1
|
Demchenko A, Belova L, Balyasin M, Kochergin-Nikitsky K, Kondrateva E, Voronina E, Pozhitnova V, Tabakov V, Salikhova D, Bukharova T, Goldshtein D, Kondratyeva E, Kyian T, Amelina E, Zubkova O, Popova O, Ozharovskaia T, Lavrov A, Smirnikhina S. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol 2024; 12:1336392. [PMID: 38737127 PMCID: PMC11082282 DOI: 10.3389/fcell.2024.1336392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs, expressing basal cell markers (NGFR, KRT5, and TP63), could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs, potentially applicable for gene therapy research.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Lyubava Belova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Moscow, Russia
| | | | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina Voronina
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Victoria Pozhitnova
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moscow, Russia
| | - Diana Salikhova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Bukharova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry Goldshtein
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Kondratyeva
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Tatiana Kyian
- Scientific and Clinical Department of Cystic Fibrosis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russia
| | - Olga Zubkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Popova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Ozharovskaia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Cooney AL, Thurman AL, McCray PB, Pezzulo AA, Sinn PL. Lentiviral vectors transduce lung stem cells without disrupting plasticity. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:293-301. [PMID: 34458011 PMCID: PMC8379527 DOI: 10.1016/j.omtn.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Thurman
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Heterogeneous expression of CFTR in insulin-secreting β-cells of the normal human islet. PLoS One 2020; 15:e0242749. [PMID: 33264332 PMCID: PMC7710116 DOI: 10.1371/journal.pone.0242749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic β-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in β-cells, which results in the general perception that this Cl−channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting β-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat β-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of β-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic β-cell secretory response suggesting that intrinsic β-cell dysfunction may also participate in the pathogenesis of CFRD.
Collapse
|
4
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
5
|
Matos AM, Pinto FR, Barros P, Amaral MD, Pepperkok R, Matos P. Inhibition of calpain 1 restores plasma membrane stability to pharmacologically rescued Phe508del-CFTR variant. J Biol Chem 2019; 294:13396-13410. [PMID: 31324722 PMCID: PMC6737230 DOI: 10.1074/jbc.ra119.008738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Indexed: 07/30/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), a chloride channel normally expressed at the surface of epithelial cells. The most frequent mutation, resulting in Phe-508 deletion, causes CFTR misfolding and its premature degradation. Low temperature or pharmacological correctors can partly rescue the Phe508del-CFTR processing defect and enhance trafficking of this channel variant to the plasma membrane (PM). Nevertheless, the rescued channels have an increased endocytosis rate, being quickly removed from the PM by the peripheral protein quality-control pathway. We previously reported that rescued Phe508del-CFTR (rPhe508del) can be retained at the cell surface by stimulating signaling pathways that coax the adaptor molecule ezrin (EZR) to tether rPhe508del-Na+/H+-exchange regulatory factor-1 complexes to the actin cytoskeleton, thereby averting the rapid internalization of this channel variant. However, the molecular basis for why rPhe508del fails to recruit active EZR to the PM remains elusive. Here, using a proteomics approach, we characterized and compared the core components of wt-CFTR- or rPhe508del-containing macromolecular complexes at the surface of human bronchial epithelial cells. We identified calpain 1 (CAPN1) as an exclusive rPhe508del interactor that prevents active EZR recruitment, impairs rPhe508del anchoring to actin, and reduces its stability in the PM. We show that either CAPN1 down-regulation or its chemical inhibition dramatically improves the functional rescue of Phe508del-CFTR in airway cells. These observations suggest that CAPN1 constitutes an appealing target for pharmacological intervention, as part of CF combination therapies restoring Phe508del-CFTR function.
Collapse
Affiliation(s)
- Ana M Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| |
Collapse
|
6
|
Edlund A, Barghouth M, Huhn M, Abels M, Esguerra J, Mollet I, Svedin E, Wendt A, Renstrom E, Zhang E, Wierup N, Scholte BJ, Flodström-Tullberg M, Eliasson L. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol 2019; 241:JOE-18-0570.R1. [PMID: 30721137 DOI: 10.1530/joe-18-0570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine beta- and alpha-cell function in the Cftrtm1EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild-type mice aged 7-10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in 1) reduced number of docked insulin granules and reduced exocytosis, and 2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.
