1
|
Wang S, Yang B, Mu H, Dong W, Yang B, Wang X, Yu W, Dong Z, Wang J. PTX3 promotes cementum formation and cementoblast differentiation via HA/ITGB1/FAK/YAP1 signaling pathway. Bone 2024; 187:117199. [PMID: 38992453 DOI: 10.1016/j.bone.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Shin M, Matsushima A, Kajiya H, Okamoto F, Ogata K, Oka K, Ohshima H, Bartlett JD, Okabe K. Conditional knockout of transient receptor potential melastatin 7 in the enamel epithelium: Effects on enamel formation. Eur J Oral Sci 2023; 131:e12920. [PMID: 36794562 DOI: 10.1111/eos.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique ion channel connected to a kinase domain. We previously demonstrated that Trpm7 expression is high in mouse ameloblasts and odontoblasts, and that amelogenesis is impaired in TRPM7 kinase-dead mice. Here, we analyzed TRPM7 function during amelogenesis in Keratin 14-Cre;Trpm7fl/fl conditional knockout (cKO) mice and Trpm7 knockdown cell lines. cKO mice showed lesser tooth pigmentation than control mice and broken incisor tips. Enamel calcification and microhardness were lower in cKO mice. Electron probe microanalysis (EPMA) showed that the calcium and phosphorus contents in the enamel were lower in cKO mouse than in control mice. The ameloblast layer in cKO mice showed ameloblast dysplasia at the maturation stage. The morphological defects were observed in rat SF2 cells with Trpm7 knockdown. Compared with mock transfectants, the Trpm7 knockdown cell lines showed lower levels of calcification with Alizarin Red-positive staining and an impaired intercellular adhesion structures. These findings suggest that TRPM7 is a critical ion channel in enamel calcification for the effective morphogenesis of ameloblasts during amelogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Aya Matsushima
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kayoko Ogata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Pediatric Dentistry, Department of Oral Growth and development, Fukuoka Dental College, Fukuoka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, Ohio, USA
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
3
|
Amadeu de Oliveira F, Mohamed FF, Kinoshita Y, Narisawa S, Farquharson C, Miyake K, Foster BL, Millan JL. Gene Therapy Using Recombinant AAV Type 8 Vector Encoding TNAP-D 10 Improves the Skeletal Phenotypes in Murine Models of Osteomalacia. JBMR Plus 2023; 7:e10709. [PMID: 36699639 PMCID: PMC9850441 DOI: 10.1002/jbm4.10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Hypophosphatasia (HPP), caused by loss-of-function mutations in the ALPL gene encoding tissue-nonspecific alkaline phosphatase (TNAP), is characterized by skeletal and dental hypomineralization that can vary in severity from life-threatening to milder manifestations only in adulthood. PHOSPHO1 deficiency leads to early-onset scoliosis, osteomalacia, and fractures that mimic pseudo-HPP. Asfotase alfa, a life-saving enzyme replacement therapy approved for pediatric-onset HPP, requires subcutaneous injections 3 to 6 times per week. We recently showed that a single injection of an adeno-associated virus vector serotype 8 harboring TNAP-D10 (AAV8-TNAP-D10) effectively prevented skeletal disease and prolonged life in Alpl -/- mice phenocopying infantile HPP. Here, we aimed to determine the efficacy of AAV8-TNAP-D10 in improving the skeletal and dental phenotype in the Alpl Prx1/Prx1 and Phospho1 -/- mouse models of late-onset (adult) HPP and pseudo-HPP, respectively. A single dose of 3 × 1011 vector genomes per body (vg/b) was injected intramuscularly into 8-week-old Alpl Prx1/Prx1 and wild-type (WT) littermates, or into 3-day-old Phospho1 -/- and WT mice, and treatment efficacy was evaluated after 60 days for late-onset HPP mice and after 90 days for Phospho1 -/- mice. Biochemical analysis showed sustained serum alkaline phosphatase activity and reduced plasma PPi levels, and radiographic images, micro-computed tomography (micro-CT) analysis, and hematoxylin and eosin (H&E) staining showed improvements in the long bones in the late-onset HPP mice and corrected scoliosis in the Phospho1 -/- mice. Micro-CT analysis of the dentoalveolar complex did not reveal significant changes in the phenotype of late-onset HPP and pseudo-HPP models. Moreover, alizarin red staining analysis showed that AAV8-TNAP-D10 treatment did not promote ectopic calcification of soft organs in adult HPP mice after 60 days of treatment, even after inducing chronic kidney disease. Overall, the AAV8-TNAP-D10 treatment improved the skeletal phenotype in both the adult HPP and pseudo-HPP mouse models. This preclinical study will contribute to the advancement of gene therapy for the improvement of skeletal disease in patients with heritable forms of osteomalacia. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Fatma F. Mohamed
