1
|
van Waardenburg RCAM, Falany CN. Sulfotransferase 4A1 Coding Sequence and Protein Structure Are Highly Conserved in Vertebrates. Genes (Basel) 2024; 15:914. [PMID: 39062693 PMCID: PMC11275347 DOI: 10.3390/genes15070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cytosolic sulfotransferases (SULTs) are Phase 2 drug-metabolizing enzymes that catalyze the conjugation of sulfonate to endogenous and xenobiotic compounds, increasing their hydrophilicity and excretion from cells. To date, 13 human SULTs have been identified and classified into five families. SULT4A1 mRNA encodes two variants: (1) the wild type, encoding a 284 amino acid, ~33 kDa protein, and (2) an alternative spliced variant resulting from a 126 bp insert between exon 6 and 7, which introduces a premature stop codon that enhances nonsense-mediated decay. SULT4A1 is classified as an SULT based on sequence and structural similarities, including PAPS-domains, active-site His, and the dimerization domain; however, the catalytic pocket lid 'Loop 3' size is not conserved. SULT4A1 is uniquely expressed in the brain and localized in the cytosol and mitochondria. SULT4A1 is highly conserved, with rare intronic polymorphisms that have no outward manifestations. However, the SULT4A1 haplotype is correlated with Phelan-McDermid syndrome and schizophrenia. SULT4A1 knockdown revealed potential SULT4A1 functions in photoreceptor signaling and knockout mice display hampered neuronal development and behavior. Mouse and yeast models revealed that SULT4A1 protects the mitochondria from endogenously and exogenously induced oxidative stress and stimulates cell division, promoting dendritic spines' formation and synaptic transmission. To date, no physiological enzymatic activity has been associated with SULT4A1.
Collapse
|
2
|
Brettrager EJ, Meehan AW, Falany CN, van Waardenburg RCAM. Sulfotransferase 4A1 activity facilitates sulfate-dependent cellular protection to oxidative stress. Sci Rep 2022; 12:1625. [PMID: 35102205 PMCID: PMC8803991 DOI: 10.1038/s41598-022-05582-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) is an orphan member of the cytosolic SULT superfamily that contains enzymes that catalyze the sulfonation of hydrophobic drugs and hormones. SULT4A1 has been assessed through all classical SULT approaches yet no SULT activity has been reported. To ascertain SULT4A1 function and activity, we utilized Saccharomyces cerevisiae as a model system, which exhibits no endogenous SULT activity nor possesses SULT-related genes. We observed that ectopic SULT4A1 expression in yeast displays similar subcellular localization as reported in mouse neurons and observed that SULT4A1 is associated with the outer mitochondria membrane. SULT4A1 expression stimulates colony formation and protects these cells from hydrogen peroxide and metabolism-associated oxidative stress. These SULT4A1-mediated phenotypes are dependent on extracellular sulfate that is converted in yeast to PAPS, the universal sulfonate donor for SULT activity. Thus, heterologous SULT4A1 expression in yeast is correctly distributed and functional, and SULT4A1 antioxidant activity is sulfate dependent supporting the concept that SULT4A1 has sulfate-associated activity.
Collapse
Affiliation(s)
- Evan J Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294-0019, USA
| | - Arthur W Meehan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294-0019, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294-0019, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
3
|
Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021; 86:125-138. [PMID: 34371026 DOI: 10.1016/j.neuro.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Carla Garza-Lombó
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB, Indianapolis, IN, 46202, USA
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
4
|
Del Río JP, Molina S, Hidalgo-Lanussa O, Garcia-Segura LM, Barreto GE. Tibolone as Hormonal Therapy and Neuroprotective Agent. Trends Endocrinol Metab 2020; 31:742-759. [PMID: 32507541 DOI: 10.1016/j.tem.2020.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Tibolone (TIB), a selective tissue estrogenic activity regulator (STEAR) in clinical use by postmenopausal women, activates hormonal receptors in a tissue-specific manner. Estrogenic activity is present mostly in the brain, vagina, and bone, while the inactive forms predominate in the endometrium and breast. Conflicting literature on TIB's actions has been observed. While it has benefits for vasomotor symptoms, bone demineralization, and sexual health, a higher relative risk of hormone-sensitive cancer has been reported. In the brain, TIB can improve mood and cognition, neuroinflammation, and reactive gliosis. This review aims to discuss the systemic effects of TIB on peri- and post-menopausal women and its role in the brain. We suggest that TIB is a hormonal therapy with promising neuroprotective properties.
Collapse
Affiliation(s)
- Juan Pablo Del Río
- Reproductive Health Research Institute, Santiago, Chile; Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (Imhay), Santiago, Chile
| | | | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
5
|
SULT4A1 Modulates Synaptic Development and Function by Promoting the Formation of PSD-95/NMDAR Complex. J Neurosci 2020; 40:7013-7026. [PMID: 32801157 DOI: 10.1523/jneurosci.2194-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.
Collapse
|
6
|
Li L, Hao B, Zhang Y, Ji S, Chou G. Metabolite Profiling and Distribution of Militarine in Rats Using UPLC-Q-TOF-MS/MS. Molecules 2020; 25:molecules25051082. [PMID: 32121087 PMCID: PMC7179186 DOI: 10.3390/molecules25051082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Militarine, a natural glucosyloxybenzyl 2-isobutylmalate, isolated from Bletilla striata, was reported with a prominent neuroprotective effect recently. The limited information on the metabolism of militarine impedes comprehension of its biological actions and pharmacology. This study aimed to investigate the metabolite profile and the distribution of militarine in vivo, which help to clarify the action mechanism further. A total of 71 metabolites (57 new metabolites) in rats were identified with a systematic method by ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). The proposed metabolic pathways of militarine include hydrolyzation, oxidation, glycosylation, esterification, sulfation, glucuronidation and glycine conjugation. Militarine and its metabolites were distributed extensively in the treated rats. Notably, six metabolites of militarine were identified in cerebrospinal fluid (CSF), which were highly consistent with the metabolites after oral administration of gastrodin in rats. Among the metabolites in CSF, five of them were not reported before. It is the first systematic metabolic study of militarine in vivo, which is very helpful for better comprehension of the functions and the central nervous system (CNS) bioactivities of militarine. The findings will also provide an essential reference for the metabolism of other glucosylated benzyl esters of succinic, malic, tartaric and citric acids.
