1
|
Muhammad D, Bendechache M. Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis. Comput Struct Biotechnol J 2024; 24:542-560. [PMID: 39252818 PMCID: PMC11382209 DOI: 10.1016/j.csbj.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
This systematic literature review examines state-of-the-art Explainable Artificial Intelligence (XAI) methods applied to medical image analysis, discussing current challenges and future research directions, and exploring evaluation metrics used to assess XAI approaches. With the growing efficiency of Machine Learning (ML) and Deep Learning (DL) in medical applications, there's a critical need for adoption in healthcare. However, their "black-box" nature, where decisions are made without clear explanations, hinders acceptance in clinical settings where decisions have significant medicolegal consequences. Our review highlights the advanced XAI methods, identifying how they address the need for transparency and trust in ML/DL decisions. We also outline the challenges faced by these methods and propose future research directions to improve XAI in healthcare. This paper aims to bridge the gap between cutting-edge computational techniques and their practical application in healthcare, nurturing a more transparent, trustworthy, and effective use of AI in medical settings. The insights guide both research and industry, promoting innovation and standardisation in XAI implementation in healthcare.
Collapse
Affiliation(s)
- Dost Muhammad
- ADAPT Research Centre, School of Computer Science, University of Galway, Galway, Ireland
| | - Malika Bendechache
- ADAPT Research Centre, School of Computer Science, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Çakmak G, Cho JH, Choi J, Yoon HI, Yilmaz B, Schimmel M. Can deep learning-designed anterior tooth-borne crown fulfill morphologic, aesthetic, and functional criteria in clinical practice? J Dent 2024; 150:105368. [PMID: 39326724 DOI: 10.1016/j.jdent.2024.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES This study aimed to compare the design outcomes of anterior crowns generated using deep learning (DL)-based software with those fabricated by a technician using conventional dental computer-assisted design (CAD) software without DL support, with a focus on the evaluation of crown morphology, function, and aesthetics. METHODS Twenty-five in vivo datasets comprising maxillary and mandibular arch scans of prepared maxillary central incisors were utilized to design anterior crowns by using three methods: 1) a DL-based method resulting in as-generated outcome (DB), 2) a DL-based method further optimized by a technician (DM), and 3) a conventional CAD-based method (NC, control). Evaluations were conducted for crown morphology (total discrepancy volume (TDV), root mean square (RMS), positive average (PA) and negative average (NA) deviations), functional aspects (incisal path: deviations, length, and mean inclination), and aesthetics (crown width, height, width-to-height ratio, angular radius of mesioincisal line angle, proximal contact length, and tooth axis angle). RESULTS Significant differences in TDV ratio were noted between the DB-NC (32.3 ± 8.5 %) and DM-NC (26.5 ± 5.4 %) pairs (P = 0.006). No significant differences were observed in TDV between the DB-NC (65.3 ± 24.4 mm3) and DM-NC (54.3 ± 21.0 mm3) pairs (P = 0.095). For the entire palatal surface, significant differences in RMS and PA values were observed between the DB-NC and DM-NC pairs (P < 0.037). Significant differences in RMS values for the incisal half (P = 0.021) and in PA values for the cervical half (P = 0.047) of the palatal surface were also noted between these pairs. Significant differences in the deviation of the incisal path were observed between the DB-NC (290.4 ± 212.4 μm) and DM-NC (132.0 ± 122.3 μm) pairs (P < 0.001). However, no significant differences were found among the groups (DB, DM, and NC) in terms of the length and mean inclination of incisal paths or in aesthetic outcomes. CONCLUSIONS A DL-based method can result in promising outcomes with clinically acceptable morphology and aesthetics for anterior crowns. Minor deviations in incisal path of the crowns may lead to anterior guidance discrepancies, which can be corrected by the dental technician at the design stage. CLINICAL SIGNIFICANCE With the potential of DL-based design methods in dental applications, integrating AI technology into dental CAD workflow can enhance the clinical efficiency and consistency of anterior crown design, although human intervention may be required to refine functional aspect.
