1
|
Su L, Lin B, Yu M, Liu Y, Sun S, Feng H, Liu H, Han D. EDA Variants Are Responsible for Approximately 90% of Deciduous Tooth Agenesis. Int J Mol Sci 2024; 25:10451. [PMID: 39408781 PMCID: PMC11477375 DOI: 10.3390/ijms251910451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Deciduous tooth agenesis is a severe craniofacial developmental defect because it affects masticatory function from infancy and may result in delayed growth and development. Here, we aimed to identify the crucial pathogenic genes and clinical features of patients with deciduous tooth agenesis. We recruited 84 patients with severe deciduous tooth agenesis. Whole-exome and Sanger sequencing were used to identify the causative variants. Phenotype-genotype correlation analysis was conducted. We identified 54 different variants in 8 genes in 84 patients, including EDA (73, 86.9%), PAX9 (2, 2.4%), LRP6 (2, 2.4%), MSX1 (2, 2.4%), BMP4 (1, 1.2%), WNT10A (1, 1.2%), PITX2 (1, 1.2%), and EDARADD (1, 1.2%). Variants in ectodysplasin A (EDA) accounted for 86.9% of patients with deciduous tooth agenesis. Patients with the EDA variants had an average of 15.4 missing deciduous teeth. Mandibular deciduous central incisors had the highest missing rate (100%), followed by maxillary deciduous lateral incisors (98.8%) and mandibular deciduous lateral incisors (97.7%). Our results indicated that EDA gene variants are major pathogenic factors for deciduous tooth agenesis, and EDA is specifically required for deciduous tooth development. The results provide guidance for clinical diagnosis and genetic counseling of deciduous tooth agenesis.
Collapse
Affiliation(s)
- Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Bichen Lin
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China; (L.S.); (M.Y.); (Y.L.); (S.S.); (H.F.)
| |
Collapse
|
2
|
Kim MJ, Lee JS, Chae SW, Cho SI, Moon J, Ko JM, Chae JH, Seong MW. Genetic profiling and diagnostic strategies for patients with ectodermal dysplasias in Korea. Orphanet J Rare Dis 2024; 19:329. [PMID: 39244550 PMCID: PMC11380769 DOI: 10.1186/s13023-024-03331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Ectodermal dysplasia (ED) is a rare genetic disorder that affects structures derived from the ectodermal germ layer. RESULTS In this study, we analyzed the genetic profiles of 27 Korean patients with ED. Whole exome sequencing (WES) was performed on 23 patients, and targeted panel sequencing was conducted on the remaining 4 patients. Among the patients in the cohort, 74.1% (20/27) tested positive for ED. Of these positive cases, EDA and EDAR mutations were found in 80% (16/20). Notably, 23.1% (3/13) of EDA-positive cases exhibited copy number variations. Among the 23 patients who underwent WES, we conducted a virtual panel analysis of eight well-known genes, resulting in diagnoses for 56.5% (13/23) of the cases. Additionally, further analysis of approximately 5,000 OMIM genes identified four more cases, increasing the overall positivity rate by approximately 17%. These findings underscore the potential of WES for improving the diagnostic yield of ED. Remarkably, 94.1% of the patients manifesting the complete triad of ED symptoms (hair/skin/dental) displayed detectable EDA/EDAR mutations. In contrast, none of the 7 patients without these three symptoms exhibited EDA/EDAR mutations. CONCLUSIONS When conducting molecular diagnostics for ED, opting for targeted sequencing of EDA/EDAR mutations is advisable for cases with classical symptoms, while WES is deemed an effective strategy for cases in which these symptoms are absent.
