1
|
Polizzi A, Alibrandi A, Lo Giudice A, Distefano A, Orlando L, Analazi AM, Pizzo G, Volti GL, Isola G. Impact of periodontal microRNAs associated with alveolar bone remodeling during orthodontic tooth movement: a randomized clinical trial. J Transl Med 2024; 22:1155. [PMID: 39736760 DOI: 10.1186/s12967-024-05933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/01/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Micro-RNAs (miRNAs) have been reported to play an important role during orthodontic tooth movement (OTM) through the regulation of periodontal soft and hard tissue homeostasis and functions. The aim of the present study was to assess the effects of miRNAs on OTM and to evaluate possible predictors that influenced the overall OTM amount at a 3-month follow-up. METHODS Through a split-mouth design, 21 healthy patients (mean age 13.2 ± 1.8 years) were enrolled in the present study. Clinical parameters and gingival crevicular fluid (GCF) sampling were performed on both compression and tension sides of a random canine to be distalized (test groups) at baseline and at 1 h, 1 day, 1 month and at 3-month after OTM, while the contralateral canine served as a control group. miRNAs - 7a-3p, -7a-2-3p, -7a-5p, -21-3p, -21-5p, -100-3p, -100-5p, -125b-2-3p, -125b-5p, -200b-3p, and - 200b-5p expression was analyzed using a real-time quantitative polymerase chain reaction (RT-PCR). Data were analyzed to assess miRNAs change following OTM. Spearman test, two-way ANOVA and a multivariate regression model were established to evaluate the correlation among miRNAs and clinical parameters and to explore possible predictors of OTM amount at 3-month follow-up. RESULTS At 3-month follow-up, there was an increase of miRNA-7a-2-3p, -21-5p, -100-5p, a decrease of miRNA-125b-5p, 200b-3p and - 200b-5p in the compression side and an increase of miRNA-7a-3p, 100-5p in the tension side (p < 0.05). The two-way ANOVA revealed that OTM determined, on the compression side, a significant upregulation on miRNA-7a-3p (p = 0.017), -7a-2-3p (p = 0.023), -21-5p (p = 0.007), -100-5p (p = 0.025) and a significant downregulation of miRNA-125b-2-3p (p = 0.019) and - 200b-5p (p = 0.017). The multivariate model highlighted that high baseline miRNA-7a2-3p (p = 0.025), -21-5p (p = 0.014), -200b-3p (p = 0.041), young age (p = 0.042), lower bleeding on probing (BOP) (p = 0.021) and miRNA-125b-2-3p (p = 0.021) levels were significant predictors of OTM at 3-month follow-up. CONCLUSIONS In the present study, OTM significantly impacted the expression of the miRNAs analyzed, in both the tension and compression side of traction tooth at 3-month follow-up. High baseline miRNA-7a2-3p, -21-5p, -200b-3p, and lower miRNA-125b-2-3p, together with younger age and lower BOP, were significant predictors of OTM amount at 3-month follow-up. TRIAL REGISTRATION ClinicalTrials.gov NCT06023433 (retrospectively registered).
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Amer M Analazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Giuseppe Pizzo
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, 90127, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy.
- International Research Centre on Periodontal, Oral and Sytemic Health "PerioHealth", University of Catania, Catania, Italy.
| |
Collapse
|
2
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
4
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Yang SY, Hu Y, Zhao R, Zhou YN, Zhuang Y, Zhu Y, Ge XL, Lu TW, Lin KL, Xu YJ. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-κB pathway. J Nanobiotechnology 2024; 22:94. [PMID: 38449005 PMCID: PMC10918894 DOI: 10.1186/s12951-024-02352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ran Zhao
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Zhuang
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Li Ge
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Wei Lu
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
6
|
Taheri M, Khoshbakht T, Hussen BM, Abdullah ST, Ghafouri-Fard S, Sayad A. Emerging Role of miRNAs in the Pathogenesis of Periodontitis. Curr Stem Cell Res Ther 2024; 19:427-448. [PMID: 35718954 DOI: 10.2174/1574888x17666220617103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) have been found to participate in the pathogenesis of several immune-related conditions through the modulation of the expression of cytokine coding genes and other molecules that affect the activity of the immune system. Periodontitis is an example of these conditions associated with the dysregulation of several miRNAs. Several miRNAs such as let-7 family, miR-125, miR-378, miR-543, miR-302, miR-214, miR-200, miR-146, miR-142, miR-30 and miR-21 have been shown to be dysregulated in patients with periodontitis. miR-146 is the most assessed miRNA in these patients, which is up-regulated in most studies in patients with periodontitis. In the present review, we describe the impact of miRNAs dysregulation on the pathoetiology of periodontitis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liu B, Wang B, Wang Z, Meng Y, Li Y, Li L, Wang J, Zhai M, Liu R, Wei F. Near-Infrared Light-Controlled MicroRNA-21-Loaded Upconversion Nanoparticles to Promote Bone Formation in the Midpalatal Suture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43503-43514. [PMID: 37694956 DOI: 10.1021/acsami.3c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rapid maxillary expansion (RME) is a common therapy for maxillary transverse deficiency. However, relapses after RME usually occur because of insufficient bone formation. MicroRNA-21 (miR-21) was reported as an important post-transcriptional modulator for osteogenesis. Herein, a photocontrolled miR-21 (PC-miR-21)-loaded nanosystem using upconversion nanoparticles (UCNPs) modified with poly(ether imide) (PEI), i.e., UCNPs@PEI@PC-miR-21, was constructed to promote bone formation in the midpalatal suture. UCNPs@PEI was constructed as the light transducer and delivery carrier. The UCNPs@PEI@PC-miR-21 nanocomplexes have good aqueous dispersibility and biocompatibility. The in vitro cell experiment suggested that UCNPs@PEI could protect PC-miR-21 from biodegradation and release PC-miR-21 into the cytoplasm under near-infrared light (NIR) irradiation. Furthermore, UCNPs@PEI@PC-miR-21 upregulated the expression of the osteogenic key markers, ALP, RUNX2, and COL1A1, at the levels of both genes and proteins. Besides, the results of the in vivo RME mice models further corroborated that photocontrollable UCNPs@PEI@PC-miR-21 accelerated bone formation with upregulating osteogenic markers of ALP, RUNX2, and osteoprotegerin and inducing fewer osteoclasts formation. In conclusion, UCNPs@PEI@PC-miR-21 nanoparticles with a NIR light could facilitate the remote and precise delivery of exogenous miR-21 to the midpalatal suture to promote bone formation during RME. This work represents a cutting-edge approach of gene therapy to promote osteogenesis in the midpalatal suture during RME and provides a frontier scientific basis for later clinical treatment.