Collapse
Affiliation(s)
- Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jun-Ho Cho
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jinhyeok Choi
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung-In Yoon
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, United States
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Uribe SE, Issa J, Sohrabniya F, Denny A, Kim NN, Dayo AF, Chaurasia A, Sofi-Mahmudi A, Büttner M, Schwendicke F. Publicly Available Dental Image Datasets for Artificial Intelligence. J Dent Res 2024:220345241272052. [PMID: 39422586 DOI: 10.1177/00220345241272052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The development of artificial intelligence (AI) in dentistry requires large and well-annotated datasets. However, the availability of public dental imaging datasets remains unclear. This study aimed to provide a comprehensive overview of all publicly available dental imaging datasets to address this gap and support AI development. This observational study searched all publicly available dataset resources (academic databases, preprints, and AI challenges), focusing on datasets/articles from 2020 to 2023, with PubMed searches extending back to 2011. We comprehensively searched for dental AI datasets containing images (intraoral photos, scans, radiographs, etc.) using relevant keywords. We included datasets of >50 images obtained from publicly available sources. We extracted dataset characteristics, patient demographics, country of origin, dataset size, ethical clearance, image details, FAIRness metrics, and metadata completeness. We screened 131,028 records and extracted 16 unique dental imaging datasets. The datasets were obtained from Kaggle (18.8%), GitHub, Google, Mendeley, PubMed, Zenodo (each 12.5%), Grand-Challenge, OSF, and arXiv (each 6.25%). The primary focus was tooth segmentation (62.5%) and labeling (56.2%). Panoramic radiography was the most common imaging modality (58.8%). Of the 13 countries, China contributed the most images (2,413). Of the datasets, 75% contained annotations, whereas the methods used to establish labels were often unclear and inconsistent. Only 31.2% of the datasets reported ethical approval, and 56.25% did not specify a license. Most data were obtained from dental clinics (50%). Intraoral radiographs had the highest findability score in the FAIR assessment, whereas cone-beam computed tomography datasets scored the lowest in all categories. These findings revealed a scarcity of publicly available imaging dental data and inconsistent metadata reporting. To promote the development of robust, equitable, and generalizable AI tools for dental diagnostics, treatment, and research, efforts are needed to address data scarcity, increase diversity, mandate metadata completeness, and ensure FAIRness in AI dental imaging research.
Collapse
Affiliation(s)
- S E Uribe
- Department of Conservative Dentistry and Oral Health, Riga Stradins University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
- Clinic for Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Germany
| | - J Issa
- Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznań University of Medical Sciences, Poznań, Poland
| | - F Sohrabniya
- Topic Group Dental Diagnostic and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - A Denny
- Independent researcher, Ramstein, Germany
| | - N N Kim
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - A F Dayo
- Department of Oral Medicine, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Chaurasia
- Department of Oral Medicine & Radiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - A Sofi-Mahmudi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- National Pain Centre, Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - M Büttner
- Charité Universitätsmedizin, Berlin, Germany
| | - F Schwendicke
- Clinic for Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
4
|
Ducret M, Wahal E, Gruson D, Amrani S, Richert R, Mouncif-Moungache M, Schwendicke F. Trustworthy Artificial Intelligence in Dentistry: Learnings from the EU AI Act. J Dent Res 2024; 103:1051-1056. [PMID: 39311453 PMCID: PMC11500481 DOI: 10.1177/00220345241271160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Artificial intelligence systems (AISs) gain relevance in dentistry, encompassing diagnostics, treatment planning, patient management, and therapy. However, questions about the generalizability, fairness, and transparency of these systems remain. Regulatory and governance bodies worldwide are aiming to address these questions using various frameworks. On March 13, 2024, members of the European Parliament approved the Artificial Intelligence Act (AIA), which emphasizes trustworthiness and human-centeredness as relevant aspects to regulate AISs beyond safety and efficacy. This review presents the AIA and similar regulatory and governance efforts in other jurisdictions and lays out that regulations such as the AIA are part of a complex ecosystem of interdependent and interwoven legal requirements and standards. Current efforts to regulate dental AISs require active input from the dental community, with participation of dental research, education, providers, and patients being relevant to shape the future of dental AISs.