Collapse
Affiliation(s)
- Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Seung Won Chae
- Department of Laboratory Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Sun M, Li N, Zhang W, Li A, Li Y. A double-negative feedback loop mediated by non-coding RNAs contributes to tooth morphogenesis. Cells Dev 2024; 179:203932. [PMID: 38852677 DOI: 10.1016/j.cdev.2024.203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Tooth morphogenesis is a critically ordered process manipulated by a range of signaling factors. Particularly, the involvement of fine-tuned signaling mediated by non-coding RNAs has been of longstanding interest. Here, we revealed a double-negative feedback loop acted by a long non-coding RNA (LOC102159588) and a microRNA (miR-133b) that modulated tooth morphogenesis of miniature swine. Mechanistically, miR-133b repressed the transcription of LOC102159588 through downstream target Sp1. Conversely, LOC102159588 not only inhibited the transport of pre-miR-133b from the nucleus to the cytoplasm by regulating exportin-5 but also served as a sponge in the cytoplasm, suppressing functional miR-133b. Together, the double-negative feedback loop maintained normal tooth morphogenesis by modulating endogenous apoptosis. Related disruptions would lead to an arrest of tooth development and may result in tooth malformations.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Na Li
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Weixing Zhang
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Liu J, Park K, Choi YJ, Lee JH, Cha JY. Genetic polymorphisms linked to extreme postorthodontic external apical root resorption in Koreans. Prog Orthod 2024; 25:23. [PMID: 38853224 PMCID: PMC11162991 DOI: 10.1186/s40510-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND External apical root resorption (EARR) is a common undesirable outcome of orthodontic treatment, this study aimed to identify genetic polymorphisms associated with the susceptibility to extreme orthodontic-induced EARR in a Korean population using extreme phenotype analysis sampling. METHODS Genomic DNA was isolated from the saliva of 77 patients who underwent orthodontic treatment involving two maxillary premolar extractions. The patients were divided into two groups based on EARR values measured on periapical radiographs: The significant resorption group (SG, EARR ≥ 4 mm) and the normal group (NG, EARR < 2 mm). In the NG group, patients with EARR < 1 mm were named the non-resorption group (NonG). Targeted next-generation sequencing was performed using the screened single nucleotide polymorphisms (SNPs), and firth logistic regression analysis was used to determine genetic associations with EARR. Haplotype-based association analysis was performed for specific SNPs. RESULTS SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 were found to be significantly associated with severe EARR (p < 0.05, pre-Bonferroni correction p-values). Additionally, the haplotype CCA of rs17525809, rs208294, and rs1718119 P2RX7 had a higher frequency in the SG group. CONCLUSION Extreme phenotype analysis has identified eleven SNPs related to genes TNFSF11, TNFRSF11B, WNT3A, SFRP2, LRP6, P2RX7, and LRP1 that are associated with severe root resorption in the Korean population. These findings will contribute to the development of predictive diagnostic tools for identifying severe root resorption that may occur during orthodontic treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kwanwoo Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea.
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
5
|
Kablan A, Tasdelen E. Novel homozygous frameshift insertion variant in the last exon of the EDARADD causing hypohidrotic ectodermal dysplasia in two siblings: case report and review of the literature. Ital J Pediatr 2024; 50:112. [PMID: 38840186 PMCID: PMC11155060 DOI: 10.1186/s13052-024-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that results in the abnormal development of structures derived from ectodermal tissue. This rare condition predominantly affects the hair, nails, eccrine glands, and teeth. While HED can be caused by various genes, the EDA, EDAR, EDARADD, and WNT10A genes account for approximately 90% of cases. Notably, HED forms associated with variants in the EDA, EDAR, or EDARADD genes may exhibit similar phenotypes due to defects in a common signaling pathway. Proper interaction among the products of these genes is crucial for the activation of the nuclear factor (NF-κB) signaling pathway, which subsequently regulates the transcription of targeted genes. The EDARADD gene, in particular, harbors one of the rarest reported variants associated with HED. CASE PRESENTATION Five-and two-years-old brothers born into consanguineous parents were examined at our outpatient medical genetics clinic at Sanliurfa Training and Research Hospital, Turkey. Both displayed the same classical phenotypic features of HED. The elder had a very sparse dark and brittle hair, sparse eyebrows and eyelashes, conical upper and lower premolar teeth with hypodontia, widely spaced teeth, very dry skin, mildly prominent forehead, and periorbital wrinkles. The younger one showed the same, but less severe, clinical features. After thorough examination and patient history evaluation, targeted next-generation sequencing analysis yielded the novel homozygous insertion variant c.322_323insCGGGC p.(Arg108ProfsTer7) in EDARADD. The mutation has not been reported to date in the literature. CONCLUSIONS In this report, we present two siblings exhibiting classical HED symptoms and a novel insertion variant of the EDARADD gene, which leads to a frameshift introducing a stop codon. Both brothers inherited such mutation from their parents, who were heterozygous carriers of the same variant. The present study may shed light about the pathogenic mechanisms underlying HED, and expand the spectrum of EDARADD gene variants associated with this condition.