Collapse
Affiliation(s)
- Bohui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
- Department of Stomatology, Qingdao West Coast New Area Central Hospital, Qingdao 266555, China
| | - Bing Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yiling Meng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yixuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Mingrui Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Rui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
8
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
9
|
Kalhori MR, Soleimani M, Alibakhshi R, Kalhori AA, Mohamadi P, Azreh R, Farzaei MH. The Potential of miR-21 in Stem Cell Differentiation and its Application in Tissue Engineering and Regenerative Medicine. Stem Cell Rev Rep 2023; 19:1232-1251. [PMID: 36899116 DOI: 10.1007/s12015-023-10510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two important types of non-coding RNAs that are not translated into protein. These molecules can regulate various biological processes, including stem cell differentiation and self-renewal. One of the first known miRNAs in mammals is miR-21. Cancer-related studies have shown that this miRNA has proto-oncogene activity and is elevated in cancers. However, it is confirmed that miR-21 inhibits stem cell pluripotency and self-renewal and induces differentiation by targeting various genes. Regenerative medicine is a field of medical science that tries to regenerate and repair damaged tissues. Various studies have shown that miR-21 plays an essential role in regenerative medicine by affecting stem cell proliferation and differentiation. In this review, we will discuss the function of miR-21 in regenerative medicine of the liver, nerve, spinal cord, wound, bone, and dental tissues. In addition, the function of natural compounds and lncRNAs will be analyzed as potential regulators of miR-21 expression in regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Alibakhshi
- Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Ali Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mohamadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasoul Azreh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hosien Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Zheng X, Zhao N, Peng L, Li Z, Liu C, You Q, Fang B. Biological characteristics of microRNAs secreted by exosomes of periodontal ligament stem cells due to mechanical force. Eur J Orthod 2023:7188171. [PMID: 37262013 DOI: 10.1093/ejo/cjad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Orthodontic tooth movement (OTM) has previously been considered an inflammatory process. However, recent studies suggest that exosomes may play an important role in the cellular microenvironment of OTM. microRNAs (miRNAs) are one of the major constituents of exosomes. This study aims to investigate the biological characteristics of miRNAs secreted by exosomes of periodontal ligament stem cells (PDLSCs) due to mechanical forces. MATERIALS AND METHODS First, we established a mechanical stress model. The PDLSCs were loaded under different force values and exosomes were extracted after 48 h. High-throughput sequencing of exosomal miRNAs was performed to further evaluate their biological functions and underlying mechanisms. RESULTS The morphology and functions of exosomes were not significantly different between the loading and non-loading PDLSC groups. The optimal loading time and force were 48 h and 1 g/cm2, respectively. After sequencing, gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway and network analyses were performed and 10 differentially expressed miRNAs were identified according to a literature search. These are miR-99a-5p, miR-485-3P, miR-29a-3p,miR-21-5p, miR-146a-5p, miR140-3p, miR-1306-5p, miR-126-5p, miR-125a-5p, and miR-23a-3p. LIMITATIONS Extracting exosomes needs a large amount of PDLSCs. More functional experiments need to be done to confirm the exact mechanism of exosomal miRNAs of PDLSCs due to mechanical force. CONCLUSIONS The expression levels of miRNAs secreted by PDLSC-derived exosomes due to mechanical force were very different compared to PDLSC-derived exosomes under nonmechanical stress. The function of many of the identified exosomal miRNAs was found to be related to osteoblasts and osteoclasts. Further validation is required. A functional investigation of these miRNA could provide novel insights into their mechanism.
Collapse
Affiliation(s)
- Xiaowen Zheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qingling You
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Liu P, An Y, Zhu T, Tang S, Huang X, Li S, Fu F, Chen J, Xuan K. Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy. Front Cell Infect Microbiol 2023; 13:1131218. [PMID: 36968100 PMCID: PMC10034133 DOI: 10.3389/fcimb.2023.1131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.
Collapse
Affiliation(s)
- Peisheng Liu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongqian An
- Department of Stomatology, 962 Hospital of People's Liberation Army of China, Harbin, Heilongjiang, China
| | - Ting Zhu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siyuan Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| |
Collapse
|
12
|
Tong F, Cheng H, Guo J, Wu J, Ge H, Li Z. MiR-466d Targeting MMP13 Promotes the Differentiation of Osteoblasts Exposed to a Static Magnetic Field. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Chen Y, Zhang C. Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling. J Transl Med 2023; 21:101. [PMID: 36759852 PMCID: PMC9912641 DOI: 10.1186/s12967-023-03951-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Orthodontic tooth movement (OTM) is biologically based on the spatiotemporal remodeling process in periodontium, the mechanisms of which remain obscure. Noncoding RNAs (ncRNAs), especially microRNAs and long noncoding RNAs, play a pivotal role in maintaining periodontal homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. Under force stimuli, mechanosensitive ncRNAs with altered expression levels transduce mechanical load to modulate intracellular genes. These ncRNAs regulate the biomechanical responses of periodontium in the catabolic, anabolic, and coupling phases throughout OTM. To achieve this, down or upregulated ncRNAs actively participate in cell proliferation, differentiation, autophagy, inflammatory, immune, and neurovascular responses. This review highlights the regulatory mechanism of fine-tuning ncRNAs in periodontium remodeling during OTM, laying the foundation for safe, precise, and personalized orthodontic treatment.
Collapse
Affiliation(s)
- Yuming Chen
- grid.284723.80000 0000 8877 7471Stomatological Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Choi D, Ishii T, Ishikawa M, Ootake T, Kamei H, Nagai K, Sueishi K. Vertical Vibration of Mouse Osteoblasts Promotes Cellular Differentiation and Cell Cycle Progression and Induces Aging In Vitro. Biomedicines 2023; 11:biomedicines11020444. [PMID: 36830981 PMCID: PMC9953217 DOI: 10.3390/biomedicines11020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of the vibration of osteoblasts on the cell cycle, cell differentiation, and aging. MATERIALS AND METHODS Primary maxilla osteoblasts harvested from eight-week-old mice were subjected to vibration at 3, 30, and 300 Hz once daily for 30 min; control group, 0 Hz. A cell proliferation assay and Cell-Clock Cell Cycle Assay were performed 24 h after vibration. Osteoblast differentiation assay, aging marker genes, SA-β-Gal activity, and telomere length (qPCR) were assayed two weeks post- vibration once every two days. RESULTS Cell proliferation increased significantly at 30 and 300 Hz rather than 0 Hz. Several cells were in the late G2/M stage of the cell cycle at 30 Hz. The osteoblast differentiation assay was significantly higher at 30 Hz than at 0 Hz. Runx2 mRNA was downregulated at 30 Hz compared to that at 0 Hz, while osteopontin, osteocalcin, and sclerostin mRNA were upregulated. p53/p21, p16, and c-fos were activated at 30 Hz. SA-β-Gal activity increased significantly at 30 or 300 Hz. Telomere length was significantly lower at 30 or 300 Hz. CONCLUSIONS The results suggest that providing optimal vibration to osteoblasts promotes cell cycle progression and differentiation and induces cell aging.
Collapse
Affiliation(s)
- Daehwan Choi
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takenobu Ishii
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Orthodontics, Tokyo Dental College Chiba Dental Center, 1-2-2, Masago, Mihama-ku, Chiba 261-0011, Japan
- Correspondence: ; Tel.: +81-03-5375-1724
| | - Munetada Ishikawa
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Tomohisa Ootake
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Hirokazu Kamei
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kohei Nagai
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Orthodontics, Tokyo Dental College Chiba Dental Center, 1-2-2, Masago, Mihama-ku, Chiba 261-0011, Japan
| |
Collapse
|
15
|
Xu J, Lin Y, Tian M, Li X, Yin Y, Li Q, Li Z, Zhou J, Jiang X, Li Y, Chen S. Periodontal Ligament Stem Cell-Derived Extracellular Vesicles Enhance Tension-Induced Osteogenesis. ACS Biomater Sci Eng 2023; 9:388-398. [PMID: 36538768 DOI: 10.1021/acsbiomaterials.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tension-induced osteogenesis has great significance in maintaining bone homeostasis and ensuring the efficiency and stability of orthodontic treatment. Recently, extracellular vesicles (EVs) have shown great potential in regulating bone remodeling. Here, we aimed to explore the effects of periodontal ligament stem cell (PDLSC)-derived EVs on tension-induced osteogenesis and the potential mechanism. PDLSC-derived EVs were extracted by ultracentrifugation. In vitro, PDLSC-derived EVs of 10 μg/mL significantly improved the proliferation of MC3T3-E1 cells and enhanced the osteogenic differentiation of osteoblasts under a tensile strain of 2000 uε. Next, a mouse model of orthodontic tooth movement (OTM) was established and treated with subperiosteal injection of PDLSC-derived EVs (1 mg/kg) on the tension side. The results showed that treatment with PDLSC-derived EVs effectively enhanced OTM and promoted osteogenesis on the tension side, including increasing trabecular bone parameters and promoting the expression of osteogenic-related biomarkers (OCN and OPN). More interestingly, we identified several mechano-sensitive miRNAs enriched in PDLSC-derived EVs by high-throughput miRNA sequencing. Bioinformatics analysis indicated that they were related to various osteogenesis-related signaling pathways. Therefore, PDLSC-derived EVs could improve the efficiency of OTM by enhancing tension-induced osteogenesis of osteoblasts. Our study may provide potential evidence for the promoting effects of PDLSC-derived EVs on osteogenesis and offer new insights into the development of treatment strategies for enhancing osteogenesis in orthodontic treatment and other metabolic bone diseases.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Mi Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiming Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Ziyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Jialiang Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yulin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
18
|
MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms232415501. [PMID: 36555142 PMCID: PMC9779831 DOI: 10.3390/ijms232415501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The Orthodontic Tooth Movement (OTM) is allowed through a mediated cell/tissue mechanism performed by applying a force or a pair of forces on the dental elements, and the tooth movement is a fundamental requirement during any orthodontic treatment. In this regard, it has been widely shown that each orthodontic treatment has a minimum duration required concerning numerous factors (age, patient compliance, type of technique used, etc.). In this regard, the aim of the following revision of the literature is to give readers a global vision of principal microRNAs (miRNAs) that are most frequently associated with OTM and their possible roles. Previously published studies of the last 15 years have been considered in the PubMed search using "OTM" and "miRNA" keywords for the present review article. In vitro and in vivo studies and clinical trials were mainly explored. Correlation between OTM and modulation of several miRNAs acting through post-transcriptional regulation on target genes was observed in the majority of previous studied. The expression analysis of miRNAs in biological samples, such as gingival crevicular fluid (GCF), can be considered a useful tool for novel diagnostic and/or prognostic approaches and for new personalized orthodontic treatments able to achieve a better clinical response rate. Although only a few studies have been published, the data obtained until now encourage further investigation of the role of miRNA modulation during orthodontic treatment. The aim of this study is to update the insights into the role and impact of principal micro-RNAs (miRNAs) that are most frequently associated during OTM.