Collapse
Affiliation(s)
- M. Ducret
- Hospices Civils de Lyon, Lyon, France
- Faculty of Odontology, Lyon 1 University, Lyon, France
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/UCBL, Lyon, France
| | - E. Wahal
- FTI Consulting EU, Bruxelles, Belgique
| | - D. Gruson
- Chaire Santé de Sciences Po, Paris, France
- Chaire IA en Santé de Paris Cité, Paris, France
- Ethik-IA, Paris, France
| | - S. Amrani
- Chaire IA en Santé de Paris Cité, Paris, France
- Ethik-IA, Paris, France
| | - R. Richert
- Hospices Civils de Lyon, Lyon, France
- Faculty of Odontology, Lyon 1 University, Lyon, France
- Laboratoire de Mécanique Des Contacts Et Structures, CNRS/INSA, Villeurbanne, France
| | - M. Mouncif-Moungache
- CERCRID, Centre de Recherches Critiques sur le Droit, UMR5137, Université Jean Monnet, Saint-Etienne, France
| | - F. Schwendicke
- Clinic for Conservative Dentistry and Periodontology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
5
|
Cho JH, Çakmak G, Choi J, Lee D, Yoon HI, Yilmaz B, Schimmel M. Deep learning-designed implant-supported posterior crowns: Assessing time efficiency, tooth morphology, emergence profile, occlusion, and proximal contacts. J Dent 2024; 147:105142. [PMID: 38906454 DOI: 10.1016/j.jdent.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVES To compare implant supported crowns (ISCs) designed using deep learning (DL) software with those designed by a technician using conventional computer-aided design software. METHODS Twenty resin-based partially edentulous casts (maxillary and mandibular) used for fabricating ISCs were evaluated retrospectively. ISCs were designed using a DL-based method with no modification of the as-generated outcome (DB), a DL-based method with further optimization by a dental technician (DM), and a conventional computer-aided design method by a technician (NC). Time efficiency, crown contour, occlusal table area, cusp angle, cusp height, emergence profile angle, occlusal contacts, and proximal contacts were compared among groups. Depending on the distribution of measured data, various statistical methods were used for comparative analyses with a significance level of 0.05. RESULTS ISCs in the DB group showed a significantly higher efficiency than those in the DM and NC groups (P ≤ 0.001). ISCs in the DM group exhibited significantly smaller volume deviations than those in the DB group when superimposed on ISCs in the NC group (DB-NC vs. DM-NC pairs, P ≤ 0.008). Except for the number and intensity of occlusal contacts (P ≤ 0.004), ISCs in the DB and DM groups had occlusal table areas, cusp angles, cusp heights, proximal contact intensities, and emergence profile angles similar to those in the NC group (P ≥ 0.157). CONCLUSIONS A DL-based method can be beneficial for designing posterior ISCs in terms of time efficiency, occlusal table area, cusp angle, cusp height, proximal contact, and emergence profile, similar to the conventional human-based method. CLINICAL SIGNIFICANCE A deep learning-based design method can achieve clinically acceptable functional properties of posterior ISCs. However, further optimization by a technician could improve specific outcomes, such as the crown contour or emergence profile angle.
Collapse
Affiliation(s)
- Jun-Ho Cho
- Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jinhyeok Choi
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyung-In Yoon
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH, United States
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Castner N, Arsiwala-Scheppach L, Mertens S, Krois J, Thaqi E, Kasneci E, Wahl S, Schwendicke F. Expert gaze as a usability indicator of medical AI decision support systems: a preliminary study. NPJ Digit Med 2024; 7:199. [PMID: 39068241 PMCID: PMC11283514 DOI: 10.1038/s41746-024-01192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Given the current state of medical artificial intelligence (AI) and perceptions towards it, collaborative systems are becoming the preferred choice for clinical workflows. This work aims to address expert interaction with medical AI support systems to gain insight towards how these systems can be better designed with the user in mind. As eye tracking metrics have been shown to be robust indicators of usability, we employ them for evaluating the usability and user interaction with medical AI support systems. We use expert gaze to assess experts' interaction with an AI software for caries detection in bitewing x-ray images. We compared standard viewing of bitewing images without AI support versus viewing where AI support could be freely toggled on and off. We found that experts turned the AI on for roughly 25% of the total inspection task, and generally turned it on halfway through the course of the inspection. Gaze behavior showed that when supported by AI, more attention was dedicated to user interface elements related to the AI support, with more frequent transitions from the image itself to these elements. When considering that expert visual strategy is already optimized for fast and effective image inspection, such interruptions in attention can lead to increased time needed for the overall assessment. Gaze analysis provided valuable insights into an AI's usability for medical image inspection. Further analyses of these tools and how to delineate metrical measures of usability should be developed.
