1
|
Takemi S, Nishio R, Taguchi H, Ojima S, Matsumoto M, Sakai T, Sakata I. Molecular cloning and analysis of Suncus murinus group IIA secretary phospholipase A2 expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103427. [PMID: 31278953 DOI: 10.1016/j.dci.2019.103427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
The intestinal epithelial monolayer forms a mucosal barrier between the gut microbes and the host tissue. The mucosal barrier is composed of mucins and antimicrobial peptides and proteins (AMPs). Several animal studies have reported that Paneth cells, which occupy the base of intestinal crypts, play an important role in the intestinal innate immunity by producing AMPs, such as lysozyme, Reg3 lectins, α-defensins, and group IIA secretory phospholipase A2 (GIIA sPLA2). The house musk shrew (Suncus murinus) has only a few intestinal commensal bacteria and is reported to lack Paneth cells in the intestine. Although the expression of lysozyme was reported in the suncus intestine, the expression of other AMPs has not yet been reported. Therefore, the current study was focused on GIIA sPLA2 expression in Suncus murinus. GIIA sPLA2 mRNA was found to be most abundant in the spleen and also highly expressed in the intestine. Cells expressing GIIA sPLA2 mRNA were distributed not only in the crypt, but also in the villi. In addition, intragastric injection of lipopolysaccharide increased GIIA sPLA2 expression in the small intestine of suncus. These results suggest that suncus may host unique AMP-secreting cells in the intestine.
Collapse
Affiliation(s)
- Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Ryo Nishio
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Hayato Taguchi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Shiomi Ojima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Karray A, Ali YB, Gargouri Y, Bezzine S. Antibacterial properties of chicken intestinal phospholipase A2. Lipids Health Dis 2011; 10:4. [PMID: 21226897 PMCID: PMC3024238 DOI: 10.1186/1476-511x-10-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/12/2011] [Indexed: 11/23/2022] Open
Abstract
Background The presence of chicken group-IIA PLA2 (ChPLA2-IIA) in the intestinal secretion suggests that this enzyme plays an important role in systemic bactericidal defence. We have analyzed the bactericidal activity of purified ChPLA2-IIA, on several gram-positive and gram-negative bacteria by using the diffusion well and dilution methods. Results ChPLA2-IIA displays potent bactericidal activity against gram-positive bacteria but lacks bactericidal activity against gram negative ones. We have also demonstrated a synergic action of ChPLA2-IIA with lysozyme when added to the bacteria culture prior to ChPLA2-IIA. The bactericidal efficiency of ChPLA2-IIA was shown to be dependent upon the presence of calcium ions and then a correlation could be made to its hydrolytic activity of membrane phospholipids. Interestingly ChPLA2-IIA displays a higher dependence to Ca2+ ions than to Mg2+ions. Conclusion We conclude that the main physiological role of ChPLA2-IIA could be the defence of the intestine against bacterial invasions.
Collapse
Affiliation(s)
- Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, 3038 Sfax, University of Sfax, Tunisia
| | | | | | | |
Collapse
|
3
|
Changes of Inflammation and Apoptosis in Adrenal Gland After Experimental Injury in Rats with Acute Necrotizing Pancreatitis. Inflammation 2010; 35:11-22. [DOI: 10.1007/s10753-010-9284-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Shim DH, Ryu S, Kweon MN. Defensins play a crucial role in protecting mice against oral Shigella flexneri infection. Biochem Biophys Res Commun 2010; 401:554-60. [DOI: 10.1016/j.bbrc.2010.09.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/24/2010] [Indexed: 02/01/2023]
|
5
|
Xu S, Chen C, Wang WX, Huang SR, Yu J, Chen XY. Crucial role of group IIA phospholipase A2 in pancreatitis-associated adrenal injury in acute necrotizing pancreatitis. Pathol Res Pract 2010; 206:73-82. [DOI: 10.1016/j.prp.2009.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 01/30/2023]
|
6
|
Catalytic and non-catalytic functions of human IIA phospholipase A2. Trends Biochem Sci 2009; 35:28-35. [PMID: 19818633 DOI: 10.1016/j.tibs.2009.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 11/30/2022]
Abstract
Group IIA phospholipase A2 (PLA2) is a low-molecular-mass secreted PLA2 enzyme that has been identified as an acute phase protein with a role in the inflammatory response to infection and trauma. The protein is possibly unique in being highly cationic and having a global distribution of surface arginine and lysine residues. This structure supports two functions of the protein. (1) An anti-bacterial role where the enzyme is targeted to the anionic cell membrane of Gram-positive bacteria and phospholipid hydrolysis assists in bacterial killing. (2) A proposed non-catalytic role in which the protein forms supramolecular aggregates with anionic phospholipid vesicles or debris. These aggregates are then internalized via interactions with cell surface heparin sulphate proteoglycans and macropinocytosis for disposal by macrophages.