Collapse
Affiliation(s)
- Limin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China;
| | - Bin Hao
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China; (B.H.); (Y.Z.)
| | - Yulong Zhang
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China; (B.H.); (Y.Z.)
| | - Shen Ji
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China;
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: ; Tel.: +86-021-50271706
| |
Collapse
|
7
|
Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet 2018; 26:293-302. [PMID: 29358616 PMCID: PMC5838980 DOI: 10.1038/s41431-017-0042-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Chromosome 22q13.3 deletion (Phelan McDermid) syndrome (PMS) is a rare genetic neurodevelopmental disorder resulting from deletions or other genetic variants on distal 22q. Pathological variants of the SHANK3 gene have been identified, but terminal chromosomal deletions including SHANK3 are most common. Terminal deletions disrupt up to 108 protein-coding genes. The impact of these losses is highly variable and includes both significantly impairing neurodevelopmental and somatic manifestations. The current review combines two metrics, prevalence of gene loss and predicted loss pathogenicity, to identify likely contributors to phenotypic expression. These genes are grouped according to function as follows: molecular signaling at glutamate synapses, phenotypes involving neuropsychiatric disorders, involvement in multicellular organization, cerebellar development and functioning, and mitochondrial. The likely most impactful genes are reviewed to provide information for future clinical and translational investigations.
Collapse
|
8
|
Garcia PL, Hossain MI, Andrabi SA, Falany CN. Generation and Characterization of SULT4A1 Mutant Mouse Models. Drug Metab Dispos 2017; 46:41-45. [PMID: 29109113 DOI: 10.1124/dmd.117.077560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/02/2017] [Indexed: 01/16/2023] Open
Abstract
Sulfotransferase 4A1 (SULT4A1) belongs to the cytosolic sulfotransferase (SULT) superfamily of enzymes that catalyze sulfonation reactions with a variety of endogenous and exogenous substrates. Of the SULTs, SULT4A1 was shown to have the highest sequence homology between vertebrate species, yet no known function or enzymatic activity has been identified for this orphan SULT. To better understand SULT4A1 function in mammalian brain, two mutant SULT4A1 mouse strains were generated utilizing clustered regulatory interspaced short palindromic repeats (CRISPR)-content-addressable storage (Cas) 9 technology. The first strain possessed a 28-base pair (bp) deletion (Δ28) in exon 1 that resulted in a frameshift mutation with premature termination. The second strain possessed a 12-bp in-frame deletion (Δ12) immediately preceding an active site histidine111 common to the SULT family. Homozygous pups of both strains present with severe and progressive neurologic symptoms, including tremor, absence seizures, abnormal gait, ataxia, decreased weight gain compared with littermates, and death around postnatal days 21-25. SULT4A1 immunostaining was decreased in brains of heterozygous pups and not detectable in homozygous pups of both SULT4A1 mutants. SULT4A1 localization in subcellular fractions of mouse brain showed SULT4A1 associated with mitochondrial, cytosolic, and microsomal fractions, a novel localization pattern for SULTs. Finally, primary cortical neurons derived from embryonic (E15) CD-1 mice expressed high levels of SULT4A1 throughout the cell except in nuclei. Taken together, SULT4A1 appears to be an essential neuronal protein required for normal brain function, at least in mammals. Mouse models will be valuable in future studies to investigate the regulation and functions of SULT4A1 in the mammalian brain.
Collapse
Affiliation(s)
- Patrick L Garcia
- Department of Pharmacology and Toxicology, and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammed I Hossain
- Department of Pharmacology and Toxicology, and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles N Falany
- Department of Pharmacology and Toxicology, and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Dai J, Bing Z, Zhang Y, Li Q, Niu L, Liang W, Yuan G, Duan L, Yin H, Pan Y. Integrated mRNAseq and microRNAseq data analysis for grade III gliomas. Mol Med Rep 2017; 16:7468-7478. [PMID: 28944855 PMCID: PMC5865882 DOI: 10.3892/mmr.2017.7545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization classification distinguishes four grades for gliomas. Grade III gliomas, which are brain malignant brain tumors with variable biological behavior and propensity, have been not widely investigated. The objective of the present study was to identify specific gene modules and valuable hubs associated with gliomagenesis and molecular signatures to assist in determining grade III glioma prognosis. mRNAseq and micro (mi)RNAseq data were used to construct a co-expression network of gliomas using weight gene co-expression network analysis, and revealed the prognostic molecular signature of grade III gliomas. The differently expressed miRNAs and mRNAs were identified. A total of 37 mRNAs and 10 miRNAs were identified, which were closely associated with the survival rates of patients with grade III glioma. To further understand the tumorigenesis, Cytoscape software was used to construct a network containing these differently expressed molecules. The result suggested that both the downregulated genes and upregulated genes are vital in the process of glioma deterioration, and certain genes are closely associated with clinical prognosis.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Yinian Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wentao Liang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guoqiang Yuan
- Institute of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Lei Duan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
10
|
Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 2016; 11:3. [PMID: 26819088 PMCID: PMC4730756 DOI: 10.1186/s13064-016-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Conclusions One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, Oxford, UK. .,Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | | | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Colombrita C, Onesto E, Buratti E, de la Grange P, Gumina V, Baralle FE, Silani V, Ratti A. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1398-410. [PMID: 26514432 DOI: 10.1016/j.bbagrm.2015.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.