Collapse
Affiliation(s)
- Nora Castner
- Carl Zeiss Vision International GmbH, Tübingen, Germany.
- University of Tübingen, Tübingen, Germany.
| | | | - Sarah Mertens
- Charité - Univesitätsmedizin, Oral Diagnostics, Digital Health and Services Research, Berlin, Germany
| | - Joachim Krois
- Charité - Univesitätsmedizin, Oral Diagnostics, Digital Health and Services Research, Berlin, Germany
| | - Enkeleda Thaqi
- Technical University of Munich, Human-Centered Technologies for Learning, Munich, Germany
| | - Enkelejda Kasneci
- Technical University of Munich, Human-Centered Technologies for Learning, Munich, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Falk Schwendicke
- Ludwig Maximilian University, Operative, Preventative and Pediatric Dentistry and Periodontology, Munich, Germany
| |
Collapse
|
7
|
Yeslam HE, Freifrau von Maltzahn N, Nassar HM. Revolutionizing CAD/CAM-based restorative dental processes and materials with artificial intelligence: a concise narrative review. PeerJ 2024; 12:e17793. [PMID: 39040936 PMCID: PMC11262301 DOI: 10.7717/peerj.17793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Artificial intelligence (AI) is increasingly prevalent in biomedical and industrial development, capturing the interest of dental professionals and patients. Its potential to improve the accuracy and speed of dental procedures is set to revolutionize dental care. The use of AI in computer-aided design/computer-aided manufacturing (CAD/CAM) within the restorative dental and material science fields offers numerous benefits, providing a new dimension to these practices. This study aims to provide a concise overview of the implementation of AI-powered technologies in CAD/CAM restorative dental procedures and materials. A comprehensive literature search was conducted using keywords from 2000 to 2023 to obtain pertinent information. This method was implemented to guarantee a thorough investigation of the subject matter. Keywords included; "Artificial Intelligence", "Machine Learning", "Neural Networks", "Virtual Reality", "Digital Dentistry", "CAD/CAM", and "Restorative Dentistry". Artificial intelligence in digital restorative dentistry has proven to be highly beneficial in various dental CAD/CAM applications. It helps in automating and incorporating esthetic factors, occlusal schemes, and previous practitioners' CAD choices in fabricating dental restorations. AI can also predict the debonding risk of CAD/CAM restorations and the compositional effects on the mechanical properties of its materials. Continuous enhancements are being made to overcome its limitations and open new possibilities for future developments in this field.
Collapse
Affiliation(s)
- Hanin E. Yeslam
- Department of Restorative Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Hani M. Nassar
- Department of Restorative Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Luo J, Liu T, Wang Y, Li X. The association between dental and dentoalveolar arch forms of children with normal occlusion and malocclusion: a cross-sectional study. BMC Oral Health 2024; 24:731. [PMID: 38918757 PMCID: PMC11201085 DOI: 10.1186/s12903-024-04515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Symmetrical and coordinated dental and alveolar arches are crucial for achieving proper occlusion. This study aimed to explore the association between dental and dentoalveolar arch forms in children with both normal occlusion and malocclusion. METHODS 209 normal occlusion subjects (5-13 years, mean 8.48 years) and 199 malocclusion subjects (5-12 years, mean 8.19 years) were included. The dentoalveolar arch form was characterized by the smoothest projected curve representing the layered contour of the buccal alveolar bone, referred to as the LiLo curve. Subsequently, a polynomial function was utilized to assess dental and dentoalveolar arch forms. To facilitate separate analyses of shape (depth/width ratio) and size (depth and width), the widths of dental and dentoalveolar arch forms were normalized. The normalized dental and dentoalveolar arch forms (shapes) were further classified into 6 groups, termed dental/dentoalveolar arch clusters, using the k-means algorithm. RESULTS The association between dental and dentoalveolar arch clusters was found to be one-to-many rather than one-to-one. The mismatch between dental and dentoalveolar arch forms is common in malocclusion, affecting 11.4% of the maxilla and 9.2% of the mandible, respectively. CONCLUSIONS There are large individual variations in the association between dental and dentoalveolar arch forms. Early orthodontic treatment may play an active role in coordinating the relationship between the dental and dentoalveolar arch forms.
