1
|
Du Y, Wang K, Zi X, Wang X, Li M, Zhang B, Ran J, Huang W, Wang J, Dong C, Xiang H, Lei L, Ge C, Liu Y. Combined transcriptome and metabolome analysis of stable knockdown and overexpression of the CD8A gene in chicken T lymphocytes. Poult Sci 2024; 104:104686. [PMID: 39729724 DOI: 10.1016/j.psj.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
CD8 subunit alpha (CD8A) is an important gene in immunity and is involved in the functional regulation of T lymphocytes. However, the specific role and regulatory mechanism of CD8A in chicken T lymphocytes remain unknown. In this study, we overexpressed and interfered with CD8A in chicken T lymphocytes and found that interfering with CD8A expression inhibited the proliferation and induced the apoptosis of T lymphocytes and that the overexpression of CD8A promoted T lymphocyte activation. Additionally, transcriptomic and metabolomic analyses of chicken T lymphocytes with CD8A overexpression or interference were performed. The overexpression and interference of the CD8A gene caused widespread changes in gene and metabolite expression in chicken T cells. The results of the transcriptome analysis revealed that differentially expressed genes (DEGs) caused by altered expression of the CD8A gene were associated with multiple "neuroactive ligand-receptor interaction", "cell adhesion molecules", "calcium signaling pathway", etc. The metabolome analysis results revealed that different metabolites (DMs) caused by altered CD8A gene expression were associated with "Glutathione metabolism", "Arginine biosynthesis", "D-amino acid metabolism", etc. The combined transcriptional and metabolic analysis revealed one metabolically related pathway, "Glutathione metabolism". Our findings further revealed that interference and overexpression of CD8A plays a role in the metabolism of Glutathione. Thus, CD8A may be a critical regulator of "Glutathione metabolism" and may subsequently affect T-cell function in chickens. These results provide an important reference for further research on the effect of CD8A on the immune performance of chickens.
Collapse
Affiliation(s)
- Yanli Du
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Xiao Wang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Meiquan Li
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Bo Zhang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Jinshan Ran
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Wei Huang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Jing Wang
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Cuilian Dong
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, Yunnan Province, PR China
| | - Hanyi Xiang
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China
| | - Li Lei
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China
| | - Yong Liu
- Yunnan Rural Revitalizing Education Institute, Yunnan Open University, Kunming 650101, Yunnan Province, PR China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Bufialo Research, Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, PR China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan Province, PR China.
| |
Collapse
|
2
|
Wu J, Wang J, Duan C, Han C, Hou X. Identifying MS4A6A + macrophages as potential contributors to the pathogenesis of nonalcoholic fatty liver disease, periodontitis, and type 2 diabetes mellitus. Heliyon 2024; 10:e29340. [PMID: 38644829 PMCID: PMC11033123 DOI: 10.1016/j.heliyon.2024.e29340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Concrete epidemiological evidence has suggested the mutually-contributing effect respectively between nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and periodontitis (PD); however, their shared crosstalk mechanism remains an open issue. Method The NAFLD, PD, and T2DM-related datasets were obtained from the NCBI GEO repository. Their common differentially expressed genes (DEGs) were identified and the functional enrichment analysis performed by the DAVID platform determined relevant biological processes and pathways. Then, the STRING database established a PPI network of such DEGs and topological analysis through Cytoscape 3.7.1 software along with the machine-learning analysis by the least absolute shrinkage and selection operator (LASSO) algorithm screened out hub characteristic genes. Their efficacy was validated by external datasets using the receiver operating characteristic (ROC) curve, and gene expression and location of the most robust one was determined using single-cell sequencing and immunohistochemical staining. Finally, the promising drugs were predicted through the CTD database, and the CB-DOCK 2 and Pymol platform mimicked molecular docking. Result Intersection of differentially expressed genes from three datasets identified 25 shared DEGs of the three diseases, which were enriched in MHC II-mediated antigen presenting process. PPI network and LASSO machine-learning analysis determined 4 feature genes, of which the MS4A6A gene mainly expressed by macrophages was the hub gene and key immune cell type. Molecular docking simulation chosen fenretinide as the most promising medicant for MS4A6A+ macrophages. Conclusion MS4A6A+ macrophages were suggested to be important immune-related mediators in the progression of NAFLD, PD, and T2DM pathologies.