Collapse
Affiliation(s)
- Claudia Colombrita
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Elisa Onesto
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | | | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
| |
Collapse
|
12
|
Crittenden F, Thomas HR, Parant JM, Falany CN. Activity Suppression Behavior Phenotype in SULT4A1 Frameshift Mutant Zebrafish. Drug Metab Dispos 2015; 43:1037-44. [PMID: 25934576 DOI: 10.1124/dmd.115.064485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 01/15/2023] Open
Abstract
Since its identification in 2000, sulfotransferase (SULT) 4A1 has presented an enigma to the field of cytosolic SULT biology. SULT4A1 is exclusively expressed in neural tissue, is highly conserved, and has been identified in every vertebrate studied to date. Despite this singular level of conservation, no substrate or function for SULT4A1 has been identified. Previous studies demonstrated that SULT4A1 does not bind the obligate sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate, yet SULT4A1 is classified as a SULT superfamily member based on sequence and structural similarities to the other SULTs. In this study, transcription activator-like effector nucleases were used to generate heritable mutations in the SULT4A1 gene of zebrafish. The mutation (SULT4A1(Δ8)) consists of an 8-nucleotide deletion within the second exon of the gene, resulting in a frameshift mutation and premature stop codon after 132 AA. During early adulthood, casual observations were made that mutant zebrafish were exhibiting excessively sedentary behavior during the day. These observations were inconsistent with published reports on activity in zebrafish that are largely diurnal organisms and are highly active during the day. Thus, a decrease in activity during the day represents an abnormal behavior and warranted further systematic analysis. EthoVision video tracking software was used to monitor activity levels in wild-type (WT) and SULT4A1(Δ8/Δ8) fish over 48 hours of a normal light/dark cycle. SULT4A1(Δ8/Δ8) fish were shown to exhibit increased inactivity bout length and frequency as well as a general decrease in daytime activity levels when compared with their WT counterparts.
Collapse
Affiliation(s)
- Frank Crittenden
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama (F.C., H.R.T., J.M.P., C.N.F.)
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama (F.C., H.R.T., J.M.P., C.N.F.)
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama (F.C., H.R.T., J.M.P., C.N.F.)
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama (F.C., H.R.T., J.M.P., C.N.F.)
| |
Collapse
|
13
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
14
|
Qualitative de novo analysis of full length cDNA and quantitative analysis of gene expression for common marmoset (Callithrix jacchus) transcriptomes using parallel long-read technology and short-read sequencing. PLoS One 2014; 9:e100936. [PMID: 24977701 PMCID: PMC4076266 DOI: 10.1371/journal.pone.0100936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that could prove useful as human pharmacokinetic and biomedical research models. The cytochromes P450 (P450s) are a superfamily of enzymes that have critical roles in drug metabolism and disposition via monooxygenation of a broad range of xenobiotics; however, information on some marmoset P450s is currently limited. Therefore, identification and quantitative analysis of tissue-specific mRNA transcripts, including those of P450s and flavin-containing monooxygenases (FMO, another monooxygenase family), need to be carried out in detail before the marmoset can be used as an animal model in drug development. De novo assembly and expression analysis of marmoset transcripts were conducted with pooled liver, intestine, kidney, and brain samples from three male and three female marmosets. After unique sequences were automatically aligned by assembling software, the mean contig length was 718 bp (with a standard deviation of 457 bp) among a total of 47,883 transcripts. Approximately 30% of the total transcripts were matched to known marmoset sequences. Gene expression in 18 marmoset P450- and 4 FMO-like genes displayed some tissue-specific patterns. Of these, the three most highly expressed in marmoset liver were P450 2D-, 2E-, and 3A-like genes. In extrahepatic tissues, including brain, gene expressions of these monooxygenases were lower than those in liver, although P450 3A4 (previously P450 3A21) in intestine and P450 4A11- and FMO1-like genes in kidney were relatively highly expressed. By means of massive parallel long-read sequencing and short-read technology applied to marmoset liver, intestine, kidney, and brain, the combined next-generation sequencing analyses reported here were able to identify novel marmoset drug-metabolizing P450 transcripts that have until now been little reported. These results provide a foundation for mechanistic studies and pave the way for the use of marmosets as model animals for drug development in the future.
Collapse
|
15
|
Disciglio V, Rizzo CL, Mencarelli MA, Mucciolo M, Marozza A, Di Marco C, Massarelli A, Canocchi V, Baldassarri M, Ndoni E, Frullanti E, Amabile S, Anderlid BM, Metcalfe K, Le Caignec C, David A, Fryer A, Boute O, Joris A, Greco D, Pecile V, Battini R, Novelli A, Fichera M, Romano C, Mari F, Renieri A. Interstitial 22q13 deletions not involving SHANK3 gene: A new contiguous gene syndrome. Am J Med Genet A 2014; 164A:1666-76. [DOI: 10.1002/ajmg.a.36513] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/03/2014] [Indexed: 01/15/2023]
Affiliation(s)
| | - Caterina Lo Rizzo
- Medical Genetics; University of Siena; Siena Italy
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics; University of Siena; Siena Italy
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | | | - Annabella Marozza
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Chiara Di Marco
- Medical Genetics; University of Siena; Siena Italy
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | | | | | | | - Enea Ndoni
- Medical Genetics; University of Siena; Siena Italy
| | | | | | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery; CMM, Karolinska Institutet and Hospital Stockholm; Sweden
| | - Kay Metcalfe
- Manchester Academic Health Sciences Centre; Manchester Biomedical Research Centre; St Mary's Hospital; Manchester United Kingdom
| | | | - Albert David
- CHU Nantes; Service de genetique medicale; Nantes Cedex France
| | - Alan Fryer
- Department of Clinical Genetics; Alder Hey Children's Hospital; Liverpool, and Liverpool Women's Hospital; Liverpool United Kingdom
| | - Odile Boute
- Service de Génétique Clinique; Hôpital Jeanne de Flandre; Lille France
| | - Andrieux Joris
- Institut de Génétique Médicale; Hôpital Jeanne de Flandre; Lille France
| | - Donatella Greco
- Unit of Pediatrics and Medical Genetics; IRCCS Associazione Oasi Maria Santissima; Troina Italy
| | - Vanna Pecile
- Medical Genetics; Institute for Maternal and Child Health IRCCS “Burlo Garofalo”; Trieste Italy
| | - Roberta Battini
- Department of Developmental Neuroscience; IRCCS Stella Maris; Calambrone Italy
| | - Antonio Novelli
- IRCCS Casa Sollievo della Sofferenza Hospital; Mendel Institute; Rome Italy
| | - Marco Fichera
- Laboratory of Genetic Diagnosis; IRCCS Associazione Oasi Maria Santissima; Troina Italy
- Medical Genetics; University of Catania; Catania Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics; IRCCS Associazione Oasi Maria Santissima; Troina Italy
| | - Francesca Mari
- Medical Genetics; University of Siena; Siena Italy
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Alessandra Renieri
- Medical Genetics; University of Siena; Siena Italy
- Genetica Medica; Azienda Ospedaliera Universitaria Senese; Siena Italy
| |
Collapse
|
16
|
Crittenden F, Thomas H, Ethen CM, Wu ZL, Chen D, Kraft TW, Parant JM, Falany CN. Inhibition of SULT4A1 expression induces up-regulation of phototransduction gene expression in 72-hour postfertilization zebrafish larvae. Drug Metab Dispos 2014; 42:947-53. [PMID: 24553382 DOI: 10.1124/dmd.114.057042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.