Collapse
|
7
|
Alpha-defensin-like product and asymmetric dimethylarginine increase in mesenteric lymph after hemorrhage in anesthetized rat. Shock 2008; 30:411-6. [PMID: 18391861 DOI: 10.1097/shk.0b013e31816a71cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mesenteric lymph contains unidentified proinflammatory mediators that increase in concentration after hemorrhage. In the search for candidate mediators, we examined mesenteric lymph for the presence of proinflammatory substances that are known to be produced in the gut: (a) antimicrobial peptides and antimicrobial proteins produced in the Paneth cells of the intestine (alpha-defensin 4, secretory phospholipase A2 [sPLA2], and Reg 2 protein) and (b) asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NOS. Anesthetized male rats were hemorrhaged to 40 mmHg and maintained at that pressure by intermittent blood withdrawal until the pressure fell to less than 40 mmHg (decompensation) at which point they were resuscitated with three times the shed blood volume of Ringer's lactate solution administered over 1 h. Mesenteric lymph samples were analyzed for ADMA by enzyme-linked immunosorbent assay and for alpha-defensin 4, sPLA2, and Reg2 by Western blotting. Protein concentration in lymph was unchanged by hemorrhage, but alpha-defensin 4 increased significantly (12-fold greater than control) as did ADMA (2-fold greater than control). The sPLA2 could not be detected in lymph, and Reg 2 was unchanged during hemorrhage. During resuscitation, lymph flow tended to increase, but the concentration of ADMA and alpha-defensin 4 by volume did not increase. Reg 2 decreased during resuscitation. The results indicate that ADMA and immunoreactive product to alpha-defensin 4 may contribute to the increase in inflammatory activity of mesenteric lymph during hemorrhage, but they are unlikely to be the mediators responsible for the increase in the concentration of inflammatory mediators in postresuscitation lymph.
Collapse
|
8
|
Adibhatla RM, Hatcher JF. Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 2007; 1134:199-205. [PMID: 17204250 PMCID: PMC1855193 DOI: 10.1016/j.brainres.2006.11.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Cerebral ischemia initiates an inflammatory response in the brain that is associated with the induction of a variety of cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1alpha/beta (IL-1alpha/beta) that contributes to stroke injury. Transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) resulted in significant increases in TNF-alpha and IL-1beta levels. We have previously demonstrated up-regulation of secretory phospholipase A2 IIA (sPLA2 IIA) mRNA and protein expression, increased PLA2 activity, and loss of phosphatidylcholine after 1-h tMCAO and 24-h reperfusion in SHR. Treatment with TNF-alpha antibody or IL-1 receptor antagonist significantly attenuated infarction volume, sPLA2 IIA protein expression, PLA2 activity and significantly restored phosphatidylcholine levels after tMCAO. This suggests that cytokine induction up-regulates sPLA2 IIA protein expression, resulting in altered lipid metabolism that contributes to stroke injury.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin, and Veterans Administration Hospital, Madison, WI 53705, USA.
| | | |
Collapse
|
9
|
Adibhatla RM, Hatcher JF, Larsen EC, Chen X, Sun D, Tsao FHC. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. J Biol Chem 2006; 281:6718-25. [PMID: 16380371 DOI: 10.1074/jbc.m512112200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylcholine (PtdCho) is a major membrane phospholipid, and its loss is sufficient in itself to induce cell death. PtdCho homeostasis is regulated by the balance between hydrolysis and synthesis. PtdCho is hydrolyzed by phospholipase A2 (PLA2), PtdChospecific phospholipase C (PtdCho-PLC), and phospholipase D (PLD). PtdCho synthesis is rate-limited by CTP:phosphocholine cytidylyltransferase (CCT), which makes CDP-choline. The final step of PtdCho synthesis is catalyzed by CDP-choline:1,2-diacylglycerol cholinephosphotransferase. PtdCho synthesis in the brain is predominantly through the CDP-choline pathway. Transient middle cerebral artery occlusion (tMCAO) significantly increased PLA2 activity, secretory PLA2 (sPLA2)-IIA mRNA and protein levels, PtdCho-PLC activity, and PLD2 protein expression following reperfusion. CDP-choline treatment significantly attenuated PLA2 activity, sPLA2-IIA mRNA and protein levels, and PtdCho-PLC activity, but did not affect PLD2 protein expression. tMCAO also resulted in loss of CCT activity and CCTalpha protein, which were partially restored by CDP-choline. No changes were observed in cytosolic PLA2 or calcium-independent PLA2 tMCAO. protein levels after Up-regulation of PLA2, PtdCho-PLC, and PLD and regulation of CCT collectively down-resulted in loss of PtdCho, which was significantly restored by CDP-choline treatment. CDP-choline treatment significantly attenuated the infarction volume by 55 +/- 5% after 1 h of tMCAO and 1 day of reperfusion. Taken together, these results suggest that CDP-choline significantly restores Ptd-Cho levels by differentially affecting sPLA2-IIA, PtdCho-PLC, and CCTalpha after transient focal cerebral ischemia. A hypothetical scheme is proposed integrating results from this study and from other reports in the literature.