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsheng Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Hu X, Su X. Study of Herbs Cortex Moutan, Poria cocos, and Alisma orientale and Periodontitis. Int Dent J 2024; 74:88-94. [PMID: 37758581 PMCID: PMC10829340 DOI: 10.1016/j.identj.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The Chinese traditional herbs Cortex Moutan, Poria cocos, and Alisma orientale are considered to have potential to ameliorate periodontitis, although the possible underlying mechanisms remain mostly unknown. Due to the complex formulation of Chinese herbs, it is important to understand the mechanisms of pharmacologic effects of traditional herbs for better application in modern medical treatment. METHODS Network pharmacology was applied to explore the mechanism of Cortex Moutan, Poria cocos, and Alisma orientale. First we analysed their chemical ingredients using the Traditional Chinese Medicine Systems Pharmacology database and identified 20 active ingredients. Then we analysed the target genes of these 20 active ingredients as well as genes associated with periodontitis and found 74 co-target genes. We further analysed the protein-protein interaction network of these 74 co-target genes using the STRING database and enriched the pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS The top 10 core targets elicited were vascular endothelial growth factor A (VEGFA), interlukin-6 (IL-6), tumour necrosis factor (TNF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), and serpin family E member 1 (SERPINE1). Using these a network of "herbs-ingredients-targetgenes-KEGG pathways." was constructed. CONCLUSIONS The target and bioprocess network suggested that the pharmacologic effects of Cortex Moutan, Poria cocos, and Alisma orientale may be mainly dependent on their anti-inflammatory potential. Further work is required to eucidate their detailed mechanisms of activity.
Collapse
Affiliation(s)
- Xinyuan Hu
- Department of Stomatology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, China
| | - Xin Su
- Department of Stomatology, The Sixth Affiliated Hospital of Harbin Medical University, Songbei District, Harbin, China.
| |
Collapse
|
4
|
Halboub E, Al-Maswary A, Mashyakhy M, Al-Qadhi G, Al-Maweri SA, Ba-Hattab R, Abdulrab S. The Potential Association Between Inflammatory Bowel Diseases and Apical Periodontitis: A Systematic Review and Meta-Analysis. Eur Endod J 2024; 9:8-17. [PMID: 37968968 PMCID: PMC10777093 DOI: 10.14744/eej.2023.74507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 11/17/2023] Open
Abstract
Recent literature has suggested a potential association between inflammatory bowel diseases (IBD) and apical periodontitis (AP). The present systematic review and meta-analysis sought to analyse and appraise the available evidence regarding the reported association. Following 2020 PRISMA guidelines, a comprehensive search of multiple online databases (PubMed, Scopus, Web of Science, and Google Scholar) was conducted for all relevant studies published from the date of inception until 27 April 2023 using various relevant keywords. All observational studies that assessed the association between IBD and AP in humans were eligible for inclusion. The quality of the selected studies was carried out independently by two reviewers, and meta-analysis was performed using Comprehensive Meta-Analysis Version 2.2.064. Six studies (five case-control studies and one cohort study) were included. A total of 657 patients (277 with IBD) were included in 5 case-control studies, and 48,223 subjects (35,740 with AP) were included in the cohort study, where 188 developed IBD on follow-up. The pooled data from the five case-control studies revealed that IBD was significantly associated with a higher risk of AP (OR=1.71, 95% CI: 1.21-2.42; I2=10.337%, fixed-effect, p=0.002). The qualitative analysis also showed that most of the included studies found a higher mean number of teeth with AP in IBD groups than the healthy controls. Newcastle-Ottawa Scale (NOS)-based quality appraisal results demonstrated that five studies were of high quality, and one was of moderate quality. The results suggest a potential association between IBD and AP. Large-scale and prospective studies are required to further confirm and elucidate the nature of such an association.