Collapse
Affiliation(s)
- Frank Crittenden
- Departments of Pharmacology and Toxicology (F.C., H.T., J.P., C.N.F.), Medicine (D.C.), and Vision Sciences (T.K.), University of Alabama at Birmingham, Birmingham, Alabama; and R&D Systems, Minneapolis, Minnesota (C.M.E., Z.L.W.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted.
Collapse
Affiliation(s)
- Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
18
|
Liu Q, Ramsey TL, Meltzer HY, Massey BW, Padmanabhan S, Brennan MD. Sulfotransferase 4A1 Haplotype 1 (SULT4A1-1) Is Associated With Decreased Hospitalization Events in Antipsychotic-Treated Patients With Schizophrenia. Prim Care Companion CNS Disord 2012; 14:11m01293. [PMID: 23106027 DOI: 10.4088/pcc.11m01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/16/2011] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To evaluate a common genetic variant, sulfotransferase 4A1 haplotype 1 (SULT4A1-1), as a predictor of hospitalization events due to the exacerbation of schizophrenia for patients treated with antipsychotic medications. Haplotypes were determined using single nucleotide polymorphism data. METHOD The study included 417 white subjects from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study with a DSM-IV diagnosis of schizophrenia. Patients were assigned to 1 of 4 atypical antipsychotics (olanzapine, quetiapine, risperidone, or ziprasidone) or to the first-generation antipsychotic perphenazine. Kaplan-Meier survival analysis and Cox proportional hazards regression models were used to measure if haplotype status impacted hospitalization events for these 5 treatments. Haplotype status was evaluated for its relationship to hospitalization events regardless of treatment and for the individual treatments, with or without previous exacerbation. Data for the CATIE study were collected from January 2001 to December 2004. The current post hoc analysis was performed between May 2011 and August 2011. RESULTS In phase 1 of the trial, considering only the first hospitalization events, the haplotype had a significant impact on hospitalization events, with a hazard ratio for SULT4A1-1(-) versus SULT4A1-1(+) of 2.54 (P = .048). When prior exacerbation was included in the model for phase 1, the hazard ratio was 2.34 (P = .072) considering only the first hospitalization event and 2.71 (P = .039) considering all hospitalization events in the phase. When data for all phases were evaluated, SULT4A1-1(-) status was associated with increased hospitalization risk for subjects treated with olanzapine, with a hazard ratio of 8.26 (P = .041), and possibly for subjects treated with quetiapine, with a hazard ratio of 6.80 (P = .070). CONCLUSIONS The SULT4A1-1 haplotype may be an important predictor of risk of hospitalization. SULT4A1-1(+) status was significantly associated with decreased risk of hospitalization when the subjects were treated with olanzapine.
Collapse
Affiliation(s)
- Qian Liu
- SureGene, LLC, Louisville, Kentucky (Drs Liu, Massey, and Brennan; Mr Ramsey; and Ms Padmanabhan); and Department of Psychiatry, Vanderbilt University, Nashville, Tennessee (Dr Meltzer)
| | | | | | | | | | | |
Collapse
|
19
|
Skipor J, Misztal T, Piskuła M, Wiczkowski W, Thiéry JC. Phytoestrogens and thyroid hormone levels in the cerebrospinal fluid of ewes fed red clover silage. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2011.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Shu XH, Li H, Sun XX, Wang Q, Sun Z, Wu ML, Chen XY, Li C, Kong QY, Liu J. Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies. PLoS One 2011; 6:e27484. [PMID: 22096581 PMCID: PMC3214056 DOI: 10.1371/journal.pone.0027484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/17/2011] [Indexed: 01/19/2023] Open
Abstract
Background Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s). Methodology/Principal Findings Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. Conclusions/Significance LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain-associated SULT expression, insufficiency of resveratrol to suppress activated STAT3 signaling and the lack of PIAS3 nuclear translocation. The findings from PBCs suggest that an effective anticancer dose of resveratrol exerts little side effect on normal brain cells.
Collapse
Affiliation(s)
- Xiao-Hong Shu
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
- Department of Medicinal Chemistry, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Xiao-Xin Sun
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Qian Wang
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Zheng Sun
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Xiao-Yan Chen
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Chong Li
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics & Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian, China
- * E-mail:
| |
Collapse
|
21
|
Ramsey TL, Meltzer HY, Brock GN, Mehrotra B, Jayathilake K, Bobo WV, Brennan MD. Evidence for a SULT4A1 haplotype correlating with baseline psychopathology and atypical antipsychotic response. Pharmacogenomics 2011; 12:471-80. [PMID: 21521020 DOI: 10.2217/pgs.10.205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM This study evaluated the impact of SULT4A1 gene variation on psychopathology and antipsychotic drug response in Caucasian subjects from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study and a replication sample. PATIENTS & METHODS SULT4A1 haplotypes were determined using SNP data. The relationship to baseline psychopathology was evaluated using linear regression of Positive and Negative Syndrome Scale (PANSS) total score. Drug response was evaluated using Mixed Model Repeat Measures (MMRM) for change in PANSS. RESULTS For the CATIE sample, patients carrying a haplotype designated SULT4A1-1(+) displayed higher baseline PANSS (p = 0.03) and, when treated with olanzapine, demonstrated a significant interaction with time (p = 0.009) in the MMRM. SULT4A1-1(+) patients treated with olanzapine displayed improved response compared with SULT4A1-1(-) patients treated with olanzapine (p = 0.008) or to SULT4A1-1(+) patients treated with risperidone (p = 0.006). In the replication sample, SULT4A1-1(+) patients treated with olanzapine demonstrated greater improvement than SULT4A1-1(-) patients treated with olanzapine (p = 0.05) or than SULT4A1-1(+) patients treated with risperidone (p = 0.05). CONCLUSION If validated, determination of SULT4A1-1 haplotype status might be useful for identifying patients who show an enhanced response to long-term olanzapine treatment. Original submitted 6 October 2010; Revision submitted 9 December 2010.