Collapse
Affiliation(s)
- Anna Edlund
- A Edlund, Clinical sciences in Malmo, Lund University, Malmo, 21428, Sweden
| | - Mohammad Barghouth
- M Barghouth, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Michael Huhn
- M Huhn, of medicine Huddinge, Karolinska institute, Center for infectious medicine, Stockholm, Sweden
| | - Mia Abels
- M Abels, Department of clinical sciencies in Malmo, Lunds Universitet Institutionen for kliniska vetenskaper i Malmo, Malmo, Sweden
| | - Jonathan Esguerra
- J Esguerra, Clinical Sciences - Malmö, Lund University, Malmö, 21428, Sweden
| | - Ines Mollet
- I Mollet, CEDOC - Chronic Diseases Research Center, NOVA Medical School - Faculdade de Ciências Médicas, Lisboa, 1150-082, Portugal
| | - Emma Svedin
- E Svedin, Department of Medicine Huddinge, Karolinska Institutet Department of Medicine Huddinge, Stockholm, Sweden
| | - Anna Wendt
- A Wendt, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, Sweden
| | - Erik Renstrom
- E Renstrom, Clinical Sciences Malmo, Lund University, Malmo, SE-20502, Sweden
| | - Enming Zhang
- E Zhang, Department of Clinical Science, Lund Uinversity, Malmö, 20502, Sweden
| | - Nils Wierup
- N Wierup, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, 20502, Sweden
| | - Bob J Scholte
- B Scholte, Department of Cellbiology, Pediatric Pulmonology, Erasmus MC, Rotterdam, Netherlands
| | - Malin Flodström-Tullberg
- M Flodström-Tullberg, Dept of Medicine Huddinge, Karolinska institute, Center for Infectious Medicine, Stockholm, Sweden
| | - Lena Eliasson
- L Eliasson, Dept Clinical Sciences in Malmö, Lunds Universitet, Malmö, 214 28, Sweden
| |
Collapse
|
7
|
Xue R, Gu H, Qiu Y, Guo Y, Korteweg C, Huang J, Gu J. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract. Sci Rep 2016; 6:30926. [PMID: 27491544 PMCID: PMC4974654 DOI: 10.1038/srep30926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023] Open
Abstract
CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients.
Collapse
Affiliation(s)
- Ruiqi Xue
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Gu
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Yamei Qiu
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Yong Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Christine Korteweg
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Jin Huang
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Pathology, Key Laboratory of Infectious Diseases and Molecular Pathology, Guangdong Province, Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Brewington JJ, McPhail GL, Clancy JP. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction. Expert Rev Respir Med 2015; 10:5-17. [PMID: 26581802 DOI: 10.1586/17476348.2016.1122527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), leading to significant morbidity and mortality. CFTR is a chloride and bicarbonate channel at the epithelial cell membrane. The most common CFTR mutation is F508del, resulting in minimal CFTR at the plasma membrane. Current disease management is supportive, whereas an ultimate goal is to develop therapies to restore CFTR activity. We summarize experience with lumacaftor, a small molecule that increases F508del-CFTR levels at the plasma membrane. Lumacaftor in combination with ivacaftor, a modulator of CFTR gating defects, improves clinical outcome measures in patients homozygous for the F508del mutation. Lumacaftor represents a significant advancement in the treatment of biochemical abnormalities in CF. Further development of CFTR modulators will improve upon current therapies, although it remains unclear whether this approach will provide therapies for all CFTR mutations.
Collapse
Affiliation(s)
- John J Brewington
- a Division of Pulmonary Medicine, Department of Pediatrics , Cincinnati Children's Hospital Medical Center and the University of Cincinnati , Cincinnati , OH , USA
| | - Gary L McPhail
- a Division of Pulmonary Medicine, Department of Pediatrics , Cincinnati Children's Hospital Medical Center and the University of Cincinnati , Cincinnati , OH , USA
| | - John P Clancy
- a Division of Pulmonary Medicine, Department of Pediatrics , Cincinnati Children's Hospital Medical Center and the University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
9
|
Unwalla HJ, Ivonnet P, Dennis JS, Conner GE, Salathe M. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability. Am J Respir Cell Mol Biol 2015; 52:65-74. [PMID: 24978189 DOI: 10.1165/rcmb.2013-0538oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-β1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for (14)C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activating CFTR via the β2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-β1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-β1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelial permeability increases, an effect reversed by blocking TGF-β signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease states unless TGF-β1 signaling is inhibited.