Collapse
Affiliation(s)
- Jiaqing Luo
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, China, 611731
| | - Taiqi Liu
- Supalign (Chengdu) Technology Co. Ltd, No. 531, Building 2, No. 33, Wuqing South Road, Chengdu, Sichuan, 610046, China
| | - Yi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, People's South Road, Chengdu, Sichuan, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, People's South Road, Chengdu, Sichuan, 610041, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, People's South Road, Chengdu, Sichuan, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, People's South Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Umer F, Adnan S, Lal A. Research and application of artificial intelligence in dentistry from lower-middle income countries - a scoping review. BMC Oral Health 2024; 24:220. [PMID: 38347508 PMCID: PMC10860267 DOI: 10.1186/s12903-024-03970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
Artificial intelligence (AI) has been integrated into dentistry for improvement of current dental practice. While many studies have explored the utilization of AI in various fields, the potential of AI in dentistry, particularly in low-middle income countries (LMICs) remains understudied. This scoping review aimed to study the existing literature on the applications of artificial intelligence in dentistry in low-middle income countries. A comprehensive search strategy was applied utilizing three major databases: PubMed, Scopus, and EBSCO Dentistry & Oral Sciences Source. The search strategy included keywords related to AI, Dentistry, and LMICs. The initial search yielded a total of 1587, out of which 25 articles were included in this review. Our findings demonstrated that limited studies have been carried out in LMICs in terms of AI and dentistry. Most of the studies were related to Orthodontics. In addition gaps in literature were noted such as cost utility and patient experience were not mentioned in the included studies.
Collapse
Affiliation(s)
- Fahad Umer
- Department of Surgery, Section of Dentistry, The Aga Khan University, Karachi, Pakistan
| | - Samira Adnan
- Department of Operative Dentistry, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Abhishek Lal
- Department of Medicine, Section of Gastroenterology, The Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
10
|
Büttner M, Leser U, Schneider L, Schwendicke F. Natural Language Processing: Chances and Challenges in Dentistry. J Dent 2024; 141:104796. [PMID: 38072335 DOI: 10.1016/j.jdent.2023.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Natural language processing (NLP) is an intersection between Computer Science and Linguistic which aims to enable machines to process and understand human language. We here summarized applications and limitations of NLP in dentistry. DATA AND SOURCES Narrative review. FINDINGS NLP has evolved increasingly fast. For the dental domain, relevant NLP applications are text classification (e.g., symptom classification) and natural language generation and understanding (e.g., clinical chatbots assisting professionals in office work and patient communication). Analyzing large quantities of text will allow understanding diseases and their trajectories and support a more precise and personalized care. Speech recognition systems may serve as virtual assistants and facilitate automated documentation. However, to date, NLP has rarely been applied in dentistry. Existing research focuses mainly on rule-based solutions for narrow tasks. Technologies such as Recurrent Neural Networks and Transformers have been shown to surpass the language processing capabilities of such rule-based solutions in many fields, but are data-hungry (i.e., rely on large amounts of training data), which limits their application in the dental domain at present. Technologies such as federated or transfer learning or data sharing concepts may allow to overcome this limitation, while challenges in terms of explainability, reproducibility, generalizability and evaluation of NLP in dentistry remain to be resolved for enabling approval of such technologies in medical devices and services. CONCLUSIONS NLP will become a cornerstone of a number of applications in dentistry. The community is called to action to improve the current limitations and foster reliable, high-quality dental NLP. CLINICAL SIGNIFICANCE NLP for text classification (e.g., dental symptom classification) and language generation and understanding (e.g., clinical chatbots, speech recognition) will support administrative tasks in dentistry, provide deeper insights for clinicians and support research and education.
Collapse
Affiliation(s)
- Martha Büttner
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Germany.
| | - Ulf Leser
- Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Schneider
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Germany
| | - Falk Schwendicke
- Clinic for Operative, Preventive and Pediatric Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
11
|
Dot G, Gajny L, Ducret M. [The challenges of artificial intelligence in odontology]. Med Sci (Paris) 2024; 40:79-84. [PMID: 38299907 DOI: 10.1051/medsci/2023199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Artificial intelligence has numerous potential applications in dentistry, as these algorithms aim to improve the efficiency and safety of several clinical situations. While the first commercial solutions are being proposed, most of these algorithms have not been sufficiently validated for clinical use. This article describes the challenges surrounding the development of these new tools, to help clinicians to keep a critical eye on this technology.