Collapse
|
22
|
Butcher NJ, Mitchell DJ, Burow R, Minchin RF. Regulation of Mouse Brain-Selective Sulfotransferase Sult4a1 by cAMP Response Element-Binding Protein and Activating Transcription Factor-2. Mol Pharmacol 2010; 78:503-10. [DOI: 10.1124/mol.110.063404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Shu XH, Li H, Sun Z, Wu ML, Ma JX, Wang JM, Wang Q, Sun Y, Fu YS, Chen XY, Kong QY, Liu J. Identification of metabolic pattern and bioactive form of resveratrol in human medulloblastoma cells. Biochem Pharmacol 2010; 79:1516-25. [PMID: 20105429 DOI: 10.1016/j.bcp.2010.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/12/2023]
Abstract
Cancer preventive reagent trans-resveratrol is intracellularly biotransformed to different metabolites. However, it is still unclear whether trans-resveratrol exerts its biological effects directly or through its metabolite(s). This issue was addressed here by identifying the metabolic pattern and the bioactive form of resveratrol in a resveratrol-sensitive human medulloblastoma cell line, UW228-3. The cell lysates and condition media of UW228-3 cells with or without 100 microM resveratrol treatment were analyzed by HPLC and LC/MS which revealed (1) that resveratrol was chemically unstable and the spontaneous generation of cis-resveratrol reduced resveratrol's anti-medulloblastoma efficacy and (2) that resveratrol monosulfate was the major metabolite of the cells. To identify the bioactive form of resveratrol, a mixture-containing approximately half fraction of resveratrol monosulfate was prepared by incubating trans-resveratrol with freshly prepared rat brain lysates. Medulloblastoma cells treated by 100 microM of this mixture showed attenuated cell crisis. The overall levels of the three brain-associated sulfotransferases (SULT1A1, 1C2 and 4A1) were low in medulloblastoma cells in vivo and in vitro in comparison with that in human noncancerous and rat normal cerebella; resveratrol could more or less up-regulate the production of these enzymes in UW228-3 cells but their overall level was still lower than that in normal cerebellum tissue. Our study thus demonstrated for the first time that trans-resveratrol is the bioactive form in medulloblastoma cells in which the expression of brain-associated SULTs was down-regulated, resulting in the increased intracellular bioavailability and anti-medulloblastoma efficacy of trans-resveratrol.
Collapse
Affiliation(s)
- Xiao-Hong Shu
- Department of Cell Biology, Dalian Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Waaijenborg S, Zwinderman AH. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks. BMC Bioinformatics 2009; 10:315. [PMID: 19785734 PMCID: PMC2760886 DOI: 10.1186/1471-2105-10-315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes. RESULTS We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes. CONCLUSION We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis.
Collapse
Affiliation(s)
- Sandra Waaijenborg
- Clinical Epidemiology, Biostatistics & Bioinformatics, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, the Netherlands
| | | |
Collapse
|
25
|
Riches Z, Stanley EL, Bloomer JC, Coughtrie MWH. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT "pie". Drug Metab Dispos 2009; 37:2255-61. [PMID: 19679676 DOI: 10.1124/dmd.109.028399] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expression levels of the major human sulfotransferases (SULTs) involved in xenobiotic detoxification in a range of human tissues (i.e., SULT "pies") are not available in a form allowing comparison between tissues and individuals. Here we have determined, by quantitative immunoblotting, expression levels for the five principal human SULTs-SULT1A1, SULT1A3/4, SULT1B1, SULT1E1, and SULT2A1-and determined the kinetic properties toward probe substrates, where available, for these enzymes in cytosol samples from a bank of adult human liver, small intestine, kidney, and lung. We produced new isoform-selective antibodies against SULT1B1 and SULT2A1, which were used alongside antibodies against SULT1A3 and SULT1A1 previously produced in our laboratory or available commercially (SULT1E1). Expression levels were derived using purified recombinant enzymes to construct standard curves for each individual isoform and immunoblot. Substantial intertissue and interindividual differences in expression were observed. SULT1A1 was the major enzyme (>50% of total, range 420-4900 ng/mg cytosol protein) in the liver, followed by SULT2A1, SULT1B1, and SULT1E1. SULT1A3 was completely absent from this tissue. In contrast, the small intestine contained the largest overall amount of SULT of any of the tissues, with SULT1B1 the major enzyme (36%), closely followed by SULT1A3 (31%), and SULT1A1, SULT1E1, and SULT2A1 more minor forms (19, 8, and 6% of total, respectively). The kidney and lung contained low levels of SULT. We provide a unique data set that will add value to the study of the role and contribution of sulfation to drug and xenobiotic metabolism in humans.
Collapse
Affiliation(s)
- Zoe Riches
- Division of Medical Sciences, Centre for Oncology and Molecular Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | | | | |
Collapse
|
26
|
Regulation of sulfotransferase and UDP-glucuronosyltransferase gene expression by the PPARs. PPAR Res 2009; 2009:728941. [PMID: 19680455 PMCID: PMC2724710 DOI: 10.1155/2009/728941] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/14/2009] [Indexed: 01/12/2023] Open
Abstract
During phase II metabolism, a substrate is rendered more hydrophilic through the covalent attachment of an endogenous molecule. The cytosolic sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT) families of enzymes account for the majority of phase II metabolism in humans and animals. In general, phase II metabolism is considered to be a detoxication process, as sulfate and glucuronide conjugates are more amenable to excretion and elimination than are the parent substrates. However, certain products of phase II metabolism (e.g., unstable sulfate conjugates) are genotoxic. Members of the nuclear receptor superfamily are particularly important regulators of SULT and UGT gene transcription. In metabolically active tissues, increasing evidence supports a major role for lipid-sensing transcription factors, such as peroxisome proliferator-activated receptors (PPARs), in the regulation of rodent and human SULT and UGT gene expression. This review summarizes current information regarding the regulation of these two major classes of phase II metabolizing enzyme by PPARs.