Collapse
Affiliation(s)
- Esam Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Arwa Al-Maswary
- Department of Restorative and Aesthetic Dentistry, Faculty of Dentistry, Sana'a University, Sana’a, Yemen
- Department of Dentistry, Faculty of Dentistry, Ar-Rasheed Smart University, Sana'a, Yemen
| | - Mohammed Mashyakhy
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Aden, Yemen
| | | | - Raidan Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Saleem Abdulrab
- Alkhor Health Centre, Primary Health Care Corporation, Doha, Qatar
| |
Collapse
|
5
|
Çevik-Aras H, Musa S, Olofsson R, Almståhl A, Almhöjd U. Patients with oral lichen planus display lower levels of salivary acidic glycoproteins than individuals without oral mucosal disease. Clin Oral Investig 2023; 28:2. [PMID: 38114810 PMCID: PMC10730629 DOI: 10.1007/s00784-023-05411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Salivary proteins, acidic glycoproteins, and free calcium might take part in oral mucosal defence against inflammation in oral lichen planus (OLP). The study aimed to investigate whether the levels of sulfated and sialylated glycoproteins, total protein, and free calcium in saliva from patients with OLP differ from those of individuals without oral mucosal diseases. MATERIAL AND METHODS Patients diagnosed with OLP (n = 25) and two control groups without any oral mucosal disease; age- and gender-matched controls (n = 25, 65.6 ± 2.9 years), and younger controls (n = 25, 41.8 ± 2.5 years) were included. Subjective dry mouth (xerostomia) was assessed by asking a single-item question. Chew-stimulated whole saliva was collected to measure sulfated and sialylated glycoproteins by the Alcian Blue method. The total protein was determined spectrophotometrically, and the free calcium measured using an electrode. RESULTS The output of salivary sulfated and sialylated glycoproteins in the OLP group (21.8 ± 2.4 µg/min) was lower than in the age- and gender-matched controls (43.0 ± 2.9 µg/min, p = 0.0002), whereas the total protein and calcium output did not differ between the three groups (p > 0.05). The prevalence of xerostomia was significantly higher in the OLP group compared to both control groups (p = 0.038). CONCLUSIONS Patients with OLP showed a high prevalence of xerostomia and lower levels of salivary acidic type glycoproteins compared to the individuals without oral mucosa disease. CLINICAL RELEVANCE It is relevant to investigate the role of acidic glycoproteins in the pathogenesis of OLP.
Collapse
Affiliation(s)
- H Çevik-Aras
- Department of Oral Medicine and Pathology, Institute of Odontology, University of Gothenburg, Gothenburg, Sweden.
- Specialist Clinic for Orofacial Medicine, Northern Älvsborg County Hospital, Public Dental Service, Trollhättan, Region Västra Götaland, Sweden.
