1
|
Lu EMC. Three-Dimensional Organotypic Systems for Modelling and Understanding Molecular Regulation of Oral Dentogingival Tissues. Int J Mol Sci 2024; 25:11552. [PMID: 39519105 PMCID: PMC11546252 DOI: 10.3390/ijms252111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional organotypic models benefit from the ability to mimic physiological cell-cell or cell-matrix interactions and therefore offer superior models for studying pathological or physiological conditions compared to 2D cultures. Organotypic models consisting of keratinocytes supported by fibroblasts embedded in collagen matrices have been utilised for the study of oral conditions. However, the provision of a suitable model for investigating the pathogenesis of periodontitis has been more challenging. Part of the complexity relates to the different regional epithelial specificities and connective tissue phenotypes. Recently, it was confirmed, using 3D organotypic models, that distinct fibroblast populations were implicated in the provision of specific inductive and directive influences on the overlying epithelia. This paper presents the organotypic model of the dentogingival junction (DGJ) constructed to demonstrate the differential fibroblast influences on the maintenance of regionally specific epithelial phenotypes. Therefore, the review aims are (1) to provide the biological basis underlying 3D organotypic cultures and (2) to comprehensively detail the experimental protocol for the construction of the organotypic cultures and the unique setup for the DGJ model. The latter is the first organotypic culture model used for the reconstruction of the DGJ and is recommended as a useful tool for future periodontal research.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Güney Z, Kurgan Ş, Önder C, Tayman MA, Günhan Ö, Kantarci A, Serdar MA, Günhan M. Wnt signaling in periodontitis. Clin Oral Investig 2023; 27:6801-6812. [PMID: 37814163 DOI: 10.1007/s00784-023-05294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE This study aimed to evaluate the Wnt/β-catenin signaling pathway activity in gingival samples obtained from patients with periodontitis. MATERIALS AND METHODS Fifteen patients with stage III grade B (SIIIGB) and eleven with stage III grade C (SIIIGC) periodontitis were included and compared to 15 control subjects. β-Catenin, Wnt 3a, Wnt 5a, and Wnt 10b expressions were evaluated by Q-PCR. Topographic localization of tissue β-catenin, Wnt 5a, and Wnt 10b was measured by immunohistochemical analysis. TNF-α was used to assess the inflammatory state of the tissues, while Runx2 was used as a mediator of active destruction. RESULTS Wnt 3a, Wnt 5a, and Wnt 10b were significantly higher in gingival tissues in both grades of stage 3 periodontitis compared to the control group (p < 0.05). β-Catenin showed intranuclear staining in connective tissue in periodontitis, while it was confined to intracytoplasmic staining in epithelial tissue and the cell walls in the control group. Wnt5a protein expression was elevated in periodontitis, with the most intense staining observed in the connective tissue of SIIIGC samples. Wnt10b showed the highest density in the connective tissue of patients with periodontitis. CONCLUSIONS Our findings suggested that periodontal inflammation disrupts the Wnt/β-catenin signaling pathway. CLINICAL RELEVANCE Periodontitis disrupts Wnt signaling in periodontal tissues in parallel with tissue inflammation and changes in morphology. This change in Wnt-related signaling pathways that regulate tissue homeostasis in the immunoinflammatory response may shed light on host-induced tissue destruction in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
- Faculty of Dentistry Department of Periodontology, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey.
| | - Canan Önder
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| | - Mahmure Ayşe Tayman
- Faculty of Dentistry Department of Periodontology, Yildirim Beyazit University, Ankara, Turkey
| | - Ömer Günhan
- Faculty of Medicine Department of Pathology, TOBB University, Ankara, Turkey
| | | | | | - Meral Günhan
- Faculty of Dentistry Department of Periodontology, Ankara University, 06500-Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Lai D, Ma W, Wang J, Zhang L, Shi J, Lu C, Gu X. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis. J Periodontal Res 2023; 58:369-380. [PMID: 36691896 DOI: 10.1111/jre.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, which is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue, is the leading cause of tooth loss in adults. Many studies have found that inflammatory immune responses are involved in the risk of periodontal tissue damage. Therefore, we analyzed the association between immunity and periodontitis using bioinformatics methods to further understand this disease. MATERIALS AND METHODS First, the expression profiles of periodontitis and healthy samples were downloaded from the GEO database, including a training dataset GSE16134 and an external validation dataset GSE10334. Then, differentially expressed genes were identified using the limma package. Subsequently, immune cell infiltration was calculated by using the CIBERSORT algorithm. We further identified genes linking periodontitis and immunity from the ImmPort and DisGeNet databases. In addition, some of them were selected to construct a diagnostic model via a logistic stepwise regression analysis. RESULTS AND CONCLUSIONS Two hundred sixty differentially expressed genes were identified and found to be involved in responses to bacterial and immune-related processes. Subsequently, immune cell infiltration analysis demonstrates significant differences in the abundance of most immune cells between periodontitis and healthy samples, especially in plasma cells. These results suggested that immunity doses play a non-negligible role in periodontitis. Twenty-one genes linking periodontitis and immunity were further identified. And nine hub genes of them were identified that may be key genes involved in the development of periodontitis. Gene ontology analyses showed that these genes are involved in response to molecules of bacterial origin, cell chemotaxis, and response to chemokines. In addition, three genes of them were selected to construct a diagnostic model. And its good diagnostic performance was demonstrated by the receiver operating characteristic curves, with an area under the curve of 0.9424 for the training dataset and 0.9244 for the external validation dataset.