Collapse
|
19
|
Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress. Int J Oral Sci 2022; 14:39. [PMID: 35915088 PMCID: PMC9343357 DOI: 10.1038/s41368-022-00193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Collapse
|
20
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
21
|
Hu CH, Sui BD, Liu J, Dang L, Chen J, Zheng CX, Shi S, Zhao N, Dang MY, He XN, Zhang LQ, Gao PP, Chen N, Kuang HJ, Chen K, Xu XL, Yu XR, Zhang G, Jin Y. Sympathetic Neurostress Drives Osteoblastic Exosomal MiR-21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia. SMALL METHODS 2022; 6:e2100763. [PMID: 35312228 DOI: 10.1002/smtd.202100763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β1/2 -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the β1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.
Collapse
Affiliation(s)
- Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Na Zhao
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Min-Yan Dang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiao-Ning He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Li-Qiang Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ping-Ping Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Nan Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hui-Juan Kuang
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Lin Xu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiao-Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
22
|
Kapoor P, Chowdhry A, Bagga DK, Bhargava D, Aishwarya S. MicroRNAs in oral fluids (saliva and gingival crevicular fluid) as biomarkers in orthodontics: systematic review and integrated bioinformatic analysis. Prog Orthod 2021; 22:31. [PMID: 34632546 PMCID: PMC8502526 DOI: 10.1186/s40510-021-00377-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding short, single-stranded RNA molecules that may serve as biomarkers for various inflammatory and molecular mechanisms underlying bone and tissue remodeling consequent to orthodontic force application. METHODS A thorough literature search in major databases was conducted in March 2021 to generate evidence for miRNAs in orthodontics, with prior PROSPERO registration. The initial search revealed 920 articles, subjected to strict selection criteria according to PRISMA, and resulted in final inclusion of four studies. Quality assessment by QUADAS-2 classified three studies as unclear risk-of-bias while the applicability was high. Further, bioinformatic analysis was performed to identify the target genes from the miRNA database (miRDB) and TargetScan databases and their protein-protein interaction pathways with the STRING analysis. RESULTS Multiple miRNAs in gingival crevicular fluid (GCF) of orthodontic patients were seen, including miRNA-21, 27(a/b), 29(a/b/c), 34,146(a/b), 101, and 214 along with matrix metalloproteinases (MMPs)-1, 2, 3, 8, 9, 14 in one study. A statistically significant increase in expression of miRNA-29a/b/c,101, 21 from pre-treatment (before initiation of retraction) was seen to reach a peak at 4-6 weeks (wk) of retraction. On the contrary, miRNA-34a showed downregulation from the 1 day to 4 wk of retraction and also, negatively correlated with MMPs-2,9,14 levels at the same observation times. The distance of canine movement showed mild correlation with miRNA-27a/b, 214 at 2 wk of retraction. Bioinformatics revealed 1213 mutual target genes which were analyzed for inter-relational pathways using Cytoscape plugin, MCODE. Further, 894 prominent protein interactions were identified from the STRING database and SMAD4, IGF1, ADAMTS6, COL4A1, COL1A1, COL3A1, FGFR1, COL19A1, FBN1, COL5A1, MGAT4A, LTBP1, MSR1, COL11A1, and COL5A3 were recognized as the hub genes. Their interactions were able to isolate multiple miRNAs: hsa-miR-34a-5p, hsa-miR-29b-2-5p, hsa-miR-29b-3p, hsa-miR-34a-3p, hsa-miR-27a-5p, hsa-miR-29a-5p, hsa-miR-29b-1-5p, hsa-miR-29c-3p, hsa-miR-214-5p, hsa-miR-27a-3p, hsa-miR-29a-3p, hsamiR-146-5p, which were found promising as biomarkers for tooth movement. CONCLUSIONS Our results support using miRNAs as biomarkers in varied orthodontic study designs and for inter-relationships with pathological settings like periodontal disease, pre-malignancies, or conditions like obesity or metabolic irregularities, etc. The identified target genes and their protein interaction pathways can be used to propose precision therapies, focusing on ideal tooth movement with minimal iatrogenic side-effects.
Collapse
Affiliation(s)
- Priyanka Kapoor
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Orthodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Aman Chowdhry
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Oral Pathology & Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Dinesh Kumar Bagga
- Department of Orthodontics & Dentofacial Orthopaedics, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - Deepak Bhargava
- Department of Oral Pathology & Microbiology, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - S. Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India
| |
Collapse
|
23
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Gao K, Dou Y, Lv M, Zhu Y, Hu S, Ma P. Research hotspots and trends of microRNA in periodontology and dental implantology: a bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1122. [PMID: 34430563 PMCID: PMC8350631 DOI: 10.21037/atm-21-726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
Background Periodontal disease is a leading cause of tooth loss, and microRNA (miRNA) has been shown to regulate various biological processes. This study aimed to quantitatively analyze the literature related to miRNA in periodontology and dental implantology and summarize the research hotspots and trends in this field. Methods Literature records from 1985 to 2020 were obtained from the Web of Science Core Collection database. After manual selection, the data was used for cooperative network analysis, keyword co-occurrence analysis, and reference co-citation analysis and visualized by CiteSpace. Results A total of 287 papers were analyzed between 2007 and 2020, and more than 95% of them were published in the past decade. The largest number of publications were from China, followed by the USA and Japan. The direct cooperation among the productive institutions was not close. At present, most of the research belongs to the discipline of dentistry, oral surgery, cell biology, and molecular biology. Literature clusters generated by reference co-citation analysis and keyword co-occurrence network showed that previous studies mainly focused on four hotspots: periodontal ligament stem cells (PDLSCs), the pathological process of periodontitis, osteogenic differentiation/bone regeneration, and the competing endogenous RNA (ceRNA) network. Conclusions The therapeutic potential of miRNA in promoting bone formation and how the ceRNA network contributes to miRNA regulation at a deeper level have become the two main research trends of this field.