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Yuka Kinoshita
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Sonoko Narisawa
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Colin Farquharson
- The Royal (Dick) School of Veterinary Studies (RDSVS), The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Koichi Miyake
- Department of Gene TherapyNippon Medical SchoolTokyoJapan
| | - Brian L Foster
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Jose Luis Millan
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
4
|
Shin M, Mori S, Mizoguchi T, Arai A, Kajiya H, Okamoto F, Bartlett JD, Matsushita M, Udagawa N, Okabe K. Mesenchymal cell TRPM7 expression is required for bone formation via the regulation of chondrogenesis. Bone 2023; 166:116579. [PMID: 36210025 DOI: 10.1016/j.bone.2022.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Transient receptor potential melastatin-subfamily member 7 (TRPM7) is a bifunctional protein containing a kinase fused to an ion channel permeated with cations, including Ca2+ and Mg2+. Trpm7-null mice show embryonic lethality. Paired related homeobox 1 (Prx1) is expressed in undifferentiated mesenchymal cells such as the progenitor cells of both chondrocytes and osteoblasts involved in limb skeleton formation. Prx1-Cre-dependent Trpm7 mesenchymal-deleted mice were generated to examine the role of TRPM7 in bone development. We found that Prx1-Cre;Trpm7fl/fl mice had shortened bones and impaired trabecular bone formation. Trabecular bone parameters, such as the bone volume (BV/TV), and trabecular number (Tb.N), were decreased in Prx1-Cre;Trpm7fl/fl mice. The cortical bone parameters of cortical bone area (Ct.Ar) and cortical bone thickness (Ct.Th) were also down-regulated in these mice. The bone formation rate in Prx1-Cre;Trpm7fl/fl mice was unchanged, but the hypertrophic area and cell size of the zone were smaller, and the expression of Col2a1, Col10a1 and Mmp13 was downregulated compared with control mice. These findings suggest impaired chondrogenesis in Prx1-Cre;Trpm7fl/fl mice compared to control mice. The receptor activator of nuclear factor-kappa B ligand (RANKL) expression was increased, and RANKL-positive cells and osteoclasts were markedly accumulated in the boundary region between the growth plate and trabecular bone. In contrast, TRPM7 KR mice, which are kinase-dead mutants in which the TRPM7 ion channel function has not been altered, showed no marked differences in trabecular or cortical bone parameters compared to wild-type mice. These findings suggest that TRPM7 is critical as a cation channel rather than as a kinase in bone development via the regulation of chondrogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Shihomi Mori
- Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, University of the Ryukyus, Okinawa, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
5
|
Li X, Zhang W, Fan Y, Niu X. MV-mediated biomineralization mechanisms and treatments of biomineralized diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
6
|
Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022; 60:e23474. [PMID: 35460154 PMCID: PMC9492628 DOI: 10.1002/dvg.23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022]
Abstract
The periodontium supports and attaches teeth via mineralized and nonmineralized tissues. It consists of two, unique mineralized tissues, cementum and alveolar bone. In between these tissues, lies an unmineralized, fibrous periodontal ligament (PDL), which distributes occlusal forces, nourishes and invests teeth, and harbors progenitor cells for dentoalveolar repair. Many unanswered questions remain regarding periodontal biology. This review will focus on recent research providing insights into one enduring mystery: the precise regulation of the hard-soft tissue borders in the periodontium which define the interfaces of the cementum-PDL-alveolar bone structure. We will focus on advances in understanding the molecular mechanisms that maintain the unmineralized PDL "between a rock and a hard place" by regulating the mineralization of cementum and alveolar bone.