Collapse
Affiliation(s)
- Donglin Lai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhao Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Wang
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luzhu Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junfeng Shi
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Chu DT, Nguyen TL. Frizzled receptors and SFRP5 in lipid metabolism: Current findings and potential applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:377-393. [PMID: 36631199 DOI: 10.1016/bs.pmbts.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid metabolism plays a very important role as the central metabolic process of the body. Lipid metabolism interruptions may cause many chronic diseases, for example, non-alcoholic fatty liver disease (NAFLD), diabetes, and obesity. Secreted Frizzled Related Protein 5 (SFRP5) and Frizzled receptors (FZD) are two newly discovered adipokines that are involved in lipid metabolism as well as lipogenesis. Both of these adipokines affect lipid metabolism and adipogenesis through three WNT signaling pathways (WNTSP): WNT/β-catenin, WNT/Ca2+, and WNT/JNK. FZD consists of 10 species, which have a cysteine-rich domain (CRD) to bind to the WNT protein for signal transduction. Depending on the type of ligand or co-receptor, they can stimulate or inhibit adipogenesis. In lipid metabolism, they play a role in recognizing fatty acids. In obesity, gene expression of the WNT/FZD receptors is significantly increased. In contrast, SFPR5 serves as an antagonist that can compete with FZD for inhibition of WNTSP. It is believed to have anti-inflammatory potential in obesity and diseases related to abnormal lipid metabolism. In these cases, the expression of SFRP5 is found to be very low leading to the promoted production of proinflammatory cytokines (PICS). Some methods that include using recombinant SFRP5 to improve non-alcoholic steatohepatitis (NASH), using secreted Ly-6/uPAR-related protein 1 (Slurp1) to regulate fat accumulation in the liver through SFRP5, and dietary and lifestyle interventions to improve overweight/obesity have been studied. However, understandings of the molecular mechanisms of these two adipokines and their interactions are very limited. Therefore, more in-depth studies are needed in the future.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Thanh-Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
5
|
Wang H, Ideguchi H, Kajikawa T, Mastellos DC, Lambris JD, Hajishengallis G. Complement Is Required for Microbe-Driven Induction of Th17 and Periodontitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1370-1378. [PMID: 36028293 PMCID: PMC9530003 DOI: 10.4049/jimmunol.2200338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
In both mice and humans, complement and Th17 cells have been implicated in periodontitis, an oral microbiota-driven inflammatory disease associated with systemic disorders. A recent clinical trial showed that a complement C3 inhibitor (AMY-101) causes sustainable resolution of periodontal inflammation, the main effector of tissue destruction in this oral disease. Although both complement and Th17 are required for periodontitis, it is uncertain how these immune components cooperate in disease development. In this study, we dissected the complement-Th17 relationship in the setting of ligature-induced periodontitis (LIP), a model that previously established that microbial dysbiosis drives Th17 cell expansion and periodontal bone loss. Complement was readily activated in the periodontal tissue of LIP-subjected mice but not when the mice were placed on broad-spectrum antibiotics. Microbiota-induced complement activation generated critical cytokines, IL-6 and IL-23, which are required for Th17 cell expansion. These cytokines as well as Th17 accumulation and IL-17 expression were significantly suppressed in LIP-subjected C3-deficient mice relative to wild-type controls. As IL-23 has been extensively studied in periodontitis, we focused on IL-6 and showed that LIP-induced IL-17 and bone loss required intact IL-6 receptor signaling in the periodontium. LIP-induced IL-6 was predominantly produced by gingival epithelial cells that upregulated C3a receptor upon LIP challenge. Experiments in human gingival epithelial cells showed that C3a upregulated IL-6 production in cooperation with microbial stimuli that upregulated C3a receptor expression in ERK1/2- and JNK-dependent manner. In conclusion, complement links the periodontal microbiota challenge to Th17 cell accumulation and thus integrates complement- and Th17-driven immunopathology in periodontitis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hidetaka Ideguchi
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Science and Technologies, The Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos," Athens, Greece; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA;
| |
Collapse
|
6
|
Cai S, Zou Y, Zhao Y, Lin H, Zheng D, Xu L, Lu Y. Mechanical stress reduces secreted frizzled-related protein expression and promotes temporomandibular joint osteoarthritis via Wnt/β-catenin signaling. Bone 2022; 161:116445. [PMID: 35589066 DOI: 10.1016/j.bone.2022.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
AIMS Mechanical stress overload in the temporomandibular joint (TMJ) is an important cause of TMJ osteoarthritis (TMJOA). Whether secreted frizzled-related proteins (SFRPs) play important roles in the development of mechanical stress-induced TMJOA remains controversial. In this study, we investigated the roles of the Wnt/β-catenin signaling and SFRPs in the progression of mechanical stress-induced TMJOA. METHODS We investigated the progression of mechanical stress-induced TMJOA using an in vivo model via modified increased occlusal vertical dimension (iOVD) malocclusion and an in vitro model in which isolated chondrocytes were subjected to mechanical stress. The effects of inhibition of Wnt/β-catenin signal on TMJOA induced by mechanical stress were studied by in vitro drug added and in vivo intra-articular injection of XAV-939. TMJOA progression, Wnt/β-catenin signaling and SFRPs was assessed by Cone beam computed tomography (CBCT) analysis, histochemical and immunohistochemical (IHC) staining, quantitative real-time PCR (qRT-PCR), Western blotting (WB), and immunofluorescence (IF) staining. RESULTS Our in vivo results showed that iOVD-induced mechanical stress in the TMJ disrupted mandible growth, induced OA-like changes in TMJ cartilage, and increased OA-related cytokine expression. In addition, iOVD activated Wnt/β-catenin signaling and suppressed Sfrp1, Sfrp3, and Sfrp4 expression in condylar cartilage. Moreover, our in vitro study showed that stress disrupted homeostasis, activated Wnt/β-catenin signaling and inhibited SFRP3 and SFRP4 expression in chondrocytes. Suppression of Wnt/β-catenin signaling with XAV-939 promoted SFRP3 and SFRP4 expression and rescued mechanical stress-induced cartilage degeneration in vivo and in vitro. CONCLUSIONS Our work suggests that mechanical stress reduces SFRPs expression both in vivo and in vitro and promotes TMJOA via Wnt/β-catenin signaling. Suppression of Wnt/β-catenin signaling promotes SFRPs expression, especially SFRP3 and SFRP4 expression, and rescues mechanical stress-induced cartilage degeneration. Wnt/β-catenin signaling and SFRPs may represent potential therapeutic targets for TMJOA.