Collapse
Affiliation(s)
- Gauthier Dot
- UFR odontologie, université Paris Cité, Paris, France - AP-HP, hôpital Pitié-Salpêtrière, service de médecine bucco-dentaire, Paris, France - Institut de biomécanique humaine Georges Charpak, école nationale supérieure d'Arts et Métiers, Paris, France
| | - Laurent Gajny
- Institut de biomécanique humaine Georges Charpak, école nationale supérieure d'Arts et Métiers, Paris, France
| | - Maxime Ducret
- Faculté d'odontologie, université Claude Bernard Lyon 1, hospices civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Carvalho J, Lotz M, Rubi L, Unger S, Pfister T, Buhmann J, Stadlinger B. Preinterventional Third-Molar Assessment Using Robust Machine Learning. J Dent Res 2023; 102:1452-1459. [PMID: 37944556 PMCID: PMC10683342 DOI: 10.1177/00220345231200786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Machine learning (ML) models, especially deep neural networks, are increasingly being used for the analysis of medical images and as a supporting tool for clinical decision-making. In this study, we propose an artificial intelligence system to facilitate dental decision-making for the removal of mandibular third molars (M3M) based on 2-dimensional orthopantograms and the risk assessment of such a procedure. A total of 4,516 panoramic radiographic images collected at the Center of Dental Medicine at the University of Zurich, Switzerland, were used for training the ML model. After image preparation and preprocessing, a spatially dependent U-Net was employed to detect and retrieve the region of the M3M and inferior alveolar nerve (IAN). Image patches identified to contain a M3M were automatically processed by a deep neural network for the classification of M3M superimposition over the IAN (task 1) and M3M root development (task 2). A control evaluation set of 120 images, collected from a different data source than the training data and labeled by 5 dental practitioners, was leveraged to reliably evaluate model performance. By 10-fold cross-validation, we achieved accuracy values of 0.94 and 0.93 for the M3M-IAN superimposition task and the M3M root development task, respectively, and accuracies of 0.9 and 0.87 when evaluated on the control data set, using a ResNet-101 trained in a semisupervised fashion. Matthew's correlation coefficient values of 0.82 and 0.75 for task 1 and task 2, evaluated on the control data set, indicate robust generalization of our model. Depending on the different label combinations of task 1 and task 2, we propose a diagnostic table that suggests whether additional imaging via 3-dimensional cone beam tomography is advisable. Ultimately, computer-aided decision-making tools benefit clinical practice by enabling efficient and risk-reduced decision-making and by supporting less experienced practitioners before the surgical removal of the M3M.
Collapse
Affiliation(s)
- J.S. Carvalho
- ETH Zurich, Department of Computer Science, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - M. Lotz
- University of Zurich, Center for Dental Medicine, Zurich, Switzerland
| | - L. Rubi
- ETH Zurich, Department of Computer Science, Zurich, Switzerland
| | - S. Unger
- University of Zurich, Center for Dental Medicine, Zurich, Switzerland
| | - T. Pfister
- University of Zurich, Center for Dental Medicine, Zurich, Switzerland
| | - J.M. Buhmann
- ETH Zurich, Department of Computer Science, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - B. Stadlinger
- University of Zurich, Center for Dental Medicine, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
13
|
Surlari Z, Budală DG, Lupu CI, Stelea CG, Butnaru OM, Luchian I. Current Progress and Challenges of Using Artificial Intelligence in Clinical Dentistry-A Narrative Review. J Clin Med 2023; 12:7378. [PMID: 38068430 PMCID: PMC10707023 DOI: 10.3390/jcm12237378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 07/25/2024] Open
Abstract
The concept of machines learning and acting like humans is what is meant by the phrase "artificial intelligence" (AI). Several branches of dentistry are increasingly relying on artificial intelligence (AI) tools. The literature usually focuses on AI models. These AI models have been used to detect and diagnose a wide range of conditions, including, but not limited to, dental caries, vertical root fractures, apical lesions, diseases of the salivary glands, maxillary sinusitis, maxillofacial cysts, cervical lymph node metastasis, osteoporosis, cancerous lesions, alveolar bone loss, the need for orthodontic extractions or treatments, cephalometric analysis, age and gender determination, and more. The primary contemporary applications of AI in the dental field are in undergraduate teaching and research. Before these methods can be used in everyday dentistry, however, the underlying technology and user interfaces need to be refined.
