1
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
2
|
Brzychczy-Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Drożdż K, Brzychczy-Włoch M, Zarzecka J. Standardization of the protocol for oral cavity examination and collecting of the biological samples for microbiome research using the next-generation sequencing (NGS): own experience with the COVID-19 patients. Sci Rep 2024; 14:3717. [PMID: 38355866 PMCID: PMC10867075 DOI: 10.1038/s41598-024-53992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
To date, publications have shown that compositions of oral microbiota differ depending on their habitats (e.g. tongue, tonsils, pharynx). The absence of set standards for the choice of the areas and conditions of material collection makes the oral microbiome one of the most difficult environments for a comparative analysis with other researchers, which is a meaningful limitation during an assessment of the potential effects of microorganisms as biomarkers in the courses of various human diseases. Therefore, standardisation of basic conditions of a dental examination and collection of material for the next generation sequencing (NGS) is worth attempting. The standardisation of the dental exam and collection of the clinical materials: saliva, swab from the tongue ridge, hard palate, palatine tonsils and oropharynx, supragingival plaque and subgingival plaque. Protocol involved the patients (n = 60), assigned to 3 groups: I-COVID-19 convalescents who received antibiotics, n = 17, II-COVID-19 convalescents, n = 23 and III-healthy individuals, n = 20. The collected biological samples were used to conduct NGS (16S rRNA). The conditions of patient preparation for collecting biological materials as well as the schedule of dental examination, were proposed. Based on the research conducted, we have indicated the dental indicators that best differentiate the group of COVID-19 patients (groups I and II) from healthy people (group III). These include the DMFT, D and BOP indices. The use of alpha and beta diversity analysis provided an overall insight into the diversity of microbial communities between specific niches and patient groups. The most different diversity between the studied group of patients (group II) and healthy people (group III) was noted in relation to the supragingival plaque. The order of activities during the dental exam as well as while collecting and securing clinical materials is particularly important to avoid technical errors and material contamination which may result in erroneous conclusions from the analyses of the results of sensitive tests such as the NGS. It has been shown that the dental indices: DMFT, D number, PI and BOP are the best prognostic parameters to assess the oral health. Based on beta diversity the most sensitive niche and susceptible to changes in the composition of the microbiota is the supragingival plaque. The procedures developed by our team can be applied as ready-to-use forms in studies conducted by other researchers.
Collapse
Affiliation(s)
- Barbara Brzychczy-Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland.
| | - Agnieszka Sroka-Oleksiak
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Kąkol
- University Hospital in Cracow, Temporary COVID Ward No. 1, Kraków, Poland
| | - Kamil Drożdż
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Bouzid F, Gtif I, Charfeddine S, Abid L, Kharrat N. Polyphasic molecular approach to the characterization of methanogens in the saliva of Tunisian adults. Anaerobe 2024; 85:102820. [PMID: 38309618 DOI: 10.1016/j.anaerobe.2024.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES Methanogenic archaea are a minor component of human oral microbiota. Due to their relatively low abundance, the detection of these neglected microorganisms is challenging. This study concerns the presence of methanogens in salivary samples collected from Tunisian adults to evaluate their prevalence and burden using a polyphasic molecular approach. METHODS A total of 43 saliva samples were included. Metagenomic and standard 16S rRNA sequencing were performed as an initial screening to detect the presence of methanogens in the oral microbiota of Tunisian adults. Further investigations were performed using specific quantitative real-time PCR targeting Methanobrevibacter oralis and Methanobrevibacter smithii. RESULTS Methanobrevibacter was detected in 5/43 (11.62 %) saliva samples after metagenomic 16S rRNA data analysis. The presence of M. oralis was confirmed in 6/43 samples by standard 16S rRNA sequencing. Using real-time PCR, methanogens were detected in 35/43 (81.39 %) samples, including 62.79 % positive for M. oralis and 76.74 % positive for M. smithii. These findings reflect the high prevalence of both methanogens, revealed by the high sensitivity of the real-time PCR approach. Interestingly, we also noted a significant statistical association between the detection of M. smithii and poor adherence to a Mediterranean diet, indicating the impact of diet on M. smithii prevalence. CONCLUSION Our study showed the presence of methanogens in the oral microbiota of Tunisian adults with an unprecedented relatively high prevalence. Choice of methodology is also central to picturing the real prevalence and diversity of such minor taxa in the oral microbiota.