Collapse
Affiliation(s)
- Senxin Cai
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yong Zhao
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Pathology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hanyu Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linyu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
7
|
Chatzopoulos GS, Koidou VP, Wolff LF. Expression of Wnt signaling agonists and antagonists in periodontitis and healthy subjects, before and after non-surgical periodontal treatment: A systematic review. J Periodontal Res 2022; 57:698-710. [PMID: 35719081 DOI: 10.1111/jre.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Periodontitis is a preventable and treatable multifactorial chronic inflammatory disease that can lead to irreversible periodontal destruction and tooth loss. Wnt signaling and its regulators play an important role in periodontal inflammation, destruction, regeneration, and reconstruction. This systematic review aimed at investigating the involvement of Wnt signaling agonists and antagonists in periodontitis and healthy subjects, before and after periodontal treatment. Electronic searches were carried out using MEDLINE/PubMed, EMBASE, and Cochrane Library databases in addition to hand searches. Studies having different designs assessing the levels of Wnt signaling antagonist and agonist levels in gingival crevicular fluid, serum, and tissue in patients diagnosed with periodontitis or gingivitis, compared with healthy individuals were included. In addition, studies compared these levels in periodontitis patients before and after non-surgical periodontal therapy were also eligible. Sixteen studies met the eligibility criteria. Sclerostin (SOST) has been mainly investigated in the literature (8 publications). Sclerostin (5 studies), Wnt-5a (2 studies), secreted frizzled-related protein 1 (SFRP1) (3 studies), and β-catenin (3 studies) show increased levels in periodontitis compared with periodontal health. Strong correlations between marker levels and periodontal clinical parameters were identified for SOST (5 studies), SFRP1 (2 studies), and β-catenin (2 studies). SOST (3 studies) and SFRP1 (1 study) levels significantly decrease following non-surgical periodontal treatment. The present systematic review demonstrated an association between Wnt signaling agonist and antagonist levels and periodontitis. Wnt agonists and antagonists may serve as valuable diagnostic and prognostic markers for periodontitis onset and progression. Further case-control and longitudinal studies should be conducted for different Wnt signaling agonists and antagonists.
Collapse
Affiliation(s)
- Georgios S Chatzopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki P Koidou
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.,Centre for Oral Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London (QMUL), London, UK
| | - Larry F Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel) 2022; 15:ph15050553. [PMID: 35631379 PMCID: PMC9145271 DOI: 10.3390/ph15050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey–Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil;
- Correspondence:
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Renato C. Casarin
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | | | - Severino Matias Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| |
Collapse
|
9
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
González-Quintanilla D, Abásolo N, Astudillo P. Wnt Signaling in Periodontal Disease. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.763308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a multifactorial and chronic condition associated with the formation of a dysbiotic biofilm, leading to a pro-inflammatory environment that can modulate cell signaling. The Wnt pathway plays fundamental roles during homeostasis and disease, and emerging evidence suggests its involvement in the maintenance of the periodontium and the development of periodontitis. Here, we summarize the role of the Wnt/β-catenin and non-canonical Wnt signaling pathways in periodontitis. The accumulated data suggests specific roles for each branch of the Wnt pathway. Wnt5a emerges as a critical player promoting periodontal ligament remodeling and impairing regenerative responses modulated by the Wnt/β-catenin pathway, such as alveolar bone formation. Collectively, the evidence suggests that achieving a proper balance between the Wnt/β-catenin and non-canonical pathways, rather than their independent modulation, might contribute to controlling the progression and severity of the periodontal disease.