Collapse
Affiliation(s)
- Zinovia Surlari
- Department of Fixed Protheses, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Dana Gabriela Budală
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Costin Iulian Lupu
- Department of Dental Management, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Carmen Gabriela Stelea
- Department of Oral Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Maria Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| |
Collapse
|
14
|
Schneider L, Rischke R, Krois J, Krasowski A, Büttner M, Mohammad-Rahimi H, Chaurasia A, Pereira NS, Lee JH, Uribe SE, Shahab S, Koca-Ünsal RB, Ünsal G, Martinez-Beneyto Y, Brinz J, Tryfonos O, Schwendicke F. Federated vs Local vs Central Deep Learning of Tooth Segmentation on Panoramic Radiographs. J Dent 2023; 135:104556. [PMID: 37209769 DOI: 10.1016/j.jdent.2023.104556] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVE Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs. METHODS We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers. RESULTS For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability. CONCLUSION If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high. CLINICAL SIGNIFICANCE This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.
Collapse
Affiliation(s)
- Lisa Schneider
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité - University Medicine Berlin, Berlin, Germany; ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland
| | - Roman Rischke
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Joachim Krois
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland
| | - Aleksander Krasowski
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité - University Medicine Berlin, Berlin, Germany; ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland
| | - Martha Büttner
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité - University Medicine Berlin, Berlin, Germany; ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland
| | - Hossein Mohammad-Rahimi
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Shahid Beheshti University of Medical Sciences, Tehran, Iran Dental school, Iran
| | - Akhilanand Chaurasia
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Oral Medicine and Radiology, Faculty of Dental Sciences, King George's Medical University, Lucknow, India
| | - Nielsen S Pereira
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Private Practice in Oral and Maxillofacial Radiology, Rio de Janeiro, Brazil
| | - Jae-Hong Lee
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Korea
| | - Sergio E Uribe
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Conservative Dentistry Oral Health, Riga Stradins University, Riga, Latvia; School of Dentistry, Universidad Austral de Chile, Valdivia, Chile; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Shahriar Shahab
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Oral and Maxillofacial Radiology, School of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Revan Birke Koca-Ünsal
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Periodontology, Faculty of Dentistry, University of Kyrenia, Kyrenia, Cyprus
| | - Gürkan Ünsal
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Near East University, Nicosia, Cyprus
| | | | - Janet Brinz
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Olga Tryfonos
- ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland; Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Amsterdam, the Netherlands
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité - University Medicine Berlin, Berlin, Germany; ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland.
| |
Collapse
|
15
|
Ueda A, Tussie C, Kim S, Kuwajima Y, Matsumoto S, Kim G, Satoh K, Nagai S. Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements. Diagnostics (Basel) 2023; 13:2134. [PMID: 37443528 DOI: 10.3390/diagnostics13132134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The characteristics of maxillofacial morphology play a major role in orthodontic diagnosis and treatment planning. While Sassouni's classification scheme outlines different categories of maxillofacial morphology, there is no standardized approach to assigning these classifications to patients. This study aimed to create an artificial intelligence (AI) model that uses cephalometric analysis measurements to accurately classify maxillofacial morphology, allowing for the standardization of maxillofacial morphology classification. This study used the initial cephalograms of 220 patients aged 18 years or older. Three orthodontists classified the maxillofacial morphologies of 220 patients using eight measurements as the accurate classification. Using these eight cephalometric measurement points and the subject's gender as input features, a random forest classifier from the Python sci-kit learning package was trained and tested with a k-fold split of five to determine orthodontic classification; distinct models were created for horizontal-only, vertical-only, and combined maxillofacial morphology classification. The accuracy of the combined facial classification was 0.823 ± 0.060; for anteroposterior-only classification, the accuracy was 0.986 ± 0.011; and for the vertical-only classification, the accuracy was 0.850 ± 0.037. ANB angle had the greatest feature importance at 0.3519. The AI model created in this study accurately classified maxillofacial morphology, but it can be further improved with more learning data input.