Collapse
Affiliation(s)
- Fériel Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
| | - Imen Gtif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Salma Charfeddine
- Department of Cardiology, Hédi Chaker University Hospital, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Leila Abid
- Department of Cardiology, Hédi Chaker University Hospital, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Pilliol V, Beye M, Terlier L, Balmelle J, Kacel I, Lan R, Aboudharam G, Grine G, Terrer E. Methanobrevibacter massiliense and Pyramidobacter piscolens Co-Culture Illustrates Transkingdom Symbiosis. Microorganisms 2024; 12:215. [PMID: 38276200 PMCID: PMC10819710 DOI: 10.3390/microorganisms12010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Among oral microbiota methanogens, Methanobrevibacter massiliense (M. massiliense) has remained less studied than the well-characterised and cultivated methanogens Methanobrevibacter oralis and Methanobrevibacter smithii. M. massiliense has been associated with different oral pathologies and was co-isolated with the Synergistetes bacterium Pyramidobacter piscolens (P. piscolens) in one case of severe periodontitis. Here, reporting on two additional necrotic pulp cases yielded the opportunity to characterise two co-cultivated M. massiliense isolates, both with P. piscolens, as non-motile, 1-2-µm-long and 0.6-0.8-µm-wide Gram-positive coccobacilli which were autofluorescent at 420 nm. The two whole genome sequences featured a 31.3% GC content, gapless 1,834,388-base-pair chromosome exhibiting an 85.9% coding ratio, encoding a formate dehydrogenase promoting M. massiliense growth without hydrogen in GG medium. These data pave the way to understanding a symbiotic, transkingdom association with P. piscolens and its role in oral pathologies.
Collapse
Affiliation(s)
- Virginie Pilliol
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Mamadou Beye
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Laureline Terlier
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Julien Balmelle
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Idir Kacel
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Romain Lan
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
- CNRS, EFS, ADES, Aix-Marseille University, 13385 Marseille, France
| | - Gérard Aboudharam
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Ghiles Grine
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Elodie Terrer
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
6
|
Soza-Bolaños AI, Domínguez-Pérez RA, Ayala-Herrera JL, Pérez-Serrano RM, Soto-Barreras U, Espinosa-Cristóbal LF, Rivera-Albarrán CA, Zaldívar-Lelo de Larrea G. Presence of methanogenic archaea in necrotic root canals of patients with or without type 2 diabetes mellitus. AUST ENDOD J 2023; 49:641-647. [PMID: 37715368 DOI: 10.1111/aej.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Theoretically, a necrotic root canal fulfils all requirements as a niche for methanogens to inhabit. However, their presence in it and its implication in apical periodontitis (AP) is controversial. Therefore, to contribute to ending the controversy, this study aimed to detect and compare methanogens' presence in two distinct niches with supposedly different microenvironments; both were necrotic root canals associated with AP but one from patients with type 2 diabetes mellitus (T2DM) while the other from non-diabetic patients. A clinical examination was performed on 65 T2DM patients and 73 non-diabetic controls. Samples from necrotic root canals were obtained, and methanogens were identified. The presence of methanogens was three times higher (27.6%) in the T2DM group than in non-diabetic patients (8.2%). In addition, methanogens' presence was associated with a higher prevalence of periapical symptoms.