Collapse
|
11
|
Zhang Z, Pan X, Chen M, Bai M. Wnt signalling in oral and maxillofacial diseases. Cell Biol Int 2021; 46:34-45. [PMID: 34643311 DOI: 10.1002/cbin.11708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Wnts include more than 19 types of secreted glycoproteins that are involved in a wide range of pathological processes in oral and maxillofacial diseases. The transmission of Wnt signalling from the extracellular matrix into the nucleus includes canonical pathways and noncanonical pathways, which play an important role in tooth development, alveolar bone regeneration, and related diseases. In recent years, with the in-depth study of Wnt signalling in oral and maxillofacial-related diseases, many new conclusions and perspectives have been reached, and there are also some controversies. This article aims to summarise the roles of Wnt signalling in various oral diseases, including periodontitis, dental pulp disease, jaw disease, cleft palate, and abnormal tooth development, to provide researchers with a better and more comprehensive understanding of Wnts in oral and maxillofacial diseases.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|
13
|
Ning W, Acharya A, Sun Z, Ogbuehi AC, Li C, Hua S, Ou Q, Zeng M, Liu X, Deng Y, Haak R, Ziebolz D, Schmalz G, Pelekos G, Wang Y, Hu X. Deep Learning Reveals Key Immunosuppression Genes and Distinct Immunotypes in Periodontitis. Front Genet 2021; 12:648329. [PMID: 33777111 PMCID: PMC7994531 DOI: 10.3389/fgene.2021.648329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Background Periodontitis is a chronic immuno-inflammatory disease characterized by inflammatory destruction of tooth-supporting tissues. Its pathogenesis involves a dysregulated local host immune response that is ineffective in combating microbial challenges. An integrated investigation of genes involved in mediating immune response suppression in periodontitis, based on multiple studies, can reveal genes pivotal to periodontitis pathogenesis. Here, we aimed to apply a deep learning (DL)-based autoencoder (AE) for predicting immunosuppression genes involved in periodontitis by integrating multiples omics datasets. Methods Two periodontitis-related GEO transcriptomic datasets (GSE16134 and GSE10334) and immunosuppression genes identified from DisGeNET and HisgAtlas were included. Immunosuppression genes related to periodontitis in GSE16134 were used as input to build an AE, to identify the top disease-representative immunosuppression gene features. Using K-means clustering and ANOVA, immune subtype labels were assigned to disease samples and a support vector machine (SVM) classifier was constructed. This classifier was applied to a validation set (Immunosuppression genes related to periodontitis in GSE10334) for predicting sample labels, evaluating the accuracy of the AE. In addition, differentially expressed genes (DEGs), signaling pathways, and transcription factors (TFs) involved in immunosuppression and periodontitis were determined with an array of bioinformatics analysis. Shared DEGs common to DEGs differentiating periodontitis from controls and those differentiating the immune subtypes were considered as the key immunosuppression genes in periodontitis. Results We produced representative molecular features and identified two immune subtypes in periodontitis using an AE. Two subtypes were also predicted in the validation set with the SVM classifier. Three “master” immunosuppression genes, PECAM1, FCGR3A, and FOS were identified as candidates pivotal to immunosuppressive mechanisms in periodontitis. Six transcription factors, NFKB1, FOS, JUN, HIF1A, STAT5B, and STAT4, were identified as central to the TFs-DEGs interaction network. The two immune subtypes were distinct in terms of their regulating pathways. Conclusion This study applied a DL-based AE for the first time to identify immune subtypes of periodontitis and pivotal immunosuppression genes that discriminated periodontitis from the healthy. Key signaling pathways and TF-target DEGs that putatively mediate immune suppression in periodontitis were identified. PECAM1, FCGR3A, and FOS emerged as high-value biomarkers and candidate therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhengyang Sun
- Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Cong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiting Hua
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianhua Ou
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muhui Zeng
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - George Pelekos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Xianda Hu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| |
Collapse
|
14
|
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021; 122:306-324. [PMID: 33359765 PMCID: PMC7897289 DOI: 10.1016/j.actbio.2020.12.046] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)–derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Orthodontics, Peking University School and Stomatology, Peking, China
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
15
|
Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res 2021; 384:353-366. [PMID: 33591442 DOI: 10.1007/s00441-021-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is a leading cause of cancer-related deaths worldwide. Recent studies highlight roles for microRNAs (miRNAs) in EC. Microarray analysis identified miR-194 as downregulated in EC. However, little is known about the role of miR-194 in regulating self-renewal or other biological properties of EC stem cells. RT-qPCR and Western blot confirmed the downregulation of miR-194 in EC stem cells and revealed the upregulation of protein regulator of cytokinesis 1 (PRC1) in EC. Dual-luciferase reporter assay confirmed miR-194 targeting of PRC1 resulting in its downregulation. MiR-194 overexpression or PRC1 silencing reduced PRC1 expression, preventing the activation of the Wnt/β-catenin signaling pathway. Inhibition of the Wnt/β-catenin signaling pathway prevented the proliferation, invasion, and self-renewal of EC stem cells while promoting apoptosis. Furthermore, overexpressing miR-194 or silencing PRC1 in nude mice decreased the tumor formation ability of EC stem cells in vivo. Taken together, miR-194 prevents the progression of EC by downregulating PRC1 and inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Feng Miao
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| |
Collapse
|
16
|