Collapse
Affiliation(s)
- Akane Ueda
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Cami Tussie
- DMD Candidate Class of 2025, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Sophie Kim
- DMD Candidate Class of 2025, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Yukinori Kuwajima
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Grace Kim
- Department of Developmental Biology, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Shigemi Nagai
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
16
|
Ducret M, Mörch CM, Karteva T, Fisher J, Schwendicke F. Artificial intelligence for sustainable oral healthcare. J Dent 2022; 127:104344. [PMID: 36273625 DOI: 10.1016/j.jdent.2022.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Oral health is grounded in the United National (UN) 2030 Agenda for Sustainable Developement and its 17 Goals (SDGs), in particular SDG 3 (Ensure healthy lives and promote well-being for all at all ages). The World Health Organization (WHO) Global Strategy on Oral Health calls for prioritizing environmentally sustainable and less invasive oral health care, and planetary health. Artificial Intelligence (AI) has the potential to power the next generation of oral health services and care, however its relationship with the broader UN and WHO concepts of sustainability remains poorly defined and articulated. We review the double-edged relationships between AI and oral health, to suggest actions that promote a sustainable deployment of AI for oral health. DATA Concepts regarding AI, sustainability and sustainable development were identified and defined. A review of several double-edged relationship between AI and SDGs were exposed for the field of Oral Health. SOURCES Medline and international declarations of the WHO, the UN and the World Dental Federation (FDI) were screened. STUDY SELECTION One the one hand, AI may reduce transportation, optimize care delivery (SDG 3 "Good Health and Well-Being", SDG 13 "Climate Action"), and increase accessibility of services and reduce inequality (SDG 10 "Reduced Inequalities", SDG 4 "Quality Education"). On the other hand, the deployment, implementation and maintenance of AI require significant resources (SDG 12 "Responsible Consumption and Production"), and costs for AI may aggravate inequalities. Also, AI may be biased, reinforcing inequalities (SDG 10) and discrimination (SDG 5), and may violate principles of security, privacy and confidentiality of personal information (SDG 16). CONCLUSIONS Systematic assessment of the positive impact and adverse effects of AI on sustainable oral health may help to foster the former and curb the latter based on evidence. CLINICAL SIGNIFICANCE If sustainability imperatives are actively taken into consideration, the community of oral health professionals should then employ AI for improving effectiveness, efficiency, and safety of oral healthcare; strengthen oral health surveillance; foster education and accessibility of care; ensure fairness, transparency and governance of AI for oral health; develop legislation and infrastructure to expand the use of digital health technologies including AI.
Collapse
Affiliation(s)
- Maxime Ducret
- Institut de Biologie et Chimie des Protéines, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS, Université Lyon 1, Lyon, France; Faculté d'Odontologie, Université Lyon 1, Lyon, France; Hospices Civils de Lyon, Centre de soins Dentaires, Lyon, France.
| | - Carl-Maria Mörch
- FARI - AI for the Common Good Institute, Free University of Brussels, Brussels, Belgium
| | - Teodora Karteva
- Department of Operative Dentistry and Endodontics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Julian Fisher
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin, Berlin, Germany
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Machine Learning in Predicting Tooth Loss: A Systematic Review and Risk of Bias Assessment. J Pers Med 2022; 12:jpm12101682. [PMID: 36294820 PMCID: PMC9605501 DOI: 10.3390/jpm12101682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Predicting tooth loss is a persistent clinical challenge in the 21st century. While an emerging field in dentistry, computational solutions that employ machine learning are promising for enhancing clinical outcomes, including the chairside prognostication of tooth loss. We aimed to evaluate the risk of bias in prognostic prediction models of tooth loss that use machine learning. To do this, literature was searched in two electronic databases (MEDLINE via PubMed; Google Scholar) for studies that reported the accuracy or area under the curve (AUC) of prediction models. AUC measures the entire two-dimensional area underneath the entire receiver operating characteristic (ROC) curves. AUC provides an aggregate measure of performance across all possible classification thresholds. Although both development and validation were included in this review, studies that did not assess the accuracy or validation of boosting models (AdaBoosting, Gradient-boosting decision tree, XGBoost, LightGBM, CatBoost) were excluded. Five studies met criteria for inclusion and revealed high accuracy; however, models displayed a high risk of bias. Importantly, patient-level assessments combined with socioeconomic predictors performed better than clinical predictors alone. While there are current limitations, machine-learning-assisted models for tooth loss may enhance prognostication accuracy in combination with clinical and patient metadata in the future.
Collapse
|
18
|
Affiliation(s)
- F Schwendicke
- Department of Oral Diagnostics, Digital Health, Health Services Research, Charité - Universitätsmedizin, Berlin, Germany
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|