Collapse
Affiliation(s)
- Natalie L. Andras
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Fatma F. Mohamed
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Emily Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of DentistryUniversity of MarylandBaltimoreMarylandUSA
| | - Brian L. Foster
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
7
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|
8
|
Iwayama T, Bhongsatiern P, Takedachi M, Murakami S. Matrix Vesicle-Mediated Mineralization and Potential Applications. J Dent Res 2022; 101:1554-1562. [PMID: 35722955 DOI: 10.1177/00220345221103145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hard tissues, including the bones and teeth, are a fundamental part of the body, and their formation and homeostasis are critically regulated by matrix vesicle-mediated mineralization. Matrix vesicles have been studied for 50 y since they were first observed using electron microscopy. However, research progress has been hampered by various technical barriers. Recently, there have been great advancements in our understanding of the intracellular biosynthesis of matrix vesicles. Mitochondria and lysosomes are now considered key players in matrix vesicle formation. The involvement of mitophagy, mitochondrial-derived vesicles, and mitochondria-lysosome interaction have been suggested as potential detailed mechanisms of the intracellular pathway of matrix vesicles. Their main secretion pathway may be exocytosis, in addition to the traditionally understood mechanism of budding from the outer plasma membrane. This basic knowledge of matrix vesicles should be strengthened by novel nano-level microscopic technologies, together with basic cell biologies, such as autophagy and interorganelle interactions. In the field of tissue regeneration, extracellular vesicles such as exosomes are gaining interest as promising tools in cell-free bone and periodontal regenerative therapy. Matrix vesicles, which are recognized as a special type of extracellular vesicles, could be another potential alternative. In this review, we outline the recent significant progress in the process of matrix vesicle-mediated mineralization and the potential clinical applications of matrix vesicles for tissue regeneration.
Collapse
Affiliation(s)
- T Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - P Bhongsatiern
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
9
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
10
|
Mohamed FF, Chavez MB, de Oliveira FA, Narisawa S, Farquharson C, Millán JL, Foster BL. Perspective on Dentoalveolar Manifestations Resulting From PHOSPHO1 Loss-of-Function: A Form of Pseudohypophosphatasia? FRONTIERS IN DENTAL MEDICINE 2022; 3:826387. [PMID: 36185572 PMCID: PMC9521815 DOI: 10.3389/fdmed.2022.826387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of "pseudo-HPP" where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration.
Collapse
Affiliation(s)
- Fatma F. Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Michael B. Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Flavia Amadeu de Oliveira
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Colin Farquharson
- The Royal (Dick) School of Veterinary Studies (RDSVS), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,,Correspondence: Brian L. Foster,
| |
Collapse
|
11
|
Yi G, Ma Y, Chen Y, Yang X, Yang B, Tian W. A Review of the Functions of Matrix Vesicles in Periodontal Tissues. Stem Cells Dev 2021; 30:165-176. [PMID: 33349125 DOI: 10.1089/scd.2020.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periodontal tissues consist of cementum, periodontal ligaments, and alveolar bone, which provide indispensable support for physiological activities involving mastication, swallowing, and pronunciation. The formation of periodontal tissues requires a complex process, during which a close relationship with biomineralization is noticeable. Alveolar bone and cementum are physically hard, both of which are generated from biomineralization and possess the exact mechanical properties resembling other hard tissues. However, when periodontitis, congenital abnormalities, periapical diseases, and other pathological conditions affect the organism, the most common symptom, alveolar bone defect, is always unavoidable, which results in difficulties for current clinical treatment. Thus, exploring effective therapies to improve the prognosis is important. Matrix vesicles (MVs), a special subtype of extracellular vesicles related to histogenesis, are widely produced by the stem cells of developing hard tissues. With the assistance of the enzymes and transporters contained within them, MVs can construct the extracellular matrix and an adequate microenvironment, thus promoting biomineralization and periodontal development. Presently, MVs can be effectively extracted and delivered by scaffolds and generate hard tissues in vitro and in vivo, which are expected to be translated into therapies for alveolar bone defects. In this review, we generalize recent research progress on MV morphology, molecular composition, biological mechanism, and, in particular, the biological functions in periodontal development. In addition to the above unique roles of MVs, we further describe the available MV-related biotechnologies and achievements that make them promising for coping with existing problems and improving the treatment of alveolar bone defects.