Wei X, Liu Q, Guo S, Wu Y. Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review). Mol Med Rep 2021; 23:167. [PMID: 33398377 PMCID: PMC7821221 DOI: 10.3892/mmr.2020.11806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
The periodontium is a highly dynamic microenvironment constantly adapting to changing external conditions. In the processes of periodontal tissue formation and remodeling, certain molecules may serve an essential role in maintaining periodontal homeostasis. Wnt family member 5a (Wnt5a), as a member of the Wnt family, has been identified to have extensive biological roles in development and disease, predominantly through the non‑canonical Wnt signaling pathway or through interplay with the canonical Wnt signaling pathway. An increasing number of studies has also demonstrated that it serves crucial roles in periodontal tissues. Wnt5a participates in the development of periodontal tissues, maintains a non‑mineralized state of periodontal ligament, and regulates bone homeostasis. In addition, Wnt5a is involved in the pathogenesis of periodontitis. Recently, it has been shown to serve a positive role in the regeneration of integrated periodontal complex. The present review article focuses on recent research studies of Wnt5a and its functions in development, maintenance, and pathological disorders of periodontal tissues, as well as its potential effect on periodontal regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
18
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Maekawa T, Tamura H, Domon H, Hiyoshi T, Isono T, Yonezawa D, Hayashi N, Takahashi N, Tabeta K, Maeda T, Oda M, Ziogas A, Alexaki VI, Chavakis T, Terao Y, Hajishengallis G. Erythromycin inhibits neutrophilic inflammation and mucosal disease by upregulating DEL-1. JCI Insight 2020; 5:136706. [PMID: 32603314 DOI: 10.1172/jci.insight.136706] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-β dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases.,Division of Periodontology, and
| | - Hikaru Tamura
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases.,Division of Periodontology, and
| | - Hisanori Domon
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | - Takumi Hiyoshi
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | | | - Daisuke Yonezawa
- Center for Advanced Oral Science.,Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | - Takeyasu Maeda
- Center for Advanced Oral Science.,Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Yamashina, Japan
| | - Athanasios Ziogas
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yutaka Terao
- Center for Advanced Oral Science.,Division of Microbiology and Infectious Diseases
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
SFRP5 inhibits melanin synthesis of melanocytes in vitiligo by suppressing the Wnt/β-catenin signaling. Genes Dis 2020; 8:677-688. [PMID: 34291139 PMCID: PMC8278527 DOI: 10.1016/j.gendis.2020.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023] Open
Abstract
Secreted frizzled-related protein 5 (SFRP5) plays a pivotal role in regulating the development of many tissues and organs, however, as an inhibitor of Wnt signaling, the role of SFRP5 in vitiligo remains unknown. Hence, we speculated that SFRP5 might be associated with melanogenesis in melanocytes by regulating Wnt signaling in vitiligo. In this study, we found that SFRP5 was overexpressed in the skin lesions of patients with vitiligo. Compared with that in normal epidermal melanocytes (PIG1), the expression of SFRP5 was increased in vitiligo melanocytes (PIG3V). To investigate the effect of SFRP5 on melanin synthesis, PIG1 cells were infected with recombinant SFRP5 adenovirus (AdSFRP5), and PIG3V cells were infected with recombinant siSFRP5 adenovirus (AdsiSFRP5). The results showed that SFRP5 overexpression inhibited melanin synthesis in PIG1 cells through downregulation of microphthalmia-associated transcription factor (MITF) and its target proteins via suppression of the Wnt/β-catenin signaling pathway. Accordingly, SFRP5 silencing increased melanin synthesis and activated the Wnt signaling pathway in PIG3V cells. Moreover, SFRP5 overexpression also downregulated the transcriptional activity of T cell factor/lymphoid enhancer factor (TCF/LEF) in PIG1 cells. Furthermore, this inhibitory effect of SFRP5 on melanin synthesis was reversed by treatment with the β-catenin agonist, SKL2001. The inhibitory action of SFRP5 in pigmentation was further confirmed in vivo using a nude mouse model. Hence, our results indicate that SFRP5 can inhibit melanogenesis in melanocytes. Additionally, our findings showed that SFRP5 plays a vital role in the development of vitiligo, and thus may serve as a potential therapeutic target for vitiligo.
Collapse
|
21
|
Protective effect of hinokitiol against periodontal bone loss in ligature-induced experimental periodontitis in mice. Arch Oral Biol 2020; 112:104679. [PMID: 32062102 DOI: 10.1016/j.archoralbio.2020.104679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The overall objective of this study was to investigate the effects of hinokitiol on periodontal bone loss in a murine model of experimental periodontitis and evaluate the anti-inflammatory activity of hinokitiol in vitro. DESIGN Periodontitis was induced by tying a silk ligature around the maxillary second molar of mice for 8 days. Hinokitiol was injected once a day for 7 days into the palatal gingiva of the ligated molar. Periodontal bone loss was then assessed morphometrically in the maxillary second molar, and the number of tartrate-resistant acid phosphatase positive multinucleated giant cells around the molar was quantified. The bacterial load of the silk ligature was calculated by counting the number of colony-forming units, while the transcription levels of proinflammatory cytokine-related genes in the palatal gingiva were evaluated by real-time qPCR. The activity of hinokitiol against LPS-induced transcription of proinflammatory genes in RAW 264.7 macrophages was also examined. RESULTS Local treatment with hinokitiol significantly inhibited the alveolar bone loss and osteoclast differentiation induced by tooth ligation. In addition, hinokitiol treatment decreased the oral bacterial load of the silk ligature and downregulated the mRNA levels of inflammatory cytokine-related genes, both in vitro and in vivo. CONCLUSION The results indicated that hinokitiol exhibits antibacterial and anti-inflammatory activity and exerts a protective effect against periodontitis.