| | - Shehed Musa
- Public Dental Service, Gothenburg, Region Västra Götaland, Sweden
| | - Richard Olofsson
- Specialist Clinic for Orofacial Medicine, Public Dental Service, Uddevalla-Trollhättan, Region Västra Götaland, Sweden
| | - Annica Almståhl
- Section 4, -Oral Health, Faculty of Odontology, Malmö University, Malmö, Sweden
- Department of Oral Microbiology and Immunology, Institute of Odontology, University of Gothenburg, Gothenburg, Sweden
| | - Ulrica Almhöjd
- Department of Cariology, Institute of Odontology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas identified a novel fibroblast subpopulation activated to guide oral barrier immunity in periodontitis. eLife 2023; 12:RP88183. [PMID: 38015204 PMCID: PMC10684155 DOI: 10.7554/elife.88183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete topical application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils, together with AG fibroblasts, appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2-/-Il2rg-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose the AG fibroblast-neutrophil-ILC3 axis as a previously unrecognized mechanism which could be involved in the complex interplay between oral barrier immune cells contributing to pathological inflammation in periodontitis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- UCLA Bruin in Genomics Summer ProgramLos AngelesUnited States
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of DentistryLos AngelesUnited States
| |
Collapse
|
7
|
Kondo T, Gleason A, Okawa H, Hokugo A, Nishimura I. Mouse gingival single-cell transcriptomic atlas: An activated fibroblast subpopulation guides oral barrier immunity in periodontitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536751. [PMID: 37546811 PMCID: PMC10401928 DOI: 10.1101/2023.04.13.536751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Periodontitis, one of the most common non-communicable diseases, is characterized by chronic oral inflammation and uncontrolled tooth supporting alveolar bone resorption. Its underlying mechanism to initiate aberrant oral barrier immunity has yet to be delineated. Here, we report a unique fibroblast subpopulation activated to guide oral inflammation (AG fibroblasts) identified in a single-cell RNA sequencing gingival cell atlas constructed from the mouse periodontitis models. AG fibroblasts localized beneath the gingival epithelium and in the cervical periodontal ligament responded to the ligature placement and to the discrete application of Toll-like receptor stimulants to mouse maxillary tissue. The upregulated chemokines and ligands of AG fibroblasts linked to the putative receptors of neutrophils in the early stages of periodontitis. In the established chronic inflammation, neutrophils together with AG fibroblasts appeared to induce type 3 innate lymphoid cells (ILC3s) that were the primary source of interleukin-17 cytokines. The comparative analysis of Rag2-/- and Rag2γc-/- mice suggested that ILC3 contributed to the cervical alveolar bone resorption interfacing the gingival inflammation. We propose that AG fibroblasts function as a previously unrecognized surveillant to initiate gingival inflammation leading to periodontitis through the AG fibroblast-neutrophil-ILC3 axis.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Annie Gleason
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Bruin in Genomics Summer Program
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043158. [PMID: 36834569 PMCID: PMC9967675 DOI: 10.3390/ijms24043158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The periodontal immune microenvironment is a delicate regulatory system that involves a variety of host immune cells including neutrophils, macrophages, T cells, dendritic cells and mesenchymal stem cells. The dysfunction or overactivation of any kind of local cells, and eventually the imbalance of the entire molecular regulatory network, leads to periodontal inflammation and tissue destruction. In this review, the basic characteristics of various host cells in the periodontal immune microenvironment and the regulatory network mechanism of host cells involved in the pathogenesis of periodontitis and periodontal bone remodeling are summarized, with emphasis on the immune regulatory network that regulates the periodontal microenvironment and maintains a dynamic balance. Future strategies for the clinical treatment of periodontitis and periodontal tissue regeneration need to develop new targeted synergistic drugs and/or novel technologies to clarify the regulatory mechanism of the local microenvironment. This review aims to provide clues and a theoretical basis for future research in this field.
Collapse
|
10
|
Kondo T, Kanayama K, Egusa H, Nishimura I. Current perspectives of residual ridge resorption: Pathological activation of oral barrier osteoclasts. J Prosthodont Res 2023; 67:12-22. [PMID: 35185111 DOI: 10.2186/jpr.jpr_d_21_00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Tooth extraction is a last resort treatment for resolving pathological complications of dentition induced by infection and injury. Although the extraction wound generally heals uneventfully, resulting in the formation of an edentulous residual ridge, some patients experience long-term and severe residual ridge reduction. The objective of this review was to provide a contemporary understanding of the molecular and cellular mechanisms that may potentially cause edentulous jawbone resorption. STUDY SELECTION Clinical, in vivo, and in vitro studies related to the characterization of and cellular and molecular mechanisms leading to residual ridge resorption. RESULTS The alveolar processes of the maxillary and mandibular bones uniquely juxtapose the gingival tissue. The gingival oral mucosa is an active barrier tissue that maintains homeostasis of the internal organs through its unique barrier immunity. Tooth extraction not only generates a bony socket but also injures oral barrier tissue. In response to wounding, the alveolar bone socket initiates regeneration and remodeling through coupled bone formation and osteoclastic resorption. Osteoclasts are also found on the external surface of the alveolar bone, interfacing the oral barrier tissue. Osteoclasts in the oral barrier region are not coupled with osteoblastic bone formation and often remain active long after the completion of wound healing, leading to a net decrease in the alveolar bone structure. CONCLUSIONS The novel concept of oral barrier osteoclasts may provide important clues for future clinical strategies to maintain residual ridges for successful prosthodontic and restorative therapies.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Kanayama
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
11
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Okawa H, Kondo T, Hokugo A, Cherian P, Campagna JJ, Lentini NA, Sung EC, Chiang S, Lin YL, Ebetino FH, John V, Sun S, McKenna CE, Nishimura I. Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using competing inert hydroxymethylene diphosphonate. eLife 2022; 11:e76207. [PMID: 36017995 PMCID: PMC9489207 DOI: 10.7554/elife.76207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this antiresorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesions. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved proinflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.