Collapse
Affiliation(s)
- Ahmet Kablan
- Department of Medical Genetics, Sanliurfa Research and Training Hospital, Sanliurfa, Turkey.
- Department of Medical Genetics, Etlik City Hospital, Ankara, Turkey.
| | - Elifcan Tasdelen
- Department of Medical Genetics, Sanliurfa Research and Training Hospital, Sanliurfa, Turkey
- Department of Medical Genetics, Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Wang J, Yang H, Ma X, Liu J, Li L, Chen L, Wei F. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells. Cell Mol Biol Lett 2023; 28:7. [PMID: 36694134 PMCID: PMC9872397 DOI: 10.1186/s11658-023-00420-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.
Collapse
Affiliation(s)
- Jixiao Wang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Huiqi Yang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Xiaobei Ma
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Jiani Liu
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lan Li
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lei Chen
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Fulan Wei
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| |
Collapse
|
7
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
8
|
Molecular Pathway-Based Classification of Ectodermal Dysplasias: First Five-Yearly Update. Genes (Basel) 2022; 13:genes13122327. [PMID: 36553593 PMCID: PMC9778228 DOI: 10.3390/genes13122327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
To keep pace with the rapid advancements in molecular genetics and rare diseases research, we have updated the list of ectodermal dysplasias based on the latest classification approach that was adopted in 2017 by an international panel of experts. For this purpose, we searched the databases PubMed and OMIM for the term "ectodermal dysplasia", referring mainly to changes in the last 5 years. We also tried to obtain information about those diseases on which the last scientific report appeared more than 15 years ago by contacting the authors of the most recent publication. A group of experts, composed of researchers who attended the 8th International Conference on Ectodermal Dysplasias and additional members of the previous classification panel, reviewed the proposed amendments and agreed on a final table listing all 49 currently known ectodermal dysplasias for which the molecular genetic basis has been clarified, including 15 new entities. A newly reported ectodermal dysplasia, linked to the gene LRP6, is described here in more detail. These ectodermal dysplasias, in the strict sense, should be distinguished from syndromes with features of ectodermal dysplasia that are related to genes extraneous to the currently known pathways involved in ectodermal development. The latter group consists of 34 syndromes which had been placed on the previous list of ectodermal dysplasias, but most if not all of them could actually be classified elsewhere. This update should streamline the classification of ectodermal dysplasias, provide guidance to the correct diagnosis of rare disease entities, and facilitate the identification of individuals who could benefit from novel treatment options.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Genetic studies in humans and animal models have improved our understanding of the role of numerous genes in the etiology of nonsyndromic tooth agenesis (TA). The purpose of this review is to discuss recently identified genes potentially contributing to TA. RECENT FINDINGS Despite research progress, understanding the genetic factors underlying nonsyndromic TA has been challenging given the genetic heterogeneity, variable expressivity, and incomplete penetrance of putatively pathogenic variants often observed associated with the condition. Next-generation sequencing technologies have provided a platform for novel gene and variant discoveries and informed paradigm-shifting concepts in the etiology of TA. This review summarizes the current knowledge on genes and pathways related to nonsyndromic TA with a focus on recently identified genes/variants. Evidence suggesting possible multi-locus variation in TA is also presented.