Collapse
|
22
|
Zhang Q, Liu J, Ma L, Bai N, Xu H. Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis. J Periodontal Res 2019; 55:199-208. [PMID: 31593304 DOI: 10.1111/jre.12702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Peri-implantitis is a plaque-associated pathological condition occurring in tissues around dental implants, characterized by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone. Wnt5a is the activating ligand of the non-canonical Wnt signaling pathways and plays important roles in leukocyte infiltration and cytokine/ chemokine production in inflammatory disorders. Previous studies showed that Wnt5a was significantly up-regulated in gingival tissues of chronic and aggressive periodontitis. However, the roles and the regulatory mechanisms of Wnt5a in peri-implantitis are not well known. METHODS The expression of Wnt5a in gingival tissues collected from 8 healthy implant patients and 8 peri-implantitis patients was analyzed by Western blotting and immunofluorescence. Porphyromonas gingivalis infected macrophages isolated from the peripheral blood of healthy volunteers were used as an in vitro cellular model of peri-implantitis. Using neutralizing antibodies, inhibitors and siRNA, the production and roles of Wnt5a in peri-implantitis were assessed by immunofluorescence, quantitative polymerase chain reaction (RT-PCR) and Western blotting. Unpaired two-tailed Student's t test was used to compare qRT-PCR and Western blotting results. P ≤ .05 was considered statistically significant. RESULTS Wnt5a was highly expressed in the gingival tissues of peri-implantitis patients. Compared to controls, Wnt5a increased in P gingivalis infected macrophages. Wnt5a production in response to P gingivalis infection was dependent on LOX-1 and TLR4. Compared to controls, Wnt5a knockdown impaired IL-1β, MCP-1, and MMP2 production induced by P gingivalis infection. CONCLUSION Our results indicate that Wnt5a is involved in LOX-1 and TLR4 induced inflammatory signature via inflammatory cytokines production in response to P gingivalis infection. These findings demonstrate that Wnt5a maybe an important component of the host immune response in peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Bai
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huirong Xu
- Department of Pathology, ZiBo Central Hospital, ZiBo, China
| |
Collapse
|
23
|
Tong S, Ji Q, Du Y, Zhu X, Zhu C, Zhou Y. Sfrp5/Wnt Pathway: A Protective Regulatory System in Atherosclerotic Cardiovascular Disease. J Interferon Cytokine Res 2019; 39:472-482. [PMID: 31199714 PMCID: PMC6660834 DOI: 10.1089/jir.2018.0154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue stores energy and is the largest endocrine organ in the body, producing several adipokines. However, among these adipokines, few play a role in the positive metabolism that promotes good health. Secreted frizzled-related protein (Sfrp)-5, an antagonist that directly binds to Wnt, has attracted interest due to its favorable effects on atherosclerotic cardiovascular disease (ASCVD). This review focuses on Sfrp5 biology and the roles of the Sfrp5/Wnt system in ASCVD.
Collapse
Affiliation(s)
- Shan Tong
- 1Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, 12th ward, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China.,2Department of Geriatric Medicine and Gerontology, Hainan General Hospital, Hainan, China
| | - Qingwei Ji
- 3Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Du
- 1Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, 12th ward, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiaogang Zhu
- 1Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, 12th ward, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Caizhong Zhu
- 2Department of Geriatric Medicine and Gerontology, Hainan General Hospital, Hainan, China
| | - Yujie Zhou
- 1Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, 12th ward, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Aoki-Nonaka Y, Tabeta K, Yokoji M, Matsugishi A, Matsuda Y, Takahashi N, Sulijaya B, Domon H, Terao Y, Taniguchi M, Yamazaki K. A peptide derived from rice inhibits alveolar bone resorption via suppression of inflammatory cytokine production. J Periodontol 2019; 90:1160-1169. [PMID: 31032912 DOI: 10.1002/jper.18-0630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Periodontitis is an inflammatory disease that results in alveolar bone resorption due to inflammatory cytokine production induced by bacterial antigens such as lipopolysaccharides (LPS). Here, the preventive effect of the Amyl-1-18 peptide derived from rice in an experimental model of periodontitis and the effect on the anti-inflammatory response were assessed. METHODS Alveolar bone resorption, gene transcription of proinflammatory cytokines in the gingiva, and the endotoxin level in the oral cavity were evaluated after oral administration of the Amyl-1-18 peptide for 14 days using a ligature-induced periodontitis model in mice. Additionally, murine macrophages were incubated with LPS of Escherichia coli or Porphyromonas gingivalis in the presence of Amyl-1-18 to analyze the suppressive effects of Amyl-1-18 on the cell signaling pathways associated with proinflammatory cytokine production, including inflammasome activities. RESULTS Oral administration of Amyl-1-18 suppressed alveolar bone resorption and gene transcription of interleukin (il)6 in the gingiva of the periodontitis model, and decreased endotoxin levels in the oral cavity, suggesting modulation of periodontal inflammation by inhibition of endotoxin activities in vivo. Also, Amyl-1-18 suppressed IL-6 production induced by LPS and recombinant IL-1β in macrophages in vitro but had no effect on inflammasome activity. CONCLUSIONS The Amyl-1-18 peptide from rice inhibited alveolar bone destruction in mouse periodontitis model via suppressing inflammatory cytokine production induced by LPS. It was suggested that Amyl-1-18 peptide has anti-inflammatory property against LPS, not only by neutralization of LPS and subsequent inhibition of nuclear factor-κB signaling but also by inhibition of the IL-1R-related signaling cascade.