Collapse
Affiliation(s)
- Hoshang J Unwalla
- 1 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, and
| | | | | | | | | |
Collapse
|
10
|
Du K, Karp PH, Ackerley C, Zabner J, Keshavjee S, Cutz E, Yeger H. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations. J Cyst Fibros 2014; 14:182-93. [PMID: 25453871 DOI: 10.1016/j.jcf.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 01/12/2023]
Abstract
Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.
Collapse
Affiliation(s)
- Kai Du
- Program in Developmental & Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | - Philip H Karp
- Department of Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cameron Ackerley
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Joseph Zabner
- Department of Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shaf Keshavjee
- Division of Experimental Therapeutics - Respiratory & Critical Care, Toronto General Research Institute (TGRI), Toronto, Ontario M5G 2C4, Canada; University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Ernest Cutz
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Herman Yeger
- Program in Developmental & Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; University of Toronto, Toronto, Ontario M5S 3G3, Canada.
| |
Collapse
|
11
|
CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy: Report on the pre-conference meeting to the 11th ECFS Basic Science Conference, Malta, 26-29 March 2014. J Cyst Fibros 2014; 13:363-72. [PMID: 24882694 DOI: 10.1016/j.jcf.2014.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Abstract
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.
Collapse
Affiliation(s)
- Deborah Penque
- Instituto Nacional de Saúde Dr Ricardo Jorge, Laboratório de Proteómica, Centro de Genética Humana, Lisboa, Portugal.
| |
Collapse
|
13
|
Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice. PLoS One 2013; 8:e77314. [PMID: 24204804 PMCID: PMC3811977 DOI: 10.1371/journal.pone.0077314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022] Open
Abstract
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.
Collapse
|
14
|
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux AF, Claustres M, Tuffery-Giraud S, des Georges M. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum Mutat 2013; 34:774-84. [PMID: 23381846 DOI: 10.1002/humu.22291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 12/24/2022]
Abstract
Molecular diagnosis of cystic fibrosis and cystic fibrosis transmembrane regulator (CFTR)-related disorders led to the worldwide identification of nearly 1,900 sequence variations in the CFTR gene that consist mainly of private point mutations and small insertions/deletions. Establishing their effect on the function of the encoded protein and therefore their involvement in the disease is still challenging and directly impacts genetic counseling. In this context, we built a decision tree following the international guidelines for the classification of variants of unknown clinical significance (VUCS) in the CFTR gene specifically focused on their consequences on splicing. We applied general and specific criteria, including comprehensive review of literature and databases, familial genetics data, and thorough in silico studies. This model was tested on 15 intronic and exonic VUCS identified in our cohort. Six variants were classified as probably nonpathogenic considering their impact on splicing and eight as probably pathogenic, which include two apparent missense mutations. We assessed the validity of our method by performing minigenes studies and confirmed that 93% (14/15) were correctly classified. We provide in this study a high-performance method that can play a full role in interpreting the results of molecular diagnosis in emergency context, when functional studies are not achievable.
Collapse
Affiliation(s)
- Caroline Raynal
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van Meegen MA, Terheggen-Lagro SWJ, Koymans KJ, van der Ent CK, Beekman JM. Apical CFTR expression in human nasal epithelium correlates with lung disease in cystic fibrosis. PLoS One 2013; 8:e57617. [PMID: 23483918 PMCID: PMC3590182 DOI: 10.1371/journal.pone.0057617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Although most individuals with cystic fibrosis (CF) develop progressive obstructive lung disease, disease severity is highly variable, even for individuals with similar CFTR mutations. Measurements of chloride transport as expression of CFTR function in nasal epithelial cells correlate with pulmonary function and suggest that F508del-CFTR is expressed at the apical membrane. However, an association between quantitative apical CFTR expression in nasal epithelium and CF disease severity is still missing. Methods and Materials Nasal epithelial cells from healthy individuals and individuals with CF between 12–18 years were obtained by nasal brushing. Apical CFTR expression was measured by confocal microscopy using CFTR mAb 596. Expression was compared between both groups and expression in CF nasal epithelial cells was associated with standardized pulmonary function (FEV1%). Results The proportion of cells expressing apical CFTR in columnar epithelium is lower in CF compared to non-CF. The apical CFTR expression level was significantly correlated with FEV1% in F508del homozygous subjects (r = 0.63, p = 0.012). Conclusion CFTR expression in nasal epithelial cells is lower in subjects with CF compared to healthy subjects. The proportion of cells expressing F508del-CFTR at the apical membrane is variable between subjects and is positively correlated with FEV1% in F508del-CFTR homozygous subjects.