Collapse
Affiliation(s)
- Ariadne Letra
- Department of Oral and Craniofacial Sciences, and Center for Craniofacial and Dental Genetics, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
10
|
KDF1 Novel Variant Causes Unique Dental and Oral Epithelial Defects. Int J Mol Sci 2022; 23:ijms232012465. [PMID: 36293320 PMCID: PMC9604338 DOI: 10.3390/ijms232012465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
Keratinocyte differentiation factor 1 (KDF1) is a recently identified and rare candidate gene for human tooth agenesis; however, KDF1-related morphological characteristics and pathological changes in dental tissue and the oral epithelium remain largely unknown. Here, we employed whole-exome sequencing (WES) and Sanger sequencing to screen for the suspected variants in a cohort of 151 tooth agenesis patients, and we segregated a novel KDF1 heterozygous missense variation, c.920G>C (p.R307P), in a non-syndromic tooth agenesis family. Essential bioinformatics analyses and tertiary structural predictions were performed to analyze the structural changes and functional impacts of the novel KDF1 variant. The subsequent functional assessment using a TOP-flash/FOP-flash luciferase reporter system demonstrated that KDF1 variants suppressed the activation of canonical Wnt signaling in 293T cells. To comprehensively investigate the KDF1-related oral morphological anomalies, we performed scanning electron microscopy and ground section of the lower right lateral deciduous incisor extracted from #285 proband, and histopathological assessment of the gingiva. The phenotypic analyses revealed a series of tooth morphological anomalies related to the KDF1 variant R307P, including a shovel-shaped lingual surface of incisors and cornicione-shaped marginal ridges with anomalous morphological occlusal grooves of premolars and molars. Notably, keratinized gingival epithelium abnormalities were revealed in the proband and characterized by epithelial dyskeratosis with residual nuclei, indistinct stratum granulosum, epithelial hyperproliferation, and impaired epithelial differentiation. Our findings revealed new developmental anomalies in the tooth and gingival epithelium of a non-syndromic tooth agenesis individual with a novel pathogenic KDF1 variant, broadening the phenotypic spectrum of KDF1-related disorders and providing new evidence for the crucial role of KDF1 in regulating human dental and oral epithelial development.
Collapse
|
11
|
Heterozygous LRP1 deficiency causes developmental dysplasia of the hip by impairing triradiate chondrocytes differentiation due to inhibition of autophagy. Proc Natl Acad Sci U S A 2022; 119:e2203557119. [PMID: 36067312 PMCID: PMC9477389 DOI: 10.1073/pnas.2203557119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing and identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. We found that the timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment. Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. All patients harboring the LRP1 variants presented a typical DDH phenotype. The heterozygous Lrp1 knockout (KO) mouse (Lrp1+/−) showed phenotypes recapitulating the human DDH phenotypes, indicating Lrp1 loss of function causes DDH. Lrp1 knockin mice with a missense variant corresponding to a human variant identified in DDH (Lrp1R1783W) also presented DDH phenotypes, which were milder in heterozygotes and severer in homozygotes than those of the Lrp1 KO mouse. The timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. During the chondrogenic induction of mice bone marrow stem cells and ATDC5 (an inducible chondrogenic cell line), Lrp1 deficiency caused decreased autophagy levels with significant β-catenin up-regulation and suppression of chondrocyte marker genes. The expression of chondrocyte markers was rescued by PNU-74654 (a β-catenin antagonist) in an shRNA-Lrp1–expressed ATDC5 cell. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment.