Collapse
Affiliation(s)
- Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Matsuda
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
Schulz J, Knappe C, Graetz C, Mewes L, Türk K, Black AK, Lieb W, Schäfer AS, Fawzy El-Sayed KM, Dörfer CE, Schreiber S, Laudes M, Schulte DM. Secreted frizzled-related protein 5 serum levels in human periodontitis-A nested case-control study. J Clin Periodontol 2019; 46:522-528. [PMID: 30762911 DOI: 10.1111/jcpe.13087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/04/2018] [Accepted: 02/09/2019] [Indexed: 01/13/2023]
Abstract
AIM Recombinant secreted frizzled-related protein 5 (sFRP5) improved periodontal status in mice. Thus, this study aimed to investigate this finding in human periodontitis using an epidemiological approach. MATERIALS AND METHODS sFRP5 and wnt5a concentrations were determined in human serum from the Food Chain Plus cohort using ELISAs. A total of 128 patients with periodontitis and tooth loss and 245 patients with periodontitis without tooth loss were compared to 373 sex-, smoker-, age- and BMI-matched individuals in a nested case-control design. RESULTS Systemic sFRP5 serum levels were significantly lower in patients with periodontitis and tooth loss (2.5 [0.0-10.4] ng/ml, median [IQR]) compared to patients with periodontitis without tooth loss (6.0 [2.5-15.8] ng/ml, median [IQR], p = 0.04] and matched controls (7.0 [2.5-18.3] ng/ml, median [IQR], p = 0.02). No significant differences in sFRP5 serum levels were found among patients with periodontitis without tooth loss (6.0 [2.5-15.8] ng/ml, median [IQR]) and controls (3.1 [0.0-10.6] ng/ml, median [IQR], p = 0.06). CONCLUSIONS sFRP5 might serve as a novel biomarker for periodontitis severity. Modulating the inflammatory background of severe forms of periodontitis, in the time of precision medicine, needs to be revealed in further studies.
Collapse
Affiliation(s)
- Juliane Schulz
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany.,Clinic of Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany
| | - Carina Knappe
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Graetz
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany
| | - Louisa Mewes
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anna K Black
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Arne S Schäfer
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Karim M Fawzy El-Sayed
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany.,Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
| | - Christof E Dörfer
- Clinic of Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany.,Cluster of Excellence, Inflammation at Interfaces, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany.,Cluster of Excellence, Inflammation at Interfaces, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dominik M Schulte
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany.,Cluster of Excellence, Inflammation at Interfaces, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
26
|
Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M, Wolff LF. Sclerostin and WNT‐5a gingival protein levels in chronic periodontitis and health. J Periodontal Res 2019; 54:555-565. [DOI: 10.1111/jre.12659] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/18/2019] [Accepted: 03/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Georgios S. Chatzopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Scott Lunos
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute University of Minnesota Minneapolis Minnesota
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Larry F. Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| |
Collapse
|
27
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Yonezawa D, Nagai K, Ochiai A, Taniguchi M, Tabeta K, Maeda T, Terao Y. Peptides from rice endosperm protein restrain periodontal bone loss in mouse model of periodontitis. Arch Oral Biol 2018; 98:132-139. [PMID: 30485826 DOI: 10.1016/j.archoralbio.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Food-derived peptides have been reported to exhibit antibacterial activity against periodontal pathogenic bacteria. However, no effect has been shown on inflammation and bone resorption in periodontal pathology. The overall objective of the current study was to investigate how rice peptides influence biological defense mechanisms against periodontitis-induced inflammatory bone loss, and identify their novel functions as a potential anti-inflammatory drug. DESIGN The expression of inflammatory and osteoclast-related molecules was examined in mouse macrophage-derived RAW 264.7 cell cultures using qPCR. Subsequently, the effect of these peptides on inflammatory bone loss in mouse periodontitis was examined using a mouse model of tooth ligation. Briefly, periodontal bone loss was induced for 7 days in mice by ligating the maxillary second molar and leaving the contralateral tooth un-ligated (baseline control). The mice were microinjected daily with the peptide in the gingiva until the day before euthanization. One week after the ligation, TRAP-positive multinucleated cells (MNCs) were enumerated from five random coronal sections of the ligated sites in each mouse. RESULTS Rice peptides REP9 and REP11 significantly inhibited transcription activity of inflammatory and osteoclast-related molecules. Local treatment with the rice peptides, in mice subjected to ligature-induced periodontitis, inhibited inflammatory bone loss, explaining the decreased numbers of osteoclasts in bone tissue sections. CONCLUSION Therefore, these data suggested that the rice peptides possess a protective effect against periodontitis.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daisuke Yonezawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
28
|
The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus. Biosci Rep 2018; 38:BSR20180011. [PMID: 29789397 PMCID: PMC6028759 DOI: 10.1042/bsr20180011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Various reports have suggested that secreted frizzled-related protein (SFRP) 5 (SFRP5) plays a regulatory role in the processes of cellular proliferation and differentiation, by means of inactivating the Wnt/β-catenin signaling pathway. Recently, SFRP5 has been identified as an anti-inflammatory adipokine, which may be induced during preadipocyte proliferation, differentiation, and maturation. This review aims to identify the recent progress in the research and development of SFRP5 that can play a role in influencing lipid metabolism, inflammation, and type 2 diabetes mellitus (T2DM). Recent evidence has indicated that SFRP5 is capable of stimulating adipocyte differentiation via inhibition of the Wnt/β-catenin signaling pathway. In addition, SFRP5 binding with wingless-type murine mammary tumor virus integration site family, member 5A (Wnt5a), inhibits the activation of c-Jun N-terminal kinase (JNK) downstream of the Wnt signaling pathway. An antagonistic relationship has been found between the reductions in inflammatory cytokine production and serine phosphorylation of insulin receptor substrate-1 (IRS-1) in regard to inhibition of insulin signaling network. By this mechanism, SFRP5 exerts its influence on metabolic function. Based on our review of the current available literature, we support the notion that SFRP5 can be used as a therapeutic target in the treatment of T2DM.