Collapse
|
27
|
Lewis AG, Minchin RF. Lack of exonic sulfotransferase 4A1 mutations in controls and schizophrenia cases. Psychiatr Genet 2009; 19:53-5. [PMID: 19125109 DOI: 10.1097/ypg.0b013e3283118776] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sulfotransferase 4A1 (SULT4A1) is a novel sulfotransferase expressed almost exclusively in the brain. The gene is located on chromosome 22q13.3, a region implicated in predisposition to schizophrenia. Recently, a variable microsatellite region located upstream of SULT4A1 was found to be associated with an increase in schizophrenia risk. We hypothesised that if functional dysregulation of SULT4A1 was involved in the aetiology of schizophrenia, then genetic variants in the coding sequence of SULT4A1 might be identified in cases compared with controls. To test this, we carried out a mutation analysis of the coding region (exons 2-7) in 71 Australian schizophrenia cases and 69 controls. We found no mutations, either synonymous or nonsynonymous, in either cohort. However, intronic variants (IVS5+12 C>T and IVS5+28 G>C) were identified, the frequency of which was not statistically different between cases and controls. The lack of polymorphisms in the coding region of the SULT4A1 gene is highly unusual and, along with its high conservation between species, suggests that SULT4A1 may have an important function in vivo. However, our findings do not support the hypothesis that germline mutations in the coding region of SULT4A1 contribute to susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Aaron G Lewis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
28
|
Mitchell DJ, Minchin RF. Cytosolic Aryl Sulfotransferase 4A1 Interacts with the Peptidyl Prolyl Cis-Trans Isomerase Pin1. Mol Pharmacol 2009; 76:388-95. [DOI: 10.1124/mol.109.055442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Kiba T, Kintaka Y, Suzuki Y, Nakata E, Ishigaki Y, Inoue S. Ventromedial hypothalamic lesions change the expression of neuron-related genes and immune-related genes in rat liver. Neurosci Lett 2009; 455:14-6. [DOI: 10.1016/j.neulet.2009.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
|
30
|
Minchin RF, Lewis A, Mitchell D, Kadlubar FF, McManus ME. Sulfotransferase 4A1. Int J Biochem Cell Biol 2007; 40:2686-91. [PMID: 18248844 DOI: 10.1016/j.biocel.2007.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
In this review, we highlight the physical and enzymatic properties of the novel human sulfotransferase, SULT4A1. The gene is most highly expressed in selective regions of the brain, although work to date has failed to identify any specific endogenous substrate for the enzyme. SULT4A1 shares low homology with other human sulfotransferases. Nevertheless, it is highly conserved between species. Despite the low homology, it is structurally very similar to other cytosolic sulfotransferases with a conserved substrate binding domain, dimerization site and partial cofactor binding sites. However, the catalytic cavity is much smaller, and it has been suggested that the cofactor may not be accommodated within it. A recent link between variability in the 5'UTR of the SULT4A1 gene and schizophrenia has heightened interest in the endogenous function of the enzyme and its possible role in human disease.
Collapse
Affiliation(s)
- Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
31
|
Yu D, Cook MC, Shin D, Silva DG, Marshall J, Toellner K, Havran WL, Caroni P, Cooke MP, Morse HC, MacLennan ICM, Goodnow CC, Vinuesa CG. Axon growth and guidance genes identify T‐dependent germinal centre B cells. Immunol Cell Biol 2007; 86:3-14. [DOI: 10.1038/sj.icb.7100123] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Di Yu
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Matthew C Cook
- Australian National University Medical SchoolCanberraAustralia
| | - Dong‐Mi Shin
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institute of HealthRockvilleMDUSA
| | - Diego G Silva
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Jennifer Marshall
- MRC Centre for Immune Regulation, University of BirminghamBirminghamUK
| | | | - Wendy L Havran
- Department of Immunology, The Scripps Research InstituteLa JollaCAUSA
| | - Pico Caroni
- Friedrich Miescher InstituteBaselSwitzerland
| | - Michael P Cooke
- The Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Herbert C Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institute of HealthRockvilleMDUSA
| | - Ian CM MacLennan
- MRC Centre for Immune Regulation, University of BirminghamBirminghamUK
| | - Christopher C Goodnow
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Australian Phenomics FacilityCanberraACTAustralia
| | - Carola G Vinuesa
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| |
Collapse
|
32
|
Schumacher M, Liere P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, Sjövall J, Baulieu EE. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int 2007; 52:522-40. [PMID: 18068870 DOI: 10.1016/j.neuint.2007.08.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/25/2007] [Accepted: 08/31/2007] [Indexed: 12/30/2022]
Abstract
Pregnenolone sulfate (PREGS) has been shown, either at high nanomolar or at micromolar concentrations, to increase neuronal activity by inhibiting GABAergic and by stimulating glutamatergic neurotransmission. PREGS is also a potent modulator of sigma type 1 (sigma1) receptors. It has been proposed that these actions of PREGS underlie its neuropharmacological effects, and in particular its influence on memory processes. On the other hand, the PREGS-mediated increase in neuronal excitability may become dangerous under particular conditions, for example in the case of excitotoxic stress or convulsions. However, the physiopathological significance of these observations has recently been put into question by the failure to detect significant levels of PREGS within the brain and plasma of rats and mice, either by direct analytical methods based on liquid chromatography/mass spectrometry (LC/MS) or enzyme linked immunosorbent assay (ELISA) with specific antibodies against PREGS, or by indirect gas chromatography/mass spectrometry (GC/MS) analysis with improved sample workup. These recent results have not come to the attention of a large number of neurobiologists interested in steroid sulfates. However, although available direct analytical methods have failed to detect levels of PREGS above 0.1-0.3 ng/g in brain tissue, it may be premature to completely exclude the local formation of biologically active PREGS within specific and limited compartments of the nervous system. In contrast to the situation in rodents, significant levels of sulfated 3beta-hydroxysteroids have been measured in human plasma and brain. Previous indirect measures of steroid sulfates by radioimmunoassays (RIA) or GC/MS had detected elevated levels of PREGS in rodent brain. The discrepancies between the results of different assay procedures have revealed the danger of indirect analysis of steroid sulfates. Indeed, PREGS must be solvolyzed/hydrolyzed prior to RIA or GC/MS analysis, and it is the released, unconjugated PREG which is then quantified. Extreme caution needs to be exercised during the preparation of samples for RIA or GC/MS analysis, because the fraction presumed to contain only steroid sulfates can be contaminated by nonpolar components from which PREG is generated by the solvolysis/hydrolysis/derivatization reactions.