Collapse
|
12
|
Lee Y, Chae W, Kim YJ, Kim JW. Novel LRP6 Mutations Causing Non-Syndromic Oligodontia. J Pers Med 2022; 12:jpm12091401. [PMID: 36143186 PMCID: PMC9504909 DOI: 10.3390/jpm12091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
The process of tooth formation is a series of reciprocal interactions between the ectoderm and mesoderm, and it is believed that many genetic factors are involved in this complex process. More than a dozen genes have been identified in non-syndromic tooth agenesis; however, the genetic etiology underlying tooth agenesis is not fully understood yet. In this study, we identified two novel LRP6 mutations in two non-syndromic oligodontia families. Both probands had 16 and 17 missing teeth in their permanent dentition. Mutational analysis identified a de novo frameshift mutation by a 1-bp insertion in exon 9 (NM_002336.2: c.1870dupA, p.(Met624Asnfs*29)) and a splicing donor site mutation in intron 8 (c.1762+2T>C). An in vitro splicing assay confirmed the deletion of exon 8, and the deletion would result in a frameshift. Due to the premature termination codons introduced by the frameshift, both mutant transcripts would be degraded by nonsense-mediated mRNA decay, resulting in haploinsufficiency.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Wonseon Chae
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Youn Jung Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
13
|
Yue H, Liang J, Song G, Cheng J, Li J, Zhi Y, Bian Z, He M. Mutation analysis in patients with nonsyndromic tooth agenesis using exome sequencing. Mol Genet Genomic Med 2022; 10:e2045. [PMID: 36017684 PMCID: PMC9544223 DOI: 10.1002/mgg3.2045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tooth agenesis (TA) is a congenital abnormality that may present as syndromic or nonsyndromic. Considering its complex genetic aetiology, the aim of this study was to uncover the pathogenic mutants in patients with nonsyndromic TA and analyse the characteristics of these mutants. METHODS Exome sequencing was performed to detect pathogenic variants in 72 patients from 43 unrelated families with nonsyndromic TA. All candidate variants were validated using Sanger sequencing. Bioinformatics and conformational analyses were performed to determine the pathogenic mechanisms of the mutants. RESULTS The following eight mutations (six novel and two known) in six genes were identified in eight families: WNT10A [c.742C > T (p.R248*)], LRP6 [c.1518G > A (p.W506*), c.2791 + 1G > T], AXIN2 [c.133_134insGCCAGG (p.44_45insGQ)], PAX9 [c.439C > T (p.Q147*), c.453_454insCCAGC (p.L154QfsTer60)], MSX1 [c.603_604del (p.A203GfsTer10)] and PITX2 [c.522C > G (p.Y174*)]. Bioinformatics and conformational analyses showed that the protein structures were severely altered in these mutants, and indicated that these structural abnormalities may cause functional disabilities. CONCLUSIONS Our study extends the mutation spectrum in patients with nonsyndromic TA and provides valuable data for genetic counselling. The pathogenic mechanisms of TA in patients/families with unknown causative variants need to be explored further.
Collapse
Affiliation(s)
- Haitang Yue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahui Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yusheng Zhi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Kantaputra P, Jatooratthawichot P, Jintakanon K, Intachai W, Pradermdutsadeeporn P, Adisornkanj P, Tongsima S, Ngamphiw C, Olsen B, Tucker AS, Cairns JRK. Mutations in LRP6 highlight the role of WNT signalling in oral exostoses and dental anomalies. Arch Oral Biol 2022; 142:105514. [DOI: 10.1016/j.archoralbio.2022.105514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
15
|
LRP6 Receptor Plays Essential Functions in Development and Human Diseases. Genes (Basel) 2022; 13:genes13010120. [PMID: 35052459 PMCID: PMC8775365 DOI: 10.3390/genes13010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.