Collapse
Affiliation(s)
- Ana I Soza-Bolaños
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Rubén A Domínguez-Pérez
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
- Department of Endodontics, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - Rosa M Pérez-Serrano
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | | | - León F Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez, Ciudad Juarez, Mexico
| | - Claudia A Rivera-Albarrán
- Laboratory of Multidisciplinary Dentistry Research, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Guadalupe Zaldívar-Lelo de Larrea
- Laboratorio de Genética y Biología Molecular (GENBIOM), Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| |
Collapse
|
7
|
Cena JA, Vasques Castro JAD, Belmok A, Sales LP, Alves de Oliveira L, Stefani CM, Dame-Teixeira N. Unraveling the Endodontic Archaeome: A Systematic Review with Meta-Analysis. J Endod 2023; 49:1432-1444.e4. [PMID: 37544428 DOI: 10.1016/j.joen.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION The controversial issue of whether the Archaea domain plays a role in endodontic infections is the focus of this systematic review with meta-analysis. The aim is to emphasize the significance of minority microbial domains in oral dysbiosis by evaluating the prevalence of archaea in root canals and its association with clinical parameters such as symptomatology and type of endodontic infection. METHODS The search strategy involved researching 6 databases and the gray literature. Publications were accepted in any year or language that identified archaea in samples from endodontic canals. A 2-step selection process narrowed the final choice to 16 articles. The methodological quality of the studies was evaluated using tools from the Joanna Briggs Institute, and the certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. RESULTS The results showed that archaea were present in 20% (95% [confidence interval] CI = 8%-32%) of individuals with endodontic samples analyzed. The samples were about twice as likely to be archaeal-positive if collected from individuals with primary vs. persistent/secondary infection (odds ratio = 2.33; 95% CI = 1.31-4.14; I2 = 0%), or individuals with self-reported vs. symptom-free infections (odds ratio = 2.67; 95% CI = 1.47-4.85; I2 = 0%). Methanogenic archaea were reported in 66% of the included studies. Representative members of phyla Thaumarchaeota and Crenarchaeota were also identified. CONCLUSIONS Archaea are present in about one-fifth of the infected root canals. Recognized biases in experimental approaches for researching archaea must be addressed to understand the prevalence and roles of archaea in endodontic infections, and to determine whether the decontamination process should include the elimination or neutralization of archaea from root canals (International Prospective Register of Systematic Reviews protocol = CRD42021264308).
Collapse
Affiliation(s)
- Jessica Alves Cena
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Aline Belmok
- Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Loise Pedrosa Sales
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil; Oral Biology Division, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
9
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
10
|
Khelaifia S, Virginie P, Belkacemi S, Tassery H, Terrer E, Aboudharam G. Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques. Microorganisms 2023; 11:microorganisms11040836. [PMID: 37110259 PMCID: PMC10143722 DOI: 10.3390/microorganisms11040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Recent years have been marked by a paradigm shift in the study of the human microbiota, with a re-emergence of culture-dependent approaches. Numerous studies have been devoted to the human microbiota, while studies on the oral microbiota still remain limited. Indeed, various techniques described in the literature may enable an exhaustive study of the microbial composition of a complex ecosystem. In this article, we report different methodologies and culture media described in the literature that can be applied to study the oral microbiota by culture. We report on specific methodologies for targeted culture and specific culture techniques and selection methodologies for cultivating members of the three kingdoms of life commonly found in the human oral cavity, namely, eukaryota, bacteria and archaea. This bibliographic review aims to bring together the various techniques described in the literature, enabling a comprehensive study of the oral microbiota in order to demonstrate its involvement in oral health and diseases.