Collapse
Affiliation(s)
- Kang Gao
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiping Dou
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Menghao Lv
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yihui Zhu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Sitong Hu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Pan Ma
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Yang H, Cao Z, Wang Y, Wang J, Gao J, Han B, Yu F, Qin Y, Guo Y. Treadmill exercise influences the microRNA profiles in the bone tissues of mice. Exp Ther Med 2021; 22:1035. [PMID: 34373721 PMCID: PMC8343800 DOI: 10.3892/etm.2021.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
As an important regulator involved in cell activity, microRNAs (miRNAs) are important in the process of exercise influencing bone metabolism. The present study aimed to detect and select differentially expressed miRNAs in the bone tissues of mice trained on a treadmill, predict the target genes of these differentially expressed miRNAs and lay a foundation for exploring the effect of treadmill training on bone metabolism through miRNAs. In this experiment, after the mice were trained on a treadmill for 8 weeks, the mechanical properties of mouse femur bone were assessed, and the alkaline phosphatase (ALP) activity and osteocalcin (OCN) protein levels of the bone were assayed. miRNA microarray and reverse transcription-quantitative (RT-q)PCR were performed to select and validate differentially expressed miRNAs in the bone, and the target genes of these miRNAs were predicted with bioinformatics methods. In addition, the differentially expressed miRNAs in the bone tissues were compared with those in mechanically strained osteocytes in vitro. Treadmill training improved the mechanical properties of the femur bones of mice, and elevated the ALP activity and OCN protein level in the bone. In addition, 122 differentially expressed miRNAs were detected in the bone, of which nine were validated via RT-qPCR. Among the target genes of these differentially expressed miRNAs, certain candidates were involved in bone metabolism. A total of eight miRNAs were differentially expressed in both bone tissue and osteocytes, exhibiting the same expression trends, and various target genes of these eight miRNAs were also involved in bone metabolism. Treadmill training resulted in altered miRNA expression profiles in the bones of mice (mainly in osteocytes) and the differentially expressed miRNAs may serve important roles in regulating bone metabolism and osteogenic differentiation.
Collapse
Affiliation(s)
- Huan Yang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhen Cao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China.,Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing 400044, P.R. China
| | - Jiahui Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jintao Gao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Biao Han
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Fangmei Yu
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yixiong Qin
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
26
|
Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 2021; 13:20. [PMID: 34183652 PMCID: PMC8239047 DOI: 10.1038/s41368-021-00125-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Nowadays, orthodontic treatment has become increasingly popular. However, the biological mechanisms of orthodontic tooth movement (OTM) have not been fully elucidated. We were aiming to summarize the evidences regarding the mechanisms of OTM. Firstly, we introduced the research models as a basis for further discussion of mechanisms. Secondly, we proposed a new hypothesis regarding the primary roles of periodontal ligament cells (PDLCs) and osteocytes involved in OTM mechanisms and summarized the biomechanical and biological responses of the periodontium in OTM through four steps, basically in OTM temporal sequences, as follows: (1) Extracellular mechanobiology of periodontium: biological, mechanical, and material changes of acellular components in periodontium under orthodontic forces were introduced. (2) Cell strain: the sensing, transduction, and regulation of mechanical stimuli in PDLCs and osteocytes. (3) Cell activation and differentiation: the activation and differentiation mechanisms of osteoblast and osteoclast, the force-induced sterile inflammation, and the communication networks consisting of sensors and effectors. (4) Tissue remodeling: the remodeling of bone and periodontal ligament (PDL) in the compression side and tension side responding to mechanical stimuli and root resorption. Lastly, we talked about the clinical implications of the updated OTM mechanisms, regarding optimal orthodontic force (OOF), acceleration of OTM, and prevention of root resorption.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Karagic N, Meyer A, Hulsey CD. Phenotypic Plasticity in Vertebrate Dentitions. Integr Comp Biol 2021; 60:608-618. [PMID: 32544244 DOI: 10.1093/icb/icaa077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vertebrates interact directly with food items through their dentition, and these interactions with trophic resources could often feedback to influence tooth structure. Although dentitions are often considered to be a fixed phenotype, there is the potential for environmentally induced phenotypic plasticity in teeth to extensively influence their diversity. Here, we review the literature concerning phenotypic plasticity of vertebrate teeth. Even though only a few taxonomically disparate studies have focused on phenotypic plasticity in teeth, there are a number of ways teeth can change their size, shape, or patterns of replacement as a response to the environment. Elucidating the underlying physiological, developmental, and genetic mechanisms that generate phenotypic plasticity can clarify its potential role in the evolution of dental phenotypes.
Collapse
Affiliation(s)
- Nidal Karagic
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| | - Axel Meyer
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| | - C Darrin Hulsey
- Department for Zoology and Evolutionary Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78467, Germany
| |
Collapse
|
28
|
Chen J, Li M, Liu AQ, Zheng CX, Bao LH, Chen K, Xu XL, Guan JT, Bai M, Zhou T, Sui BD, Li DH, Jin Y, Hu CH. Gli1 + Cells Couple with Type H Vessels and Are Required for Type H Vessel Formation. Stem Cell Reports 2021; 15:110-124. [PMID: 32668219 PMCID: PMC7363988 DOI: 10.1016/j.stemcr.2020.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1+ cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature. The specific capillaries, i.e., CD31hiEMCNhi type H vessels, are the preferable vascular subtype which Gli1+ cells are adjacent to in bone. Gli1+ cells are further identified to be phenotypically coupled with type H endothelium during bone growth and defect healing. Importantly, Gli1+ cell ablation inhibits type H vessel formation associated with suppressed bone generation and regeneration. Mechanistically, Gli1+ cells initiate angiogenesis through Gli and HIF-1α signaling. These findings suggest a morphological and functional framework of Gli1+ cells modulating coupled type H vasculature for tissue homeostasis and regenerative repair.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Meng Li
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Li-Hui Bao
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Xiao-Lin Xu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Jiang-Tao Guan
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Tao Zhou
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - De-Hua Li
- Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China.
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
29
|
Schwarze UY, Ni Y, Zhou Y, Terlecki-Zaniewicz L, Schosserer M, Hackl M, Grillari J, Gruber R. Size changes in miR‑21 knockout mice: Geometric morphometrics on teeth, alveolar bone and mandible. Mol Med Rep 2021; 23:285. [PMID: 33604680 PMCID: PMC7905328 DOI: 10.3892/mmr.2021.11924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
MicroRNA‑21 (miR‑21) is a small non‑coding RNA that is differentially expressed during tooth development, particularly during amelogenesis. Although orthodontic tooth movement and the innate immune response are impaired, miR‑21 knockout mice demonstrate no obvious skeletal phenotype. However, the consequence of miR‑21 knockout on tooth phenotype and corresponding alveolar bone is unknown. The current study utilized landmark‑based geometric morphometrics to identify anatomical dissimilarities of the three lower and upper molars, and the corresponding alveolar bone, in miR‑21 knockout and wild‑type control mice. The anatomical structures were visualized by microcomputer tomography. A total of 36 and 38 landmarks were placed on mandibular and maxillary molars, respectively. For the alveolar bone, 16 landmarks were selected on both anatomical sites. General Procrustes analysis revealed significantly smaller molars and dimensions of the alveolar bone in the mandible of the miR‑21 knockout mice when compared with wild‑type controls (P=0.03 and P=0.04, respectively). The overall dimension of the mandible was reduced by the lack of miR‑21 (P=0.02). In the maxilla, the dimension of the alveolar bone was significant (P=0.02); however, this was not observed in the molars (P=0.36). Based on principal component analysis, no changes in shape for any of the anatomical sites were observed. Dental and skeletal jaw length were calculated and no prognathism was identified. However, the fluctuating asymmetry of the molars in the mandible and the maxilla was reduced in the miR‑21 knockout mice by 38 and 27%, respectively. Taken together, the results of the present study revealed that the molars in the mandible and the dimension of the respective alveolar bone were smaller in miR‑21 mice compared with wild‑type littermates, suggesting that miR‑21 influences tooth development.