Collapse
|
16
|
Chu KY, Wang YL, Chou YR, Chen JT, Wang YP, Simmer JP, Hu JCC, Wang SK. Synergistic Mutations of LRP6 and WNT10A in Familial Tooth Agenesis. J Pers Med 2021; 11:jpm11111217. [PMID: 34834569 PMCID: PMC8621929 DOI: 10.3390/jpm11111217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Familial tooth agenesis (FTA), distinguished by developmental failure of selected teeth, is one of the most prevalent craniofacial anomalies in humans. Mutations in genes involved in WNT/β-catenin signaling, including AXIN2 WNT10A, WNT10B, LRP6, and KREMEN1, are known to cause FTA. However, mutational interactions among these genes have not been fully explored. In this study, we characterized four FTA kindreds with LRP6 pathogenic mutations: p.(Gln1252*), p.(Met168Arg), p.(Ala754Pro), and p.(Asn1075Ser). The three missense mutations were predicted to cause structural destabilization of the LRP6 protein. Two probands carrying both an LRP6 mutant allele and a WNT10A variant exhibited more severe phenotypes, suggesting mutational synergism or digenic inheritance. Biallelic LRP6 mutations in a patient with many missing teeth further supported the dose-dependence of LRP6-associated FTA. Analysis of 21 FTA cases with 15 different LRP6 loss-of-function mutations revealed high heterogeneity of disease severity and a distinctive pattern of missing teeth, with maxillary canines being frequently affected. We hypothesized that various combinations of sequence variants in WNT-related genes can modulate WNT signaling activities during tooth development and cause a wide spectrum of tooth agenesis severity, which highlights the importance of exome/genome analysis for the genetic diagnosis of FTA in this era of precision medicine.
Collapse
Affiliation(s)
- Kuan-Yu Chu
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei City 100, Taiwan; (K.-Y.C.); (Y.-L.W.); (J.-T.C.); (Y.-P.W.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City 100, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei City 100, Taiwan; (K.-Y.C.); (Y.-L.W.); (J.-T.C.); (Y.-P.W.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City 100, Taiwan
| | - Yu-Ren Chou
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City 106, Taiwan;
| | - Jung-Tsu Chen
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei City 100, Taiwan; (K.-Y.C.); (Y.-L.W.); (J.-T.C.); (Y.-P.W.)
| | - Yi-Ping Wang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei City 100, Taiwan; (K.-Y.C.); (Y.-L.W.); (J.-T.C.); (Y.-P.W.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA; (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48108, USA; (J.P.S.); (J.C.-C.H.)
| | - Shih-Kai Wang
- Department of Dentistry, School of Dentistry, National Taiwan University, Taipei City 100, Taiwan; (K.-Y.C.); (Y.-L.W.); (J.-T.C.); (Y.-P.W.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 70251)
| |
Collapse
|
17
|
Rare phenotype: Hand preaxial polydactyly associated with LRP6-related tooth agenesis in humans. NPJ Genom Med 2021; 6:93. [PMID: 34759310 PMCID: PMC8581002 DOI: 10.1038/s41525-021-00262-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a pathogenic gene of selective tooth agenesis-7 (OMIM#616724). Although the malformation of the digits and fore- and hindlimbs has been reported in Lrp6-deficient mice, it has been rarely discovered in humans with LRP6 mutations. Here, we demonstrate an unreported autosomal dominant LRP6 heterozygous mutation (c.2840 T > C;p.Met947Thr) in a tooth agenesis family with hand polydactyly, and another unreported autosomal dominant LRP6 heterozygous mutation (c.1154 G > C;p.Arg385Pro) in a non-syndromic tooth agenesis family. Bioinformatic prediction demonstrated the deleterious effects of the mutations, and LRP6 structure changes suggested the corresponding functional impairments. Analysis on the pattern of LRP6-related tooth agenesis demonstrated the maxillary lateral incisor was the most affected. Our study report that LRP6 mutation might be associated with hand preaxial polydactyly in humans, which broaden the phenotypic spectrum of LRP6-related disorders, and provide valuable information on the characteristics of LRP6-related tooth agenesis.
Collapse
|
18
|
Goto H, Kimura M, Machida J, Ota A, Nakashima M, Tsuchida N, Adachi J, Aoki Y, Tatematsu T, Takahashi K, Sana M, Nakayama A, Suzuki S, Nagao T, Matsumoto N, Tokita Y. A novel LRP6 variant in a Japanese family with oligodontia. Hum Genome Var 2021; 8:30. [PMID: 34285199 PMCID: PMC8292333 DOI: 10.1038/s41439-021-00162-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital tooth agenesis is a common anomaly in human development. We performed exome sequence analysis of genomic DNA collected from Japanese patients with tooth agenesis and their relatives. We found a novel single-nucleotide insertion in the LRP6 gene, the product of which is involved in Wnt/β-catenin signaling as a coreceptor for Wnt ligands. The single-nucleotide insertion results in a premature stop codon in the extracellular region of the encoded protein.