Collapse
Affiliation(s)
- Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Pilliol Virginie
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Souad Belkacemi
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Herve Tassery
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Elodie Terrer
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Gérard Aboudharam
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
11
|
Zhang JS, Chu CH, Yu OY. Oral Microbiome and Dental Caries Development. Dent J (Basel) 2022; 10:184. [PMID: 36285994 PMCID: PMC9601200 DOI: 10.3390/dj10100184] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental caries remains the most prevalent oral disease worldwide. The development of dental caries is highly associated with the microbiota in the oral cavity. Microbiological research of dental caries has been conducted for over a century, with conventional culture-based methods and targeted molecular methods being used in order to identify the microorganisms related to dental caries. These methods' major limitation is that they can identify only part of the culturable microorganisms in the oral cavity. Introducing sequencing-based technology and bioinformatics analysis has boosted oral microbiome research and greatly expanded the understanding of complex oral microbiology. With the continuing revolution of molecular technologies and the accumulated sequence data of the oral microbiome, researchers have realized that microbial composition alone may be insufficient to uncover the relationship between caries and the microbiome. Most updated evidence has coupled metagenomics with transcriptomics and metabolomics techniques in order to comprehensively understand the microbial contribution to dental caries. Therefore, the objective of this article is to give an overview of the research of the oral microbiome and the development of dental caries. This article reviews the classical concepts of the microbiological aspect of dental caries and updates the knowledge of caries microbiology with the results of current studies on the oral microbiome. This paper also provides an update on the caries etiological theory, the microorganisms related to caries development, and the shifts in the microbiome in dental caries development.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Feres M, Duarte PM, Figueiredo LC, Gonçalves C, Shibli J, Retamal-Valdes B. Systematic and scoping reviews to assess biological parameters. J Clin Periodontol 2022; 49:884-888. [PMID: 35713237 DOI: 10.1111/jcpe.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The evidence synthesis approach compiling biological/laboratory data is effective in advancing health-related knowledge. However, this approach is still underused in the oral health field. METHODS This Commentary discusses the opportunities and challenges of systematic and scoping reviews of laboratory data in dentistry. Special focus is put on the potential of these reviews to elucidate etiological and treatment concepts of oral diseases, such as periodontitis and periimplantitis. RESULTS The following difficulties associated with such studies are discussed: (i) selection of ideal study design, (ii) assessment of "risk of bias" and definition of "certainty of evidence", (iii) evidence assembly and summary, and (iv) paper review process. DISCUSSION Despite those challenges, high-quality reviews integrating laboratory data may generate relevant scientific information and help identify new avenues for future investigations. Experts in different oral health topics should build a process capable of helping researchers assemble and interpret these types of data.
Collapse
Affiliation(s)
- Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil.,The Forsyth Institute, Cambridge, MA, USA
| | - Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil.,Department of Periodontology, School of Advanced Dental Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Cristiane Gonçalves
- Department of Periodontology, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
13
|
The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells 2022; 11:cells11081287. [PMID: 35455967 PMCID: PMC9024940 DOI: 10.3390/cells11081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.
Collapse
|
14
|
Meta-analyses on the Periodontal Archaeome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:69-93. [DOI: 10.1007/978-3-030-96881-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Lettieri GM, Santiago LM, Lettieri GC, Borges LGDA, Marconatto L, de Oliveira LA, Damé-Teixeira N, Salles LP. Oral Phenotype and Salivary Microbiome of Individuals With Papillon-Lefèvre Syndrome. Front Cell Infect Microbiol 2021; 11:720790. [PMID: 34513733 PMCID: PMC8427699 DOI: 10.3389/fcimb.2021.720790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023] Open
Abstract