Collapse
Affiliation(s)
- Marit Arianne van Meegen
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Kirsten Judith Koymans
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jeffrey Matthijn Beekman
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
van Meegen MA, Terheggen SWJ, Koymans KJ, Vijftigschild LAW, Dekkers JF, van der Ent CK, Beekman JM. CFTR-mutation specific applications of CFTR-directed monoclonal antibodies. J Cyst Fibros 2013; 12:487-96. [PMID: 23317763 DOI: 10.1016/j.jcf.2012.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/01/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Over the last decade novel monoclonal CFTR-specific antibodies have been developed. We here present a paired analysis to detect wild-type and mutant CFTR using Western blot analysis, flow cytometry and confocal microscopy in several cellular expression systems. METHODS The following CFTR-specific antibodies were used; 217, 432, 450, 570, 769, 596, 660, L12B4 and 24.1. Mutant CFTR was detected in HEK293 cells transiently expressing the mutations; G542X, R1162X, F508del, N1303K, G551D, R117H, A455E. RESULTS The majority of these antibodies are suitable for most applications tested. Using immunofluorescence, some antibodies can better detect mutant forms of CFTR (F508del and N1303K by mAbs 596 and 769), or display lower aspecific detection by Western blot analysis (mAbs 432, 450, 769 and 596) or immunofluorescence (mAbs 432, 450, 570 and 769). CONCLUSION Optimal detection of CFTR by monoclonal antibodies depends on CFTR mutation and the specific research application.
Collapse
Affiliation(s)
- M A van Meegen
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl(-) channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na(+) channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO(3)(-) deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology.
Collapse
Affiliation(s)
- Silvia M Kreda
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27517-7248, USA
| | | | | |
Collapse
|
18
|
CFTR expression analysis in human nasal epithelial cells by flow cytometry. PLoS One 2011; 6:e27658. [PMID: 22163268 PMCID: PMC3233544 DOI: 10.1371/journal.pone.0027658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/21/2011] [Indexed: 01/08/2023] Open
Abstract
Rationale Unbiased approaches that study aberrant protein expression in primary airway epithelial cells at single cell level may profoundly improve diagnosis and understanding of airway diseases. We here present a flow cytometric procedure to study CFTR expression in human primary nasal epithelial cells from patients with Cystic Fibrosis (CF). Our novel approach may be important in monitoring of therapeutic responses, and better understanding of CF disease at the molecular level. Objectives Validation of a panel of CFTR-directed monoclonal antibodies for flow cytometry and CFTR expression analysis in nasal epithelial cells from healthy controls and CF patients. Methods We analyzed CFTR expression in primary nasal epithelial cells at single cell level using flow cytometry. Nasal cells were stained for pan-Cytokeratin, E cadherin, and CD45 (to discriminate epithelial cells and leukocytes) in combination with intracellular staining of CFTR. Healthy individuals and CF patients were compared. Measurements and Main Results We observed various cellular populations present in nasal brushings that expressed CFTR protein at different levels. Our data indicated that CF patients homozygous for F508del express varying levels of CFTR protein in nasal epithelial cells, although at a lower level than healthy controls. Conclusion CFTR protein is expressed in CF patients harboring F508del mutations but at lower levels than in healthy controls. Multicolor flow cytometry of nasal cells is a relatively simple procedure to analyze the composition of cellular subpopulations and protein expression at single cell level.