Collapse
|
29
|
Chi YT, Xu CJ, Sun XJ, Li DM, Wang HF, Wang MM, He XF. [Expression and significance of secreted frizzled-related protein 1 and β-catenin in gingival tissue of patients with chronic periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:257-261. [PMID: 29984924 PMCID: PMC7030293 DOI: 10.7518/hxkq.2018.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the expression and correlation of secreted frizzled-related protein 1 (SFRP1) and β-catenin in gingival tissues of patients with chronic periodontitis (CP). The role of the classical Wnt/β-catenin signaling pathway in the development of periodontitis was also explored. METHODS Twenty-eight patients with CP (CP group) were enrolled in this study. Among them, 16 cases were moderate CP, and 12 demonstrated severe CP. Twelve healthy cases comprised the controls (normal group). Gingival tissue was collected, and the probing depth, bleeding index, and clinical attachment loss were recorded. The expression levels of SFRP1 and β-catenin were detected by immunohistochemistry, and staining intensity was evaluated by double scoring method. SPSS 19.0 was used for statistical analysis. RESULTS The staining strength scores of SFRP1 and β-catenin were 2.16±0.65 and 1.12±0.51 in the normal group, 3.57±0.45 and 2.36±0.49 in the CP group, 3.61±0.40 and 2.30±0.44 in the moderate CP group, and 3.52±0.52 and 2.45±0.55 in the severe CP group, respectively. The expression of SFRP1 and β-catenin in the CP group was higher than that in the normal group (P<0.01). A significant difference was noted between the normal group and the moderate and severe CP groups (P<0.01) but none between the moderate and severe CP groups (P>0.05). A positive correlation was found between the expression of SFRP1 and β-catenin (r=0.657, P<0.01). The expression levels of β-catenin and SFRP1 were related to periodontal indexes. The correlation between the expression of SFRP1 and probing depth was most significant (r=0.723, P<0.01), as well as that between β-catenin and bleeding index (r=0.697, P<0.01). CONCLUSIONS Patients with CP exhibit elevated expression of SFRP1 and β-catenin in gingival tissues, and this event is related to the degree of periodontal destruction. Abnormal expression of SFRP1 and β-catenin may promote the development of periodontitis.
Collapse
Affiliation(s)
- Yu-Tan Chi
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Chun-Jiao Xu
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao-Juan Sun
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Dong-Mei Li
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Hong-Feng Wang
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Miao-Miao Wang
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiu-Fang He
- Center of Stomatology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
30
|
Kobayashi Y, Uehara S, Udagawa N. Roles of non-canonical Wnt signaling pathways in bone resorption. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Cho YK, Kang YM, Lee SE, Lee YL, Seol SM, Lee WJ, Park JY, Jung CH. Effect of SFRP5 (Secreted Frizzled-Related Protein 5) on the WNT5A (Wingless-Type Family Member 5A)-Induced Endothelial Dysfunction and Its Relevance With Arterial Stiffness in Human Subjects. Arterioscler Thromb Vasc Biol 2018; 38:1358-1367. [PMID: 29674475 DOI: 10.1161/atvbaha.117.310649] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE SFRP5 (secreted frizzled-related protein 5) is an endogenous inhibitor of WNT5A (wingless-type family member 5a), which has been implicated in atherosclerosis. However, contradictory results have been reported about the role of SFRP5 in atherosclerosis. We aimed to investigate whether SFRP5 could restore WNT5A-induced endothelial dysfunction in vitro and ex vivo. In addition, we sought to determine whether the serum concentration of SFRP5 is associated with atherosclerosis in humans. APPROACH AND RESULTS We measured endothelium-dependent vasorelaxation in the isolated thoracic aorta of Sprague-Dawley rats. In addition, we measured intracellular nitric oxide (NO) in human endothelial cells. The protein abundance of total and phosphorylated JNK (c-Jun N-terminal kinase), AKT (protein kinase B), and endothelial NO synthase was analyzed in human endothelial cells. Circulating SFRP5 and WNT5A levels and brachial-ankle pulse wave velocity were measured in 282 human subjects with type 2 diabetes mellitus. SFRP5 dose dependently restored Wnt5-induced impaired vasorelaxation in rat thoracic aorta by an endothelial NO synthase-dependent mechanism. SFRP5 treatment restored the WNT5A-induced reduction of NO production via endothelial NO synthase in human endothelial cells. WNT5A-induced changes in the phosphorylation of JNK, AKT, and endothelial NO synthase were ameliorated with SFRP5 administration. In humans with type 2 diabetes mellitus, the serum SFRP5 concentration positively correlated with brachial-ankle pulse wave velocity (r=0.146; P=0.024). Multivariate linear regression analysis demonstrated that the serum SFRP5 concentration was independently associated with brachial-ankle pulse wave velocity after adjustment for potential confounders [B (SE)=7.40 (3.35); P=0.028]. CONCLUSIONS Our data suggest the possible compensatory action of SFRP5 against atherosclerosis under conditions of metabolic dysfunction.
Collapse
Affiliation(s)
- Yun Kyung Cho
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea (Y.K.C.)
| | - Yu Mi Kang
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
| | - Seung Eun Lee
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
| | - Yoo La Lee
- Asan Institute of Life Sciences (Y.L.L., S.M.S.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So Mi Seol
- Asan Institute of Life Sciences (Y.L.L., S.M.S.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Je Lee
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
| | - Joong-Yeol Park
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
| | - Chang Hee Jung
- From the Department of Internal Medicine (Y.K.C., Y.M.K., S.E.L., W.J.L., J.-Y.P., C.H.J.)
| |
Collapse
|