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Jin Y, Long D, Li J, Yu R, Song Y, Fang J, Yang X, Zhou S, Huang S, Zhao Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol 2019; 234:14838-14851. [PMID: 30847902 DOI: 10.1002/jcp.28303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Juan Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ruichao Yu
- Department of Pulmonary, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
13
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
14
|
Wolf M, Ao M, Chavez M, Kolli T, Thumbigere-Math V, Becker K, Chu E, Jäger A, Somerman M, Foster B. Reduced Orthodontic Tooth Movement in Enpp1 Mutant Mice with Hypercementosis. J Dent Res 2018; 97:937-945. [PMID: 29533727 PMCID: PMC6728553 DOI: 10.1177/0022034518759295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies revealed that cementum formation is tightly regulated by inorganic pyrophosphate (PPi), a mineralization inhibitor. Local PPi concentrations are determined by regulators, including ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which increases PPi concentrations by adenosine triphosphate hydrolysis. Orthodontic forces stimulate alveolar bone remodelling, leading to orthodontic tooth movement (OTM). To better understand how disturbed mineral metabolism and the resulting altered periodontal structures affect OTM, we employed Enpp1 mutant mice that feature reduced PPi and increased cervical cementum in a model of OTM induced by a stretched closed-coil spring ligated between the maxillary left first molar and maxillary incisors. We analyzed tooth movement, osteoclast/odontoclast response, and tooth root resorption by micro-computed tomography, histology, histomorphometry, and immunohistochemistry. Preoperatively, we noted an altered periodontium in Enpp1 mutant mice, with significantly increased periodontal ligament (PDL) volume and thickness, as well as increased PDL-bone/tooth root surface area, compared to wild-type (WT) controls. After 11 d of orthodontic treatment, Enpp1 mutant mice displayed 38% reduced tooth movement versus WT mice. Molar roots in Enpp1 mutant mice exhibited less change in PDL width in compression and tension zones compared to WT mice. Root resorption was noted in both groups with no difference in average depths, but resorption lacunae in Enpp1 mutant mice were almost entirely limited to cementum, with 150% increased cementum resorption and 92% decreased dentin resorption. Osteoclast/odontoclast cells were reduced by 64% in Enpp1 mutant mice, with a predominance of tartrate-resistant acid phosphatase (TRAP)-positive cells on root surfaces, compared to WT mice. Increased numbers of TRAP-positive cells on root surfaces were associated with robust immunolocalization of osteopontin (OPN) and receptor-activator of NF-κB ligand (RANKL). Collectively, reduced response to orthodontic forces, decreased tooth movement, and altered osteoclast/odontoclast distribution suggests Enpp1 loss of function has direct effects on clastic function/recruitment and/or indirect effects on periodontal remodeling via altered periodontal structure or tissue mineralization.
Collapse
Affiliation(s)
- M. Wolf
- Department of Orthodontics, Aachen
University, Aachen, Germany
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - M. Ao
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - M.B. Chavez
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| | - T.N. Kolli
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| | - V. Thumbigere-Math
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
- Division of Periodontics, School of
Dentistry, University of Maryland, Baltimore, MD, USA
| | - K. Becker
- Department of Orthodontics,
Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - E.Y. Chu
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - A. Jäger
- Department of Orthodontics, University
of Bonn, Bonn, Germany
| | - M.J. Somerman
- National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of
Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Shin M, Chavez MB, Ikeda A, Foster BL, Bartlett JD. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration. J Dent Res 2018; 97:820-827. [PMID: 29481294 DOI: 10.1177/0022034518758657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.