Collapse
|
19
|
Borthwick LA, Botha P, Verdon B, Brodlie MJ, Gardner A, Bourn D, Johnson GE, Gray MA, Fisher AJ. Is CFTR-delF508 really absent from the apical membrane of the airway epithelium? PLoS One 2011; 6:e23226. [PMID: 21826241 PMCID: PMC3149652 DOI: 10.1371/journal.pone.0023226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/10/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Understanding where mutant CFTR is localised in airway epithelia is essential in guiding the best therapeutic approach to correct the dysfunction of the CFTR protein. The widely held paradigm is that CF patients harbouring the commonest mutation, CFTR-delF508, trap CFTR within the endoplasmic reticulum and target it for degradation. However there are conflicting reports concerning expression and localisation of CFTR-delF508 in lung tissue. To attempt to resolve this fundamental issue we developed a novel approach to measure CFTR-delF508 in the lower airways of patients who have undergone lung transplantation for advanced CF. By sampling CF and non-CF epithelium simultaneously from the same individual, confounding factors of different airway microenvironments which may have influenced previous observations can be overcome. METHODS Epithelia sampled by bronchial brushing above (CF) and below (non-CF) the bronchial anastomosis were stained for CFTR and the localisation and level of expression assessed (n = 12). RESULTS There was no significant difference in the proportion of tall columnar cells showing CFTR immunostaining as a discrete band at the apical membrane in cells harbouring the CFTR-delF508 mutation compared to non-CF cells (p = 0.21, n = 12). However, the amount of CFTR expressed at the apical surface was reduced by ∼50% in CF cells compared to non-CF cells (p = 0.04, n = 5). CONCLUSIONS Our novel observation challenges the prevailing paradigm that CFTR is essentially absent from the apical membrane of respiratory cells harbouring the CFTR-delF508 mutation. Moreover, it raises the possibility that the new generation of CFTR potentiators may offer a realistic therapeutic option for CF patients.
Collapse
Affiliation(s)
- Lee A. Borthwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Phil Botha
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Verdon
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Malcolm J. Brodlie
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aaron Gardner
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Bourn
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gail E. Johnson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mike A. Gray
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J. Fisher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Simões T, Charro N, Blonder J, Faria D, Couto FM, Chan KC, Waybright T, Isaaq HJ, Veenstra TD, Penque D. Molecular profiling of the human nasal epithelium: A proteomics approach. J Proteomics 2011; 75:56-69. [PMID: 21621024 PMCID: PMC7185466 DOI: 10.1016/j.jprot.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/05/2011] [Indexed: 12/25/2022]
Abstract
A comprehensive proteomic profiling of nasal epithelium (NE) is described. This study relies on simple subcellular fractionation used to obtain soluble- and membrane-enriched fractions followed by 2-dimensional liquid chromatography (2D-LC) separation and tandem mass spectrometry (MS/MS). The cells were collected using a brushing technique applied on NE of clinically evaluated volunteers. Subsequently, the soluble- and the membrane-protein enriched fractions were prepared and analyzed in parallel using 2D-LC-MS/MS. In a set of 1482 identified proteins, 947 (63.9%) proteins were found to be associated to membrane fraction. Grand average hydropathy value index (GRAVY) analysis, the transmembrane protein mapping and annotations of primary location deposited in the Human Protein Reference Database (HPRD) confirmed an enrichment of hydrophobic proteins on this dataset. Ingenuity Pathway Analysis (IPA) of soluble fraction revealed an enrichment of molecular and cellular functions associated with cell death, protein folding and drug metabolism while in membrane fraction showed an enrichment of functions associated with molecular transport, protein trafficking and cell-to-cell signaling and interaction. The IPA showed similar enrichment of functions associated with cellular growth and proliferation in both soluble and membrane subproteomes. This finding was in agreement with protein content analysis using exponentially modified protein abundance index (emPAI). A comparison of our data with previously published studies focusing on respiratory tract epithelium revealed similarities related to identification of proteins associated with physical barrier function and immunological defence. In summary, we extended the NE molecular profile by identifying and characterizing proteins associated to pivotal functions of a respiratory epithelium, including the control of fluid volume and ionic composition at the airways' surface, physical barrier maintenance, detoxification and immunological defence. The extent of similarities supports the applicability of a less invasive analysis of NE to assess prognosis and treatment response of lung diseases such as asthma, cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Tânia Simões
- Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, INSA I.P., Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abdulnour-Nakhoul S, Nakhoul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K, Nakhoul NL. Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 2011; 301:R83-96. [PMID: 21474426 DOI: 10.1152/ajpregu.00648.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.