Collapse
Affiliation(s)
- Uwe Yacine Schwarze
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Department of Orthopaedics and Trauma, Medical University of Graz, A-8010 Graz, Austria
- Department of Dental Medicine and Oral Health, Medical University of Graz, A-8010 Graz, Austria
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
| | - Yuxin Ni
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Department of Stomatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518051, P.R. China
| | - Yanmin Zhou
- Department of Stomatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518051, P.R. China
| | - Lucia Terlecki-Zaniewicz
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Markus Schosserer
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- TAmiRNA GmbH, A-1110 Vienna, Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, A-1200 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, A-1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
30
|
Kinget L, Roussel E, Lambrechts D, Boeckx B, Vanginderhuysen L, Albersen M, Rodríguez-Antona C, Graña-Castro O, Inglada-Pérez L, Verbiest A, Zucman-Rossi J, Couchy G, Caruso S, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs Possibly Involved in the Development of Bone Metastasis in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13071554. [PMID: 33800656 PMCID: PMC8036650 DOI: 10.3390/cancers13071554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastases cause substantial morbidity and implicate worse clinical outcomes for clear-cell renal cell carcinoma patients. MicroRNAs are small RNA molecules that modulate gene translation and are involved in the development of cancer and metastasis. We identified six microRNAs that are potentially specifically involved in metastasis to bone, of which two seem protective and four implicate a higher risk. This aids further understanding of the process of metastasizing to bone. Furthermore, these microRNA hold potential for biomarkers or therapeutic targets. Abstract Bone metastasis in clear-cell renal cell carcinoma (ccRCC) leads to substantial morbidity through skeletal related adverse events and implicates worse clinical outcomes. MicroRNAs (miRNA) are small non-protein coding RNA molecules with important regulatory functions in cancer development and metastasis. In this retrospective analysis we present dysregulated miRNA in ccRCC, which are associated with bone metastasis. In particular, miR-23a-3p, miR-27a-3p, miR-20a-5p, and miR-335-3p specifically correlated with the earlier appearance of bone metastasis, compared to metastasis in other organs. In contrast, miR-30b-3p and miR-139-3p were correlated with less occurrence of bone metastasis. These miRNAs are potential biomarkers and attractive targets for miRNA inhibitors or mimics, which could lead to novel therapeutic possibilities for bone targeted treatment in metastatic ccRCC.
Collapse
Affiliation(s)
- Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Loïc Vanginderhuysen
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | | | - Osvaldo Graña-Castro
- Centro Nacional de Investigaciones Oncológicas (CNIO), 28040 Madrid, Spain; (C.R.-A.); (O.G.-C.)
| | - Lucía Inglada-Pérez
- Department of Statistics and Operational Research, Faculty of Medicine, Complutense University, 28040 Madrid, Spain;
| | - Annelies Verbiest
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Gabrielle Couchy
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | | | | | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
- Correspondence: ; Tel.: +32-16-346900
| |
Collapse
|
31
|
Wu M, Liu J. Inhibitory effect of exogenous IL‐4 on orthodontic relapse in rats. Oral Dis 2021; 28:469-479. [DOI: 10.1111/odi.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Minting Wu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
- Center of Stomatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University) Foshan 528000 China
| | - Jing Liu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
| |
Collapse
|
32
|
He W, Zhang N, Lin Z. MicroRNA-125a-5p modulates macrophage polarization by targeting E26 transformation-specific variant 6 gene during orthodontic tooth movement. Arch Oral Biol 2021; 124:105060. [PMID: 33524878 DOI: 10.1016/j.archoralbio.2021.105060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of microRNA-125a-5p (miR-125a-5p) in macrophages during orthodontic tooth movement (OTM). DESIGN Periodontal ligament tissues were collected from patients underwent OTM. Periodontal ligament cells were isolated from periodontal ligament tissues. Periodontal ligament stem cells were isolated from normal human impacted third molars. The miR-125-5p levels were measured by real-time quantitative polymerase chain reaction. The impact of miR-125-5p on macrophage polarization was tested by alizarin red staining assay. The effects of miR-125-5p and E26 transformation-specific variant 6 gene (ETV6) on M1/M2 macrophages phenotype markers were determined by real-time quantitative polymerase chain reaction, western blot, and flow cytometry analyses. The interaction between miR-125-5p and ETV6 was verified using luciferase reporter and RNA immunoprecipitation assays. RESULTS Periodontal miR-125a-5p was upregulated under the force. Macrophage polarization facilitated osteogenesis by cocultured system. Moreover, miR-125a-5p was upregulated in macrophages polarized with M2 conditions. MiR-125a-5p downregulation promoted the expression of M1 phenotype markers, while suppressed the expression of M2 markers. Mechanistically, ETV6 was confirmed to be a target of miR-125a-5p. ETV6 overexpression increased the expression of M1 polarized markers, while decreased the expression of M2 polarized markers. Furthermore, ETV6 knockdown reversed the effects of miR-125a-5p inhibitor on both M1 macrophages and M2 macrophages. CONCLUSIONS Overall, miR-125a-5p facilitates bone healing by targeting ETV6 to promote macrophage M2 polarization.
Collapse
Affiliation(s)
- Wendan He
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518033, China.
| | - Nan Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhengshen Lin
- Department of Stomatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 510630, China
| |
Collapse
|
33
|
Oka S, Li X, Zhang F, Tewari N, Ma R, Zhong L, Makishima M, Liu Y, Bhawal UK. MicroRNA-21 facilitates osteoblast activity. Biochem Biophys Rep 2020; 25:100894. [PMID: 33426313 PMCID: PMC7782325 DOI: 10.1016/j.bbrep.2020.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are emerging as critical post-transcriptional modulators in bone remodeling, regulating the functions of osteoblasts and osteoclasts. Intercellular crosstalk between osteoblasts and osteoclasts is mediated by miR-21 that controls the bone homeostasis response, providing potential targets for the maintenance of osteoblast function. The aim of this study was to investigate the effects of miR-21 on osteoblast function, and to explore the underlying mechanism. Increased alkaline phosphatase (ALP) activity and accelerated matrix mineralization was observed in mouse pre-osteoblast MC3T3-E1 cells compared with the non-induction (control) group. MiR-21 positively regulates osteogenic differentiation and mineralization by facilitating the expression of key osteogenic factors (ALP, Runx2, Osteopontin (OPN), Osterix (OSX) and Mef2c) in MC3T3-E1 cells. Furthermore, a deficiency of miR-21 suppresses the expression of those factors at both the mRNA and protein levels, indicating that miR-21 is a positive regulator of osteoblastic differentiation. H-E staining, Azan staining, Masson's Trichrome staining and Toluidine blue staining were performed in jaw and femur tissues of miR-21 knockout (miR-21KO) and wild-type (WT) mice. Immunohistochemical staining revealed substantially lower levels of ALP, Runx2 and OSX expression in jaw and femur tissues of miR-21KO mice. A similar trend was observed in femur tissues using quantitative real-time (RT) PCR. A total of 17 osteogenesis-related mRNAs were found to be differentially expressed in miR-21KO femur tissues using Mouse Gene Expression Microarray analysis. GeneSpring and Ingenuity Pathway Analysis revealed several potential target genes that are involved in bone remodeling, such as IL-1β and HIF-1α. Several important pathways were determined to be facilitators of miR-21, which provides a reliable reference for future studies to elucidate the biological mechanisms of osteoblast function. Taken together, these results lead us to hypothesize a potential role for miR-21 in regulating osteoblast function, thus representing a potential biomarker of osteogenesis.