Papillon-Lefèvre syndrome (PLS) is an autosomal recessive rare disease, main characteristics of which include palmoplantar hyperkeratosis and premature edentulism due to advanced periodontitis (formerly aggressive periodontitis). This study aimed to characterize the oral phenotype, including salivary parameters, and the salivary microbiome of three PLS sisters, comparatively. Two sisters were toothless (PLSTL1 and PLSTL2), and one sister had most of the teeth in the oral cavity (PLST). Total DNA was extracted from the unstimulated saliva, and the amplicon sequencing of the 16S rRNA gene fragment was performed in an Ion PGM platform. The amplicon sequence variants (ASVs) were obtained using the DADA2 pipeline, and the taxonomy was assigned using the SILVA v.138. The main phenotypic characteristics of PLS were bone loss and premature loss of primary and permanent dentition. The PLST sister presented advanced periodontitis with gingival bleeding and suppuration, corresponding to the advanced periodontitis as a manifestation of systemic disease, stage IV, grade C. All three PLS sisters presented hyposalivation as a possible secondary outcome of the syndrome. Interestingly, PLST salivary microbiota was dominated by the uncultured bacteria Bacterioidales (F0058), Fusobacterium, Treponema, and Sulfophobococcus (Archaea domain). Streptococcus, Haemophilus, and Caldivirga (Archaea) dominated the microbiome of the PLSTL1 sister, while the PLSTL2 had higher abundances of Lactobacillus and Porphyromonas. This study was the first to show a high abundance of organisms belonging to the Archaea domain comprising a core microbiome in human saliva. In conclusion, a PLST individual does have a microbiota different from that of the periodontitis' aggressiveness previously recognized. Due to an ineffective cathepsin C, the impairment of neutrophils probably provided a favorable environment for the PLS microbiome. The interactions of Bacteroidales F0058, Caldivirga, and Sulfophobococcus with the microbial consortium of PLS deserves future investigation. Traditional periodontal therapy is not efficient in PLS patients. Unraveling the PLS microbiome is essential in searching for appropriate treatment and avoiding early tooth loss.
Collapse
Affiliation(s)
- Giulia Melo Lettieri
- Department of Dentistry, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | | | | | - Luiz Gustavo dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Marconatto
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Loise Pedrosa Salles
- Department of Dentistry, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| |
Collapse
|
16
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
17
|
Hopson LM, Singleton SS, David JA, Basuchoudhary A, Prast-Nielsen S, Klein P, Sen S, Mazumder R. Bioinformatics and machine learning in gastrointestinal microbiome research and clinical application. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:141-178. [PMID: 33814114 DOI: 10.1016/bs.pmbts.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The scientific community currently defines the human microbiome as all the bacteria, viruses, fungi, archaea, and eukaryotes that occupy the human body. When considering the variable locations, composition, diversity, and abundance of our microbial symbionts, the sheer volume of microorganisms reaches hundreds of trillions. With the onset of next generation sequencing (NGS), also known as high-throughput sequencing (HTS) technologies, the barriers to studying the human microbiome lowered significantly, making in-depth microbiome research accessible. Certain locations on the human body, such as the gastrointestinal, oral, nasal, and skin microbiomes have been heavily studied through community-focused projects like the Human Microbiome Project (HMP). In particular, the gastrointestinal microbiome (GM) has received significant attention due to links to neurological, immunological, and metabolic diseases, as well as cancer. Though HTS technologies allow deeper exploration of the GM, data informing the functional characteristics of microbiota and resulting effects on human function or disease are still sparse. This void is compounded by microbiome variability observed among humans through factors like genetics, environment, diet, metabolic activity, and even exercise; making GM research inherently difficult to study. This chapter describes an interdisciplinary approach to GM research with the goal of mitigating the hindrances of translating findings into a clinical setting. By applying tools and knowledge from microbiology, metagenomics, bioinformatics, machine learning, predictive modeling, and clinical study data from children with treatment-resistant epilepsy, we describe a proof-of-concept approach to clinical translation and precision application of GM research.
Collapse
Affiliation(s)
- Lindsay M Hopson
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, United States; The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States; The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States
| | - Stephanie S Singleton
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, United States
| | - John A David
- Department of Applied Mathematics, Virginia Military Institute, Lexington, VA, United States
| | - Atin Basuchoudhary
- Department of Economics and Business, Virginia Military Institute, Lexington, VA, United States
| | - Stefanie Prast-Nielsen
- Center for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, United States
| | - Sabyasachi Sen
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, United States; Department of Medicine, The George Washington University, Washington, DC, United States
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, United States; The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States.
| |
Collapse
|
18
|
Affiliation(s)
- N.S. Jakubovics
- School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - W. Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|