Collapse
Affiliation(s)
- Solange Abdulnour-Nakhoul
- Southeast Louisiana Veterans Health Care Network, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Amaral MD, Lukacs GL. Introduction to section III: biochemical methods to study CFTR protein. Methods Mol Biol 2011; 741:213-218. [PMID: 21594787 DOI: 10.1007/978-1-61779-117-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This section of Cystic Fibrosis: Diagnosis and Protocols is focussed on methods aimed at detecting expression, localization, endocytic sorting and metabolism (biogenesis and turnover), as well as interacting partners of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein product of the gene mutated in cystic fibrosis (CF). An overview of the protocols to be found in subsequent chapters of this book section is provided here, as well as the rationale for utilizing these protocols (also as a workflow) explaining which scientific question(s) each of them helps to address. Protocols included in other sections of this book are also cross-referenced.
Collapse
Affiliation(s)
- Margarida D Amaral
- Faculty of Sciences, BioFiG-Centre for Biodiversity and Functional and Integrative Genomics, University of Lisboa, Lisboa, Portugal.
| | | |
Collapse
|
23
|
Abstract
The report of the first CF patients to receive CFTR gene therapy appeared in 1993; since then, there have been over 20 clinical trials of both viral and non-viral gene transfer agents. These have largely been single dose to either nose or lower airway and have been designed around molecular or bioelectrical outcome measures. Both transgene mRNA and partial correction of chloride secretion have been reported, although sodium hyperabsorption has not been improved. The UK CF Gene Therapy Consortium is focussed on a clinical programme to establish whether these proof-of-principle measures translate into clinical benefit. Here, we discuss the considerations in designing such a programme, focusing in particular on our choice of the optimal, currently available delivery method and established and novel outcome measures. We highlight the logistic and regulatory complexities of such a clinical programme and finally, we look to the future and consider possible alternative strategies.
Collapse
Affiliation(s)
- Jane C Davies
- Department of Gene Therapy, Imperial College London, SW3 6LR, London, UK.
| | | |
Collapse
|
24
|
Bartoszewski R, Rab A, Fu L, Bartoszewska S, Collawn J, Bebok Z. CFTR expression regulation by the unfolded protein response. Methods Enzymol 2011; 491:3-24. [PMID: 21329791 DOI: 10.1016/b978-0-12-385928-0.00001-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel and key regulator of epithelial functions. Mutations in the CFTR gene lead to reduced or dysfunctional CFTR protein and cause cystic fibrosis (CF), a generalized exocrinopathy affecting multiple organs. In the airways, loss of CFTR function leads to thickened mucus, reduced mucociliary clearance, chronic infections, and respiratory failure. Common airway disorders such as bronchitis and chronic obstructive pulmonary disease (COPD) also present CF-like symptoms such as mucus congestion and chronic inflammation without mutations in CFTR. The primary risk factors for COPD and chronic bronchitis include environmental stress insults such as pollutants and infections that often result in hypoxic conditions. Furthermore, environmental factors such as cigarette smoke and reactive oxygen species have been implicated in reduced CFTR function. Activation of cellular stress responses by these factors promotes differential, stress-associated gene expression regulation. During our investigations on the mechanisms of CFTR expression regulation, we have shown that the ER stress response, the unfolded protein response (UPR), decreases CFTR expression at the transcriptional, translational, and maturational levels. Here, we provide a detailed description of the methods we employ to study CFTR expression regulation by the UPR. Similar approaches are applicable in studies on other genes and how they are affected by the UPR.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
25
|
Su M, Guo Y, Zhao Y, Korteweg C, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in paracervical ganglia. Biochem Cell Biol 2010; 88:747-55. [PMID: 20651848 DOI: 10.1139/o10-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an important protein that acts as a chloride channel and regulates many physiological functions, including salt transport and fluid flow. Mutations in the gene encoding the CFTR protein cause cystic fibrosis. CFTR is expressed in the epithelial cells of the lungs, pancreas, intestines, and other organs. In the peripheral and central nervous system, CFTR expression has been detected in the neurons of rat brains, ganglion cells of rat hearts, human hypothalamus, human spinal cord, and human spinal and sympathetic ganglia. However, CFTR has not been identified in other parts of the nervous system. In this study, we used immunohistochemistry, in situ hybridization, and laser-assisted microdissection (LMD) followed by reverse transcriptase (RT) PCR to identify CFTR proteins and messenger RNA in human and rat paracervical ganglion cells. CFTR and its gene expression were both detected in paracervical ganglion cells, a finding that might link this important protein to