Collapse
Affiliation(s)
- M Shin
- 1 Fukuoka Dental College, Sawara-ku, Fukuoka, Japan
| | - M B Chavez
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Ikeda
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - B L Foster
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - J D Bartlett
- 2 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, Nociti FH, Somerman MJ. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone 2018; 107:196-207. [PMID: 29313816 PMCID: PMC5803363 DOI: 10.1016/j.bone.2017.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/09/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023]
Abstract
The periodontal complex is essential for tooth attachment and function and includes the mineralized tissues, cementum and alveolar bone, separated by the unmineralized periodontal ligament (PDL). To gain insights into factors regulating cementum-PDL and bone-PDL borders and protecting against ectopic calcification within the PDL, we employed a proteomic approach to analyze PDL tissue from progressive ankylosis knock-out (Ank-/-) mice, featuring reduced PPi, rapid cementogenesis, and excessive acellular cementum. Using this approach, we identified the matrix protein osteopontin (Spp1/OPN) as an elevated factor of interest in Ank-/- mouse molar PDL. We studied the role of OPN in dental and periodontal development and function. During tooth development in wild-type (WT) mice, Spp1 mRNA was transiently expressed by cementoblasts and strongly by alveolar bone osteoblasts. Developmental analysis from 14 to 240days postnatal (dpn) indicated normal histological structures in Spp1-/- comparable to WT control mice. Microcomputed tomography (micro-CT) analysis at 30 and 90dpn revealed significantly increased volumes and tissue mineral densities of Spp1-/- mouse dentin and alveolar bone, while pulp and PDL volumes were decreased and tissue densities were increased. However, acellular cementum growth was unaltered in Spp1-/- mice. Quantitative PCR of periodontal-derived mRNA failed to identify potential local compensators influencing cementum in Spp1-/- vs. WT mice at 26dpn. We genetically deleted Spp1 on the Ank-/- mouse background to determine whether increased Spp1/OPN was regulating periodontal tissues when the PDL space is challenged by hypercementosis in Ank-/- mice. Ank-/-; Spp1-/- double deficient mice did not exhibit greater hypercementosis than that in Ank-/- mice. Based on these data, we conclude that OPN has a non-redundant role regulating formation and mineralization of dentin and bone, influences tissue properties of PDL and pulp, but does not control acellular cementum apposition. These findings may inform therapies targeted at controlling soft tissue calcification.
Collapse
Affiliation(s)
- B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - C R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K R Kantovitz
- Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| | - M Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - S Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - F H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Ao M, Chavez MB, Chu EY, Hemstreet KC, Yin Y, Yadav MC, Millán JL, Fisher LW, Goldberg HA, Somerman MJ, Foster BL. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone 2017; 105:134-147. [PMID: 28866368 PMCID: PMC5730356 DOI: 10.1016/j.bone.2017.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Although acellular cementum is essential for tooth attachment, factors directing its development and regeneration remain poorly understood. Inorganic pyrophosphate (PPi), a mineralization inhibitor, is a key regulator of cementum formation: tissue-nonspecific alkaline phosphatase (Alpl/TNAP) null mice (increased PPi) feature deficient cementum, while progressive ankylosis protein (Ank/ANK) null mice (decreased PPi) feature increased cementum. Bone sialoprotein (Bsp/BSP) and osteopontin (Spp1/OPN) are multifunctional extracellular matrix components of cementum proposed to have direct and indirect effects on cell activities and mineralization. Studies on dentoalveolar development of Bsp knockout (Bsp-/-) mice revealed severely reduced acellular cementum, however underlying mechanisms remain unclear. The similarity in defective cementum phenotypes between Bsp-/- mice and Alpl-/- mice (the latter featuring elevated PPi and OPN), prompted us to examine whether BSP is operating by modulating PPi-associated genes. Genetic ablation of Bsp caused a 2-fold increase in circulating PPi, altered mRNA expression of Alpl, Spp1, and Ank, and increased OPN protein in the periodontia. Generation of a Bsp knock-out (KO) cementoblast cell line revealed significantly decreased mineralization capacity, 50% increased PPi in culture media, and increased Spp1 and Ank mRNA expression. While addition of 2μg/ml recombinant BSP altered Spp1, Ank, and Enpp1 expression in cementoblasts, changes resulting from this dose were not dependent on the integrin-binding RGD motif or MAPK/ERK signaling pathway. Decreasing PPi by genetic ablation of Ank on the Bsp-/- mouse background reestablished cementum formation, allowing >3-fold increased acellular cementum volume compared to wild-type (WT). However, deleting Ank did not fully compensate for the absence of BSP. Bsp-/-; Ank-/- double-deficient mice exhibited mean 20-27% reduced cementum thickness and volume compared to Ank-/- mice. From these data, we conclude that the perturbations in PPi metabolism are not solely driving the cementum pathology in Bsp-/- mice, and that PPi is more potent than BSP as a cementum regulator, as shown by the ability to override loss of BSP by lowering PPi. We propose that BSP and PPi work in concert to direct mineralization in cementum and likely other mineralized tissues.