Collapse
|
10
|
Guillemin I, Bouchier C, Garrigues T, Wisner A, Choumet V. Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2697-706. [PMID: 12823540 DOI: 10.1046/j.1432-1033.2003.03629.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used a PCR-based method to determine the genomic DNA sequences encoding phospholipases A2 (PLA2s) from the venoms of Vipera aspis aspis (V. a. aspis), Vipera aspis zinnikeri (V. a. zinnikeri), Vipera berus berus (V. b. berus) and a neurotoxic V. a. aspis snake (neurotoxic V. a. aspis) from a population responsible for unusual neurotoxic envenomations in south-east France. We sequenced five groups of genes, each corresponding to a different PLA2. The genes encoding the A and B chains of vaspin from the neurotoxic V. a. aspis, PLA2-I from V. a. zinnikeri, and the anticoagulant PLA2 from V. b. berus are described here. Single nucleotide differences leading to amino-acid substitutions were observed both between genes encoding the same PLA2 and between genes encoding different PLA2s. These differences were clustered in exons 3 and 5, potentially altering the biological activities of PLA2. The distribution and characteristics of the PLA2 genes differed according to the species or subspecies. We characterized for the first time genes encoding neurotoxins from the V. a. aspis and V. b. berus snakes of central France. Genes encoding ammodytins I1 and I2, described previously in Vipera ammodytes ammodytes (V. am. ammodytes), were also present in V. a. aspis and V. b. berus. Three different ammodytin I1 gene sequences were characterized: one from V. b. berus, the second from V. a. aspis, V. a. zinnikeri and the neurotoxic V. a. aspis, and the third from the neurotoxic V. a. aspis. This third sequence was identical with the reported sequence of the V. am. ammodytes ammodytin I1 gene. Genes encoding monomeric neurotoxins of V. am. ammodytes venom, ammodytoxins A, B and C, and the Bov-B LINE retroposon, a phylogenetic marker found in V. am. ammodytes genome, were identified in the genome of the neurotoxic V. a. aspis. These results suggest that the population of neurotoxic V. a. aspis snakes from south-east France may have resulted from interbreeding between V. a. aspis and V. am. ammodytes.
Collapse
|
11
|
Beck GC, Hermes WC, Yard BA, Kaszkin M, von Zabern D, Schulte J, Haak M, Prem K, Krimsky W, van Ackern K, van der Woude FJ, Yedgar S. Amelioration of endotoxin-induced sepsis in rats by membrane anchored lipid conjugates. Crit Care Med 2003; 31:2015-21. [PMID: 12847398 DOI: 10.1097/01.ccm.0000074717.46748.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In the pathogenesis of septic shock, caused by either bacterial toxins or trauma, increased production of multiple proinflammatory mediators, such as phospholipase A(2) (PLA(2)), cytokines, and chemokines, is known to be of major importance. The present study was undertaken to investigate the influence of a newly designed extracellular PLA(2) inhibitor (ExPLI) on synthesis of proinflammatory mediators and mortality rate in a rat sepsis model. DESIGN Prospective, randomized animal study. SETTING Experimental laboratory. SUBJECTS Male Wistar-rats weighing 200-300 g. INTERVENTIONS Mortality was induced by intraperitoneal bolus administration of lipopolysaccharide 15 mg/kg in 22 rats that were pretreated with NaCl or ExPLI (150 mg/kg). Furthermore, nine rats received a sublethal bolus of lipopolysaccharide (7.5 mg/kg) and nine rats received lipotechoic acid (8 mg/kg) simultaneously with or after ExPLI administration. Blood samples were collected from these rats, and cytokine concentrations were assessed by enzyme-linked immunosorbent assay. Lung and kidney were removed for RNA isolation and immunohistological analysis. MEASUREMENTS AND MAIN RESULTS ExPLI treatment significantly reduced lipopolysaccharide-induced mortality of rats (90.9 and 36.4%, p <.05). Up-regulation of tumor necrosis factor-alpha and interleukin-6 production in serum after endotoxin treatment was significantly inhibited when ExPLIs were administered at the time of or before sepsis induction by using lipopolysaccharide or lipotechoic acid (p <.01). Similarly, messenger RNA expression of secreted PLA(2)-IIA, interleukin-1, or inducible nitric oxide synthase and the expression of intercellular adhesion molecule-1 were significantly down-regulated in lung and kidney of ExPLI-treated rats, as demonstrated by RNase protection assay, reverse transcription-polymerase chain reaction, or immunohistochemistry. CONCLUSIONS ExPLIs may be considered as potentially effective compounds to prevent the production of inflammatory mediators and to improve mortality rate in septic patients.
Collapse
Affiliation(s)
- Grietje Ch Beck
- Insitute of Aneasthesiology, University of Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|