headache, headache triggers, and basic headache physiology. This evidence supports adenosine A2A receptors as a critical adenosine receptor subtype involved in headache pain. Adenosine A2A receptor signaling may contribute to headache via the modulation of intracellular Cyclic adenosine monophosphate (cAMP) production or 5' AMP-activated protein kinase (AMPK) activity in neurons and glia to affect glutamatergic synaptic transmission within the brainstem. This evidence supports the further study of adenosine signaling in headache and potentially illuminates it as a novel therapeutic target for migraine.
Collapse
|
49
|
Tazawa K, Ikeda H, Kawashima N, Okiji T. Transient receptor potential melastatin (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch Oral Biol 2017; 75:55-61. [DOI: 10.1016/j.archoralbio.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
|
50
|
Yang JC, Hu HT, Lee SY, Hsieh SC, Huang PC, Ma CF, Ji DY, Chang LY, Teng NC. In Vitro Evaluation of Dentin Tubule Occlusion for Novel Calcium Lactate Phosphate (CLP) Paste. MATERIALS 2017; 10:ma10030228. [PMID: 28772594 PMCID: PMC5503312 DOI: 10.3390/ma10030228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
Abstract
Introduction: The objective of this in vitro study is to evaluate the effective and long-term occlusion of dentinal tubules using a novel calcium lactate phosphate (CLP) based desensitizing agent. Methods: Dentin disks (n = 9) were pre-etched using 1 M lactic acid for 30 s and individually treated with Colgate® Pro-Relief™ paste, CLP paste, and double distilled water (ddH2O) by a rubber-cupped handpiece. Dentin disks were analyzed under optical micrographs for pre-treatment, directly after treatment, and 14 days post-treatment. One-way ANOVA and post-hoc Tukey’s test were used to determine whether there were any statistically significant differences in dentinal tubule diameter. Results: A significant decrease occurred in the mean tubule diameter for dentin disks treated with CLP paste. A decrease was observed from 3.52 ± 0.83 µm to 2.62 ± 0.42 µm right after treatment, further decreasing to 1.71 ± 0.45 µm after immersion in artificial saliva for 14 days (p < 0.05). Conclusions: The results suggest that the CLP based desensitizing paste has remineralization properties and provides instant and lasting effectiveness in dentinal tubule occlusion.
Collapse
Affiliation(s)
- Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan.
- Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11052, Taiwan.
| | - Hsin-Tai Hu
- School of Dentistry, Taipei Medical University, Taipei 11052, Taiwan.
| | - Sheng-Yang Lee
- Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11052, Taiwan.
- School of Dentistry, Taipei Medical University, Taipei 11052, Taiwan.
- Dental Department of Wan-Fang Hospital, Taipei Medical University, Taipei 11052, Taiwan.
| | - Sung-Chih Hsieh
- School of Dentistry, Taipei Medical University, Taipei 11052, Taiwan.
- Dental Department of Wan-Fang Hospital, Taipei Medical University, Taipei 11052, Taiwan.
| | - Pei-Chi Huang
- Dental Department of Wan-Fang Hospital, Taipei Medical University, Taipei 11052, Taiwan
| | - Chen-Feng Ma
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 11052, Taiwan
| | - Dian-Yu Ji
- School of Dentistry, Taipei Medical University, Taipei 11052, Taiwan.
| | - Liang-Yu Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan.
| | - Nai-Chia Teng
- School of Dentistry, Taipei Medical University, Taipei 11052, Taiwan.
- Dental Department, Taipei Medical University Hospital, Taipei 11052, Taiwan.
| |
Collapse
|