Collapse
Affiliation(s)
- Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of DentistrySendaiJapan
| | - Akishige Hokugo
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
- Regenerative Bioengineering and Repair Laboratory, Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at University of California, Los AngelesLos AngelesUnited States
| | | | - Jesus J Campagna
- Department of Neurology, David Geffen School of Medicine at University of California, Los AngelesLos AngelesUnited States
| | - Nicholas A Lentini
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| | - Eric C Sung
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
| | - Samantha Chiang
- Division of Oral & Systemic Health Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
| | - Yi-Ling Lin
- Section of Oral & Maxillofacial Pathology, University of California, Los Angeles School of DentistryLos AngelesUnited States
| | | | - Varghese John
- Department of Neurology, David Geffen School of Medicine at University of California, Los AngelesLos AngelesUnited States
| | - Shuting Sun
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
- BioVinc, LLCPasadenaUnited States
| | - Charles E McKenna
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative & Reconstructive Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
- Division of Oral & Systemic Health Sciences, University of California, Los Angeles School of DentistryLos AngelesUnited States
| |
Collapse
|
13
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
14
|
Network pharmacology combined with GEO database identifying the mechanisms and molecular targets of Polygoni Cuspidati Rhizoma on Peri-implants. Sci Rep 2022; 12:8227. [PMID: 35581339 PMCID: PMC9114011 DOI: 10.1038/s41598-022-12366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Peri-implants is a chronic disease leads to the bone resorption and loss of implants. Polygoni Cuspidati Rhizoma (PCRER), a traditional Chinese herbal has been used to treat diseases of bone metabolism. However, its mechanism of anti-bone absorption still remains unknown. We aimed to identify its molecular target and the mechanism involved in PCRER potential treatment theory to Peri-implants by network pharmacology. The active ingredients of PCRER and potential disease-related targets were retrieved from TCMSP, Swiss Target Prediction, SEA databases and then combined with the Peri-implants disease differential genes obtained in the GEO microarray database. The crossed genes were used to protein–protein interaction (PPI) construction and Gene Ontology (GO) and KEGG enrichment analysis. Using STRING database and Cytoscape plug-in to build protein interaction network and screen the hub genes and verified through molecular docking by AutoDock vina software. A total of 13 active compounds and 90 cross targets of PCRER were selected for analysis. The GO and KEGG enrichment analysis indicated that the anti-Peri-implants targets of PCRER mainly play a role in the response in IL-17 signaling, Calcium signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway among others. And CytoHubba screened ten hub genes (MMP9, IL6, MPO, IL1B, SELL, IFNG, CXCL8, CXCL2, PTPRC, PECAM1). Finally, the molecular docking results indicated the good binding ability with active compounds and hub genes. PCRER’s core components are expected to be effective drugs to treat Peri-implants by anti-inflammation, promotes bone metabolism. Our study provides new thoughts into the development of natural medicine for the prevention and treatment of Peri-implants.
Collapse
|