Collapse
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ri Ma
- Department of Conservative Dentistry & Endodontology, College of Stomatology, Guangxi Medical University, Nanning, PR China
| | - Liangjun Zhong
- Department of Stomatology, Hangzhou Normal University, Hangzhou, PR China
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo, Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
34
|
Chen Z, Zhao F, Liang C, Hu L, Li D, Zhang Y, Yin C, Chen L, Wang L, Lin X, Su P, Ma J, Yang C, Tian Y, Zhang W, Li Y, Peng S, Chen W, Zhang G, Qian A. Silencing of miR-138-5p sensitizes bone anabolic action to mechanical stimuli. Theranostics 2020; 10:12263-12278. [PMID: 33204341 PMCID: PMC7667683 DOI: 10.7150/thno.53009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence is revealing that microRNAs (miRNAs) play essential roles in mechanosensing for regulating osteogenesis. However, no mechanoresponsive miRNAs have been identified in human bone specimens. Methods: Bedridden and aged patients, hindlimb unloaded and aged mice, and Random Positioning Machine and primary aged osteoblasts were adopted to simulate mechanical unloading conditions at the human, animal and cellular levels, respectively. Treadmill exercise and Flexcell cyclic mechanical stretching were used to simulate mechanical loading in vivo and in vitro, respectively. Results: Here, we found increased miR-138-5p levels with a lower degree of bone formation in bone specimens from bedridden and aged patients. Loss- and gain-of-function studies showed that miR-138-5p directly targeted microtubule actin crosslinking factor 1 (MACF1) to inhibit osteoblast differentiation under different mechanical conditions. Regarding translational medicine, bone-targeted inhibition of miR-138-5p attenuated the decrease in the mechanical bone anabolic response in hindlimb unloaded mice. Moreover, bone-targeted inhibition of miR-138-5p sensitized the bone anabolic response to mechanical loading in both miR-138-5p transgenic mice and aged mice to promote bone formation. Conclusion: These data suggest that miR-138-5p as a mechanoresponsive miRNA accounts for the mechanosensitivity of the bone anabolic response and that inhibition of miR-138-5p in osteoblasts may be a novel bone anabolic sensitization strategy for ameliorating disuse or senile osteoporosis.
Collapse
|
35
|
Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ 2020; 28:1041-1061. [PMID: 33082517 PMCID: PMC7937676 DOI: 10.1038/s41418-020-00636-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1–2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.
Collapse
|
36
|
Huang Y, Zhang Y, Li X, Liu H, Yang Q, Jia L, Zheng Y, Li W. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force. Eur J Orthod 2020; 41:333-342. [PMID: 30169774 DOI: 10.1093/ejo/cjy057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The role of long non-coding ribonucleic acids (lncRNAs) during orthodontic tooth movement remains unclear. We explored the lncRNA landscape of periodontal ligament stem cells (PDLSCs) subjected to compressive force. MATERIALS AND METHODS PDLSCs were subjected to static compressive stress (2 g/cm2) for 12 hours. Total RNA was then extracted and sequenced to measure changes in lncRNA and messenger RNA (mRNA) expression levels. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression levels of certain lncRNAs. Differential expression analysis as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also performed. RESULTS In total, 90 lncRNAs and 519 mRNAs were differentially expressed in PDLSCs under compressive stress. Of the lncRNAs, 72 were upregulated and 18 downregulated. The levels of eight lncRNAs of interest (FER1L4, HIF1A-AS2, MIAT, NEAT1, ADAMTS9-AS2, LUCAT1, MIR31HG, and DHFRP1) were measured via qRT-PCR, and the results were found to be consistent with those of RNA sequencing. GO and KEGG pathway analyses showed that a wide range of biological functions were expressed during compressive loading; most differentially expressed genes were involved in extracellular matrix organization, collagen fibril organization, and the cellular response to hypoxia. CONCLUSIONS The lncRNA expression profile was significantly altered in PDLSCs subjected to compressive stress. These findings expand our understanding of molecular regulation in the mechanoresponse of PDLSCs.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing
| | - Yingying Zhang
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University, Beijing, China
| |
Collapse
|
37
|
Proff P, Kirschneck C. The fascinating world of non-coding RNA and how it may help to unravel the mysteries of tooth movement regulation. Eur J Orthod 2020; 41:343-345. [PMID: 30321336 DOI: 10.1093/ejo/cjy069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The innovative study presented by Huang and co-workers in this issue of the European Journal of Orthodontics is one of the first giving insight into the mostly disregarded world of non-coding ribonucleic acids in orthodontics. In other fields of science non-coding ribonucleic acids have been shown to play a major role in the regulation of cell metabolism as well as the aetiology of diseases such as cancer, Alzheimer's disease, and periodontitis. Their pilot study on the possible function of differentially expressed long non-coding ribonucleic acids during mechanical compression of periodontal ligament stem cells, as well as methodological approach of whole-transcriptome sequencing with bioinformatory analyses, provides ample possibilities for future basic orthodontic research, which will hopefully greatly expand our knowledge of tooth movement regulation. This field could provide new therapeutic opportunities and diagnostic and treatment aids for orthodontists as well as our patients. This commentary will discuss the implications and importance of the findings of Huang and co-workers in the context of current research in orthodontics and molecular biology.
Collapse
Affiliation(s)
- Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
39
|
Spitz A, Christovam IO, Marañón-Vásquez GA, Masterson DF, Adesse D, Maia LC, Bolognese AM. Global gene expression profile of periodontal ligament cells submitted to mechanical loading: A systematic review. Arch Oral Biol 2020; 118:104884. [PMID: 32877888 DOI: 10.1016/j.archoralbio.2020.104884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the evidence reporting gene expression array data of human in vitro cultured periodontal ligament cells (PDLCs) submitted to static mechanical loading compared to a control group. DESIGN Systematic searches were performed in MEDLINE/PubMed, Scopus, Web of Science, Virtual Health Library, The Cochrane Library and the System for Information on Grey Literature in Europe up to June 2019. A narrative synthesis was performed to summarize differentially expressed genes (DEGs). These were grouped according to the culture method (2D or 3D), force type (compression or tension) and observation time. Additionally, gene ontology (GO) analysis was performed using the Database for Annotation Visualization and Integrated Discovery. The risk of bias (RoB) and certainty of evidence (CoE) were assessed using a modified CONSORT checklist and the GRADE tool, respectively. RESULTS Of eight studies included (all rated as having moderate RoB), only two provided the complete list of DEGs and four studies performed GO, gene network or pathways analysis. "Cell proliferation", "cell-cell signaling", "response to hypoxia and to mechanical stimulus" were among the significantly enriched biological processes in 3D-cultured compressed PDLCs (moderate CoE); while "collagen catabolic process", "extracellular matrix organization" and "cell proliferation" were associated with DEGs of 3D-cultured PDLCs submitted to tension (very low CoE). Biological processes significantly enriched in 2D-cultured PDLCs under compression were "extracellular matrix organization", "canonical glycolysis" and "glycolytic process" (very low CoE). CONCLUSION Genes such as NR4A2, NR4A3, NAMPT, PGK1, and REDD1 are suggested as novel biomarkers for orthodontic tooth movement. Limited amount of evidence on the complete gene expression profile and the high heterogeneity in methodologies make it impossible to obtain definite conclusions. New studies following standardized and well-designed in vitro model and reporting complete gene expression datasets are needed.
Collapse
Affiliation(s)
- Alice Spitz
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ilana Oliveira Christovam
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Daniele Ferreira Masterson
- Central Library of the Health Science Center, Federal University of Rio de Janeiro, Brazil Avenida Carlos Chagas Filho, Bl L, 373 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-90, Brazil.