Collapse
Affiliation(s)
- Michael Schumacher
- UMR 788 Inserm, University Paris-Sud 11, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Verheul HAM, van Iersel MLPS, Delbressine LPC, Kloosterboer HJ. Selective tissue distribution of tibolone metabolites in mature ovariectomized female cynomolgus monkeys after multiple doses of tibolone. Drug Metab Dispos 2007; 35:1105-11. [PMID: 17420283 DOI: 10.1124/dmd.106.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tibolone is a selective tissue estrogenic activity regulator (STEAR). In postmenopausal women, it acts as an estrogen on brain, vagina, and bone, but not on endometrium and breast. Despite ample supporting in vitro data for tissue-selective actions, confirmative tissue levels of tibolone metabolites are not available. Therefore, we analyzed tibolone and metabolites in plasma and tissues from six ovariectomized cynomolgus monkeys that received tibolone (0.5 mg/kg/day by gavage) for 36 days and were necropsied at 1, 1.25, 2.25, 4, 6, and 24 h after the final dose. The plasma and tissue levels of active, nonsulfated (tibolone, 3alpha-hydroxytibolone, 3beta-hydroxytibolone, and Delta(4)-tibolone), monosulfated (3alpha-sulfate,17beta-hydroxytibolone and 3beta-sulfate,17beta-hydroxytibolone), and disulfated (3alpha,17beta-disulfated-tibolone and 3beta,17betaS-disulfated-tibolone) metabolites were measured by validated gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. Detection limits were 0.1 to 0.5 ng/ml (plasma) and 0.5 to 2 ng/g (tissues). In brain tissues, estrogenic 3alpha-hydroxytibolone was predominant with 3 to 8 times higher levels than in plasma; levels of sulfated metabolites were low. In vaginal tissues, major nonsulfated metabolites were 3alpha-hydroxytibolone and the androgenic/progestagenic Delta(4)-tibolone; disulfated metabolites were predominant. Remarkably high levels of monosulfated metabolites were found in the proximal vagina. In endometrium, myometrium, and mammary glands, levels of 3-hydroxymetabolites were low and those of sulfated metabolites were high (about 98% disulfated). Delta(4)-Tibolone/3-hydroxytibolone ratios were 2 to 3 in endometrium, about equal in breast and proximal vagina, and 0.1 in plasma and brain. It is concluded that tibolone metabolites show a unique tissue-specific distribution pattern explaining the tissue effects in monkeys and the clinical effects in postmenopausal women.
Collapse
Affiliation(s)
- H A M Verheul
- Research and Development, NV Organon, Oss, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, Janssen I, Giangaspero F, Forni M, Finocchiaro G, Genitori L, Giordano F, Riccardi R, Schoenmakers EFPM, Massimino M, Sozzi G. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 2006; 24:5223-33. [PMID: 17114655 DOI: 10.1200/jco.2006.06.3701] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To delineate clinically relevant molecular signatures of intracranial ependymoma. MATERIALS AND METHODS We analyzed 24 primary intracranial ependymomas. For genomic profiling, microarray-based comparative genomic hybridization (CGH) was used and results were validated by fluorescent in situ hybridization and loss of heterozygosity mapping. We performed gene expression profiling using microarrays, real-time quantitative reverse transcriptase polymerase chain reaction, and methylation analysis of selected genes. We applied class comparison analyses to compare both genomic and expression profiling data with clinical characteristics. RESULTS A variable number of genomic imbalances were detected by array CGH, revealing multiple regions of recurrent gain (including 2q23, 7p21, 12p, 13q21.1, and 20p12) and loss (including 5q31, 6q26, 7q36, 15q21.1, 16q24, 17p13.3, 19p13.2, and 22q13.3). An ependymoma-specific gene expression signature was characterized by the concurrent abnormal expression of developmental and differentiation pathways, including NOTCH and sonic hedgehog signaling. We identified specific differentially imbalanced genomic clones and gene expression signatures significantly associated with tumor location, patient age at disease onset, and retrospective risk for relapse. Integrated genomic and expression profiling allowed us to identify genes of which the expression is deregulated in intracranial ependymoma, such as overexpression of the putative proto-oncogene YAP1 (located at 11q22) and downregulation of the SULT4A1 gene (at 22q13.3). CONCLUSION The present exploratory molecular profiling study allowed us to refine previously reported intervals of genomic imbalance, to identify novel restricted regions of gain and loss, and to identify molecular signatures correlating with various clinical variables. Validation of these results on independent data sets represents the next step before translation into the clinical setting.
Collapse
Affiliation(s)
- Piergiorgio Modena
- Unit of Molecular Cytogenetics, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Verheul HAM, Kloosterboer HJ. Metabolism of exogenous sex steroids and effect on brain functions with a focus on tibolone. J Steroid Biochem Mol Biol 2006; 102:195-204. [PMID: 17113982 DOI: 10.1016/j.jsbmb.2006.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Around the menopause, changes in ovarian secretion of steroids result in changes in brain function: hot flushes and sweating later followed by changes in mood, libido and cognition. The relationship between sex steroids and brain functions are reviewed, with focus on hormonal treatments, in particular tibolone, on the postmenopausal brain and on associations between tissue levels and brain functions. Data on steroid levels in human brain are limited. Exogenous oestrogens alone or combined with progestagens reduce hot flushes and sweating, and may favourably affect anxiety, depression and mood. Testosterone alone or combined with E(2) improves libido and mood. Tibolone reduces hot flushes and sweating, and improves mood and libido, but does not stimulate endometrium or breast, like oestrogens. Tibolone is an ideal compound for studying steroid levels and metabolism in brain in view of its structural differences from endogenous steroids and its extensive metabolism required to express its endocrine effects. Brain levels of tibolone metabolites were measured in ovariectomized cynomolgus monkeys receiving tibolone for 36 days. Compared to serum, higher levels of the oestrogenic 3alpha/beta-hydroxytibolone and the androgenic/progestagenic Delta(4)-tibolone, and lower levels of sulphated metabolites are found in various brain regions. The high levels of oestrogenic metabolites in the hypothalamus explain hot flush reduction. Combined with the presence of Delta(4)-tibolone, the tibolone-induced increase in free testosterone through SHBG reduction explains androgenic effects of tibolone on mood and libido. The levels of tibolone metabolites in the monkey brain support tibolone's effects on brain functions.