Collapse
Affiliation(s)
- M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K C Hemstreet
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y Yin
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M C Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L W Fisher
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - H A Goldberg
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
19
|
Pandya M, Rosene L, Farquharson C, Millán JL, Diekwisch TGH. Intravesicular Phosphatase PHOSPHO1 Function in Enamel Mineralization and Prism Formation. Front Physiol 2017; 8:805. [PMID: 29089903 PMCID: PMC5651051 DOI: 10.3389/fphys.2017.00805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The transport of mineral ions from the enamel organ-associated blood vessels to the developing enamel crystals involves complex cargo packaging and carriage mechanisms across several cell layers, including the ameloblast layer and the stratum intermedium. Previous studies have established PHOSPHO1 as a matrix vesicle membrane-associated phosphatase that interacts with matrix vesicles molecules phosphoethanolamine and phosphocholine to initiate apatite crystal formation inside of matrix vesicles in bone. In the present study, we sought to determine the function of Phospho1 during amelogenesis. PHOSPHO1 protein localization during amelogenesis was verified using immunohistochemistry, with positive signals in the enamel layer, ameloblast Tomes' processes, and in the walls of ameloblast secretory vesicles. These ameloblast secretory vesicle walls were also labeled for amelogenin and the exosomal protein marker HSP70 using immunohistochemistry. Furthermore, PHOSPHO1 presence in the enamel organ was confirmed by Western blot. Phospho1−/− mice lacked sharp incisal tips, featured a significant 25% increase in total enamel volume, and demonstrated a significant 2-fold reduction in silver grain density of von Kossa stained ground sections indicative of reduced mineralization in the enamel layer when compared to wild-type mice (p < 0.001). Scanning electron micrographs of Phospho1−/− mouse enamel revealed a loss of the prominent enamel prism “picket fence” structure, a loss of parallel crystal organization within prisms, and a 1.56-fold increase in enamel prism width (p < 0.0001). Finally, EDS elemental analysis demonstrated a significant decrease in phosphate incorporation in the enamel layer when compared to controls (p < 0.05). Together, these data establish that the matrix vesicle membrane-associated phosphatase PHOSPHO1 is essential for physiological enamel mineralization. Our findings also suggest that intracellular ameloblast secretory vesicles have unexpected compositional similarities with the extracellular matrix vesicles of bone, dentin, and cementum in terms of vesicle membrane composition and intravesicular ion assembly.
Collapse
Affiliation(s)
- Mirali Pandya
- Department of Periodontics, Texas A&M College of Dentistry, Dallas, TX, United States.,Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, United States
| | - Lauren Rosene
- Department of Periodontics, Texas A&M College of Dentistry, Dallas, TX, United States.,Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, United States
| | - Colin Farquharson
- Division of Developmental Biology, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - José L Millán
- Sanford Children's Health Research Center, Sanford-Burnham Institute for Medical Research, La Jolla, CA, United States
| | - Thomas G H Diekwisch
- Department of Periodontics, Texas A&M College of Dentistry, Dallas, TX, United States.,Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, United States
| |
Collapse
|
20
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|