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ana Maria Bolognese
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
40
|
Strauss FJ, Stähli A, Kobatake R, Tangl S, Heimel P, Apaza Alccayhuaman KA, Schosserer M, Hackl M, Grillari J, Gruber R. miRNA-21 deficiency impairs alveolar socket healing in mice. J Periodontol 2020; 91:1664-1672. [PMID: 32396233 PMCID: PMC7818433 DOI: 10.1002/jper.19-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs demonstrated as critical post-transcriptional modulators in dental tissues and bone regeneration, particularly miR-21-5p. However, the role of miR-21-5p in the healing of alveolar sockets following tooth extraction remains unknown. In this study we evaluated the influence of miR-21-5p in the healing of alveolar socket after tooth extraction. METHODS Eight miR-21-5p knockout mice and eight littermate controls underwent tooth extraction of the upper right incisor. After a healing period of 14 days microCT and histological analyses were performed. RESULTS MicroCT analysis showed that the percentage of bone in the extraction socket was significantly higher in the control group than in the miR-21 knockout mice; either in the coronal (39.0%, CI 31.8 to 48.0 versus 23.0%, CI 17.8 to 35.2, P = 0.03) or in the middle part of the alveolar socket (56.0%, CI 50.9 to 62.5 versus 43.5% CI 28.6 to 54.6, P = 0.03). These differences were not noted in the apical part of the extraction socket. Histological analysis supported the microCT findings. Newly bone volume per tissue volume (BV/TV) was significantly higher in the control group when compared to miR-21 knockout mice, 27.4% (CI 20.6 to 32.9) versus 19.0% (CI 14.7 to 21.5, P < 0.05), respectively. Surprisingly, no evident signs of buccal bone resorption were observed in both groups. CONCLUSION Despite the limitation of one observation period, these findings suggest that miR-21-5p delays the early healing of alveolar socket following tooth extraction. Whether miR-21-5p is essential for healing of alveolar sockets remains to be elucidated.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Vienna, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Wein, Wein, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Wein, Wein, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | | | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Bone microRNA-21 as surgical stress parameter is associated with third molar postoperative discomfort. Clin Oral Investig 2020; 25:319-328. [PMID: 32495225 DOI: 10.1007/s00784-020-03366-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate an association between bone levels of inflammation/oxidative stress mediators and postoperative discomfort after third molar conventional or piezosurgery. MATERIAL AND METHODS Twenty-six subjects with bilaterally impacted mandibular third molars, who underwent either piezo or conventional surgery, were included in a split-mouth design study. MicroRNA-21 (miR-21) expression, interleukin-1 beta (IL-1β), and vascular endothelial growth factor (VEGF) proteins, as well as superoxide dismutase (SOD) activity in alveolar bone, were evaluated. Pain intensity, the first pain appearance, analgesic first use and total dose taken, trismus, and swelling were clinically recorded. RESULTS MiR-21 expression was higher while VEGF protein was lower in piezosurgery vs. conventional groups. The differences in IL-1β protein and SOD activity were not significant between groups. The pain intensity on the first day was significantly decreased in piezosurgery group. The first pain appearance and the first analgesic taken were reported sooner in conventional vs. piezosurgical group. Significantly pronounced trismus on the third day following conventional surgery was found. In conventional group, significantly increased trismus was observed on the third compared to the first postoperative day. MiR-21 showed significant correlation with the first pain appearance. CONCLUSION Delayed onset of less pronounced postoperative pain after piezosurgical vs. conventional extraction of impacted lower third molar was significantly associated with expression of bone miR-21. CLINICAL RELEVANCE Alveolar bone miR-21 may reflect surgical stress and is associated with third molar postoperative pain onset.
Collapse
|
42
|
Zhang Y, Tian Y, Yang X, Zhao Z, Feng C, Zhang Y. MicroRNA‑21 serves an important role during PAOO‑facilitated orthodontic tooth movement. Mol Med Rep 2020; 22:474-482. [PMID: 32377742 PMCID: PMC7248476 DOI: 10.3892/mmr.2020.11107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontal accelerate osteogenesis orthodontics (PAOO) is an extension of described techniques that surgically alter the alveolar bone; however, the specific mechanism underlying the technique is not completely understood. The aim of the present study was to evaluate the roles of microRNA (miR)-21 during PAOO. Sprague-Dawley rats were divided into the following four groups: i) Group tooth movement (TM), underwent TM and were administered normal saline (NS); ii) Group PAOO, underwent PAOO + TM and were administered NS; iii) Group agomiR-21, underwent PAOO + TM and were administered agomiR-21; and iv) Group antagomiR-21, underwent PAOO + TM and were administered antagomiR-21. To validate the rat model of PAOO, morphological analyses were performed and measurements were collected. Reverse transcription-quantitative PCR, western blotting and immunohistochemical staining were performed to examine the expression levels of programmed cell death 4 (PDCD4), activin A receptor type 2B (ACVR2b), receptor activator of NF-κΒ ligand (RANKL) and C-Fos. Dual-luciferase reporter assays were performed to validate PDCD4 as a target of miR-21 in vitro. Following 7 days of treatment, the TM distance of group PAOO was longer compared with groups TM and antagomiR-21 (P<0.05), but shorter compared with group agomiR-21 (P<0.05). Tartrate-resistant acid phosphatase staining indicated that following treatment with agomiR-21, osteoclast activity was notably increased, whereas the mRNA and protein expression levels of PDCD4 were notably decreased compared with group PAOO. The mRNA and protein expression levels of RANKL and C-Fos in group agomiR-21 were notably increased compared with group PAOO, whereas group antagomiR-21 displayed the opposite pattern (P<0.05). With regard to ACVR2b, no significant differences were observed among the group agomiR-21 and antagomiR-21 compared with group PAOO. Bioinformatics analysis predicted that PDCD4 was a potential target gene of miR-21, and dual-luciferase reporter assays demonstrated that miR-21 directly targeted PDCD4. In conclusion, the present study demonstrated that miR-21 serves an important role during PAOO-mediated orthodontic TM.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Xiaofeng Yang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Zhenjin Zhao
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Cuijuan Feng
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yang Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
43
|
Liu AQ, Zhang LS, Chen J, Sui BD, Liu J, Zhai QM, Li YJ, Bai M, Chen K, Jin Y, Hu CH, Jin F. Mechanosensing by Gli1 + cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif 2020; 53:e12810. [PMID: 32472648 PMCID: PMC7260067 DOI: 10.1111/cpr.12810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. Materials and methods We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes‐associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. Results We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force‐responsive cells. Conclusions Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Shu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Qi-Ming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan-Jiao Li
- Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Cheng-Hu Hu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Wu L, Su Y, Lin F, Zhu S, Wang J, Hou Y, Du J, Liu Y, Guo L. MicroRNA‐21 promotes orthodontic tooth movement by modulating the RANKL/OPG balance in T cells. Oral Dis 2019; 26:370-380. [DOI: 10.1111/odi.13239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yingying Su
- Department of Stomatology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Feiran Lin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Siying Zhu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Jingyi Wang
- School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| | - Yanan Hou
- Department of Orthodontics School of Stomatology the Third Dental Center Peking University Beijing China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology Capital Medical University Beijing China
| |
Collapse
|
45
|
Li M, Zhang Z, Gu X, Jin Y, Feng C, Yang S, Wei F. MicroRNA-21 affects mechanical force-induced midpalatal suture remodelling. Cell Prolif 2019; 53:e12697. [PMID: 31713930 PMCID: PMC6985676 DOI: 10.1111/cpr.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Objectives miR‐21 can promote osteoblast differentiation of periodontal ligament stem cells. However, the effect of miR‐21 on bone remodelling in the midpalatal suture is unclear. This study aimed to elucidate the effects of miR‐21 on the midpalatal suture bone remodelling by expanding the palatal sutures. Materials and methods miR‐21 deficient (miR‐21−/−) and wild‐type (WT) mice were used to establish animal models by expanding the palatal sutures. Micro‐CT, haematoxylin‐eosin (HE) staining, tartrate‐resistant acid phosphatase (TRAP) staining, fluorescence labelling and immunohistochemistry were used to investigate the function of miR‐21 in midpalatal suture bone remodelling. Besides, bone mesenchymal stem cells (BMSCs) derived from both miR‐21−/− and WT mice were cultured. The MTT, CCK8, EdU analysis, transwell and wound healing test were used to assess the effects of miR‐21 on the characteristics of cells. Results The expression of ALP was suppressed in miR‐21‐/‐ mice after expansion except 28 days. The expression of Ocn in WT mice was much higher than that of miR‐21‐/‐ mice. Besides, with mechanical force, miR‐21 deficiency downregulated the expression of Opg, upregulated the expression of Rankl, and induced more osteoclasts as TRAP staining showed. After injecting agomir‐21 to miR‐21‐/‐ mice, the expression of Alp, Ocn and Opg/Rankl were rescued. In vitro, the experiments suggested that miR‐21 deficiency reduced proliferation and migration ability of BMSCs. Conclusions The results showed that miR‐21 deficiency reduced the rate of bone formation and prolonged the process of bone formation. miR‐21 regulated the bone resorption and osteoclastogenesis by affecting the cell abilities of proliferation and migration.