Collapse
Affiliation(s)
- Hiroki Goto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Toyokawa City Hospital, Toyokawa, Japan.,Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Masashi Kimura
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junichiro Machida
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota, Japan
| | - Akiko Ota
- Department of Oncology, Toyota Memorial Hospital, Toyota, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junya Adachi
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Yoshihiko Aoki
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Tadashi Tatematsu
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Katsu Takahashi
- Dentistry and Oral surgery Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka, Japan
| | | | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shintaro Suzuki
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Toyokawa City Hospital, Toyokawa, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihito Tokita
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan. .,Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.
| |
Collapse
|
19
|
Huang YX, Gao CY, Zheng CY, Chen X, Yan YS, Sun YQ, Dong XY, Yang K, Zhang DL. Investigation of a Novel LRP6 Variant Causing Autosomal-Dominant Tooth Agenesis. Front Genet 2021; 12:688241. [PMID: 34306029 PMCID: PMC8292820 DOI: 10.3389/fgene.2021.688241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023] Open
Abstract
Background The low-density lipoprotein receptor-related protein 6 (LRP6) gene is a recently defined gene that is associated with the autosomal-dominant inherited tooth agenesis (TA). In the present study, a family of four generations having TA was recruited and subjected to a series of clinical, genetic, in silico, and in vitro investigations. Methods After routine clinical evaluation, the proband was subjected to whole-exome sequencing (WES) to detect the diagnostic variant. Next, in silico structural and molecular dynamics (MD) analysis was conducted on the identified novel missense variant for predicting its intramolecular impact. Subsequently, an in vitro study was performed to further explore the effect of this variant on protein maturation and phosphorylation. Results WES identified a novel variant, designated as LRP6: c.2570G > A (p.R857H), harbored by six members of the concerned family, four of whom exhibited varied TA symptoms. The in silico analysis suggested that this novel variant could probably damage the Wnt bonding function of the LRP6 protein. The experimental study demonstrated that although this novel variant did not affect the LRP6 gene transcription, it caused a impairment in the maturation and phosphorylation of LRP6 protein, suggesting the possibility of the disruption of the Wnt signaling. Conclusion The present study expanded the mutation spectrum of human TA in the LRP6 gene. The findings of the present study are insightful and conducive to understanding the functional significance of specific LRP6 variants.
Collapse
Affiliation(s)
- Yan-Xia Huang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chun-Yan Gao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chun-Yan Zheng
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xu Chen
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xing-Yue Dong
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility. Cells 2021; 10:cells10071594. [PMID: 34202084 PMCID: PMC8307012 DOI: 10.3390/cells10071594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Male infertility is a multifactorial disease with a strong genetic background. Abnormal sperm morphologies have been found to be closely related to male infertility. Here, we conducted whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Two novel hemizygous mutations were identified in USP26, an X-linked gene preferentially expressed in the testis and encoding a deubiquitinating enzyme. These USP26 variants are extremely rare in human population genome databases and have been predicted to be deleterious by multiple bioinformatics tools. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring hemizygous USP26 variants showed a highly aberrant morphology and ultrastructure of the sperm heads and flagella. Real-time quantitative PCR and immunoblotting assays revealed obviously reduced levels of USP26 mRNA and protein in the spermatozoa from men harboring hemizygous deleterious variants of USP26. Furthermore, intracytoplasmic sperm injections performed on infertile men harboring hemizygous USP26 variants achieved satisfactory outcomes. Overall, our study demonstrates that USP26 is essential for normal sperm morphogenesis, and hemizygous USP26 mutations can induce X-linked asthenoteratozoospermia. These findings will provide effective guidance for the genetic and reproductive counseling of infertile men with asthenoteratozoospermia.
Collapse
|