Collapse
Affiliation(s)
- H A M Verheul
- Research and Development, N.V. Organon, Oss, The Netherlands.
| | | |
Collapse
|
36
|
Hildebrandt MAT, Carrington DP, Thomae BA, Eckloff BW, Schaid DJ, Yee VC, Weinshilboum RM, Wieben ED. Genetic diversity and function in the human cytosolic sulfotransferases. THE PHARMACOGENOMICS JOURNAL 2006; 7:133-43. [PMID: 16801938 DOI: 10.1038/sj.tpj.6500404] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amino-acid substitutions, which result from common nonsynonymous (NS) polymorphisms, may dramatically alter the function of the encoded protein. Gaining insight into how these substitutions alter function is a step toward acquiring predictability. In this study, we incorporated gene resequencing, functional genomics, amino-acid characterization and crystal structure analysis for the cytosolic sulfotransferases (SULTs) to attempt to gain predictability regarding the function of variant allozymes. Previously, four SULT genes were resequenced in 118 DNA samples. With additional resequencing of the remaining eight SULT family members in the same DNA samples, a total of 217 polymorphisms were revealed. Of 64 polymorphisms identified within 8785 bp of coding regions from SULT genes examined, 25 were synonymous and 39 were NS. Overall, the proportion of synonymous changes was greater than expected from a random distribution of mutations, suggesting the presence of a selective pressure against amino-acid substitutions. Functional data for common variants of five SULT genes have been previously published. These data, together with the SULT1A1 variant allozyme data presented in this paper, showed that the major mechanism by which amino acid changes altered function in a transient expression system was through decreases in immunoreactive protein rather than changes in enzyme kinetics. Additional insight with regard to mechanisms by which NS single nucleotide polymorphisms alter function was sought by analysis of evolutionary conservation, physicochemical properties of the amino-acid substitutions and crystal structure analysis. Neither individual amino-acid characteristics nor structural models were able to accurately and reliably predict the function of variant allozymes. These results suggest that common amino-acid substitutions may not dramatically alter the protein structure, but affect interactions with the cellular environment that are currently not well understood.
Collapse
Affiliation(s)
- M A T Hildebrandt
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN 55985, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes that are involved in the biotransformation of a wide variety of structurally diverse endo- and xenobiotics, including many therapeutic agents and endogenous steroids. Single-nucleotide polymorphisms (SNPs) in SULTs have functional consequences on the translated protein. For the most part, these SNPs are fairly uncommon in the population, but some, most notably for SULT isoform 1A1, are commonly found and have been associated with cancer risk for a variety of tumor sites and also with response to therapeutic agents. SNPs in the hydroxysteroid sulfotransferase, SULT2A1, have been identified in African-American subjects and influence the ratio of plasma DHEA:DHEA-S. This modification could potentially influence cancer risk in steroidogenic tissues. SNPs in many SULTs are ethnically distributed, another factor that could influence SULT pharmacogenetics. Finally, genetic variation has also been identified in 3'-phosphoadenoside 5'-phosphosulfate synthetase (PAPPS), the enzymes responsible for producing the obligatory cosubstrate for all sulfotransferases. Taken together, this variability could substantially influence the disposition of drugs metabolized by SULTs. Elucidation of the basis and effect of variability in sulfation could greatly impact individualized therapy in the future.
Collapse
Affiliation(s)
- S Nowell
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
38
|
Brennan MD, Condra J. Transmission disequilibrium suggests a role for the sulfotransferase-4A1 gene in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 139B:69-72. [PMID: 16152568 DOI: 10.1002/ajmg.b.30222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies suggest a role for chromosome 22q13 in schizophrenia. This segment of chromosome 22 contains the sulfotransferase-4A1 (Sult4A1) gene, which encodes an enzyme thought to be involved in neurotransmitter metabolism in the central nervous system. To evaluate this candidate, we developed a microsatellite marker targeting a polymorphism in its 5' nontranslated region (D22s1749E). Using samples obtained from the National Institutes of Mental Health Schizophrenia Genetics Initiative, we evaluated 27 families having multiple siblings with schizophrenia and schizophrenia-spectrum disorders for transmission disequilibrium (TDT) of this marker along with three single nucleotide polymorphisms (SNPs) spanning a 37 kb segment containing the Sult4A1 gene. TDT for D22s1749E was significant (P < 0.05), with a tendency for the 213 nt allele to be preferentially transferred to affected children (P = 0.0079). Global chi-square values for haplotypes involving the SNPs (ss146366, ss146407, and ss146420) and D22s1749E, also showed significant TDT values (P = 0.0006-0.0016). Consequently, we proposed that Sult4A merited more careful scrutiny as a candidate gene for schizophrenia susceptibility.
Collapse
Affiliation(s)
- Mark D Brennan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | |
Collapse
|
39
|
Abstract
Sulfonation has a major function in modulating the biological activities of a wide number of endogenous and foreign chemicals, including: drugs, toxic chemicals, hormones, and neurotransmitters. The activation as well as inactivation of many xenobiotics and endogenous compounds occurs via sulfonation. The process is catalyzed by members of the cytosolic sulfotransferase (SULT) superfamily consisting of at least ten functional genes in humans. The reaction in intact cells may be reversed by arylsulafatase present in the endoplasmic reticulum. Under physiological conditions, sulfonation is regulated, in part, by the supply of the co-substrate/donor molecule 3'-phosphadensoine-5-phosphosulfate (PAPS), and transport mechanisms by which sulfonated conjugates enter and leave cells. Variation in the response of individuals to certain drugs and toxic chemicals may be related to genetic polymorphisms documented to occur in each of the above pathways. Sulfonation has a major function in regulating the endocrine status of an individual by modulating the receptor activity of estrogens and androgens, steroid biosynthesis, and the metabolism of catecholamines and iodothyronines Sulfonation is a key reaction in the body's defense against injurious chemicals and may have a major function during early development since SULTs are highly expressed in the human fetus. As with many Phase I and Phase II reactions, sulfonation may also serve as the terminal step in activating certain dietary and environmental agents to very reactive toxic intermediates implicated in carcinogenesis.
Collapse
Affiliation(s)
- Frederick C Kauffman
- Laboratory for Cellular and Biochemical Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|