Collapse
Affiliation(s)
- Mengying Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Zijie Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xiuge Gu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Ye Jin
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | | | - Shuangyan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
46
|
Liu M, Sun F, Feng Y, Sun X, Li J, Fan Q, Liu M. MicroRNA-132-3p represses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress. Mol Cell Biochem 2019; 458:143-157. [DOI: 10.1007/s11010-019-03538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
|
47
|
Kanzaki H, Wada S, Yamaguchi Y, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, Narimiya T, Noda K, Nakamura Y. Compression and tension variably alter Osteoprotegerin expression via miR-3198 in periodontal ligament cells. BMC Mol Cell Biol 2019; 20:6. [PMID: 31041888 PMCID: PMC6449962 DOI: 10.1186/s12860-019-0187-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background Osteoclasts play a critical role in bone resorption due to orthodontic tooth movement (OTM). In OTM, a force is exerted on the tooth, creating compression of the periodontal ligament (PDL) on one side of the tooth, and tension on the other side. In response to these mechanical stresses, the balance of receptor activator of nuclear-factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) shifts to stimulate osteoclastogenesis. However, the mechanism of OPG expression in PDL cells under different mechanical stresses remains unclear. We hypothesized that compression and tension induce different microRNA (miRNA) expression profiles, which account for the difference in OPG expression in PDL cells. To study miRNA expression profiles resulting from OTM, compression force (2 g/cm2) or tension force (15% elongation) was applied to immortalized human PDL (HPL) cells for 24 h, and miRNA extracted. The miRNA expression in each sample was analyzed using a human miRNA microarray, and the changes of miRNA expression were confirmed by real-time RT-PCR. In addition, miR-3198 mimic and inhibitor were transfected into HPL cells, and OPG expression and production assessed. Results We found that certain miRNAs were expressed differentially under compression and tension. For instance, we observed that miR-572, − 663, − 575, − 3679-5p, UL70-3p, and − 3198 were upregulated only by compression. Real-time RT-PCR confirmed that compression induced miR-3198 expression, but tension reduced it, in HPL cells. Consistent with previous reports, OPG expression was reduced by compression and induced by tension, though RANKL was induced by both compression and tension. OPG expression was upregulated by miR-3198 inhibitor, and was reduced by miR-3198 mimic, in HPL cells. We observed that miR-3198 inhibitor rescued the compression-mediated downregulation of OPG. On the other hand, miR-3198 mimic reduced OPG expression under tension. However, RANKL expression was not affected by miR-3198 inhibitor or mimic. Conclusions We conclude that miR-3198 is upregulated by compression and is downregulated by tension, suggesting that miR-3198 downregulates OPG expression in response to mechanical stress.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Tohoku University Hospital, Maxillo-oral Disorders, Sendai, Japan. .,Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan.
| | - Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Kanako Itohiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Sari Fukaya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Yutaka Miyamoto
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Koji Noda
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref, 230-8501, Japan
| |
Collapse
|
48
|
Zhang X, Chen D, Zheng J, Deng L, Chen Z, Ling J, Wu L. Effect of microRNA-21 on hypoxia-inducible factor-1α in orthodontic tooth movement and human periodontal ligament cells under hypoxia. Exp Ther Med 2019; 17:2830-2836. [PMID: 30930976 DOI: 10.3892/etm.2019.7248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Orthodontic tooth movement can lead to temporary hypoxia of periodontal tissues. Periodontal ligament cells (PDLCs) react to hypoxia, releasing various biological factors to promote periodontal tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) is one of the most sensitive factors involved in the response to hypoxia. HIF-1α has been identified to be involved in osteogenic and osteoclast differentiation in vitro; however, few studies have investigated the expression of HIF-1α in the periodontal ligament (PDL) during orthodontic movement in vivo. In a previous study, microRNA-21 (miR-21) was demonstrated to be highly expressed in a rat model of orthodontic tooth movement. Additionally, miR-21 can increase the expression of HIF-1α in certain tumor cell types and is involved in tumor bioactivities. In the present study, HIF-1α exhibited expression patterns in a similar way to miR-21 in PDL samples from a rat model of orthodontic tooth movement, with expression initially increased and followed by a decrease over time. Furthermore, human PDLCs were exposed to a hypoxic environment in vitro, which induced significant upregulation of HIF-1α and miR-21 expression. Furthermore, miR-21 mimics increased HIF-1α expression and promoted osteogenic differentiation, indicated by upregulated expression of the osteogenic markers osteopontin, runt-related gene-2 and alkaline phosphatase. miR-21 inhibitors suppressed HIF-1α expression and downregulated the osteogenic markers. In conclusion, the results revealed that miR-21 has a positive effect on HIF-1α expression in PDLCs under hypoxia and has important roles in osteogenic differentiation during orthodontic tooth movement. These findings provide a theoretical basis by which to promote tissue reconstruction during orthodontic tooth movement.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Dongru Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
49
|
Yang XH, Yang K, An YL, Wang LB, Luo G, Hu XH. MicroRNA-705 regulates the differentiation of mouse mandible bone marrow mesenchymal stem cells. PeerJ 2019; 7:e6279. [PMID: 30648022 PMCID: PMC6330203 DOI: 10.7717/peerj.6279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
The craniofacial skeleton is the foundation of most stomatological treatments, including prosthodontics and maxillofacial surgery. Although histologically similar to the appendicular skeleton, the craniofacial skeleton manifests many unique properties in response to external stimuli and signals. However, the mandibular or maxillary bone marrow mesenchyme, which is the intrinsic foundation of the functions of craniofacial skeleton, has not been well studied, and its homeostasis mechanism remains elusive. Osteoporosis is a systemic disease that affects all skeletons and is characterized by bone mass loss. Osteoporotic bone marrow mesenchymal stem cells (BMMSCs) exhibit disturbed homeostasis and distorted lineage commitment. Many reports have shown that microRNAs (miRNAs) play important roles in regulating MSCs homeostasis. Here, to obtain a better understanding of mandibular bone marrow MSCs homeostasis, we isolated and cultured mandible marrow MSCs from mouse mandibles. Using miR-705 mimics and an inhibitor, we demonstrated that miR-705 played a vital role in shifting the mandibular MSCs lineage commitment in vitro. Utilizing an osteoporosis mouse model, we demonstrated that MSCs from ovariectomized (OVX) mouse mandibular bone marrow exhibited impaired osteogenic and excessive adipogenic differentiation. miR-705 was found overexpressed in OVX mandibular MSCs. The knock down of miR-705 in vitro partially attenuated the differentiation disorder of the OVX mandibular MSCs by upregulating the expression of osteogenic marker genes but suppressing adipogenic genes. Taken together, our findings provide a better understanding of the homeostasis mechanism of mandibular BMMSCs and a novel potential therapeutic target for treating mandibular osteoporosis.
Collapse
Affiliation(s)
- Xiao Hong Yang
- Department of Prosthetics, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kun Yang
- Department of Periodontology, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical university, Zunyi, Guizhou, China
| | - Yu Lin An
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Li Bo Wang
- Department of Prosthetics, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo Luo
- Department of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Hua Hu
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
50
|
Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery. Exp Mol Med 2018; 50:1-14. [PMID: 30559383 PMCID: PMC6297134 DOI: 10.1038/s12276-018-0192-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the CD3+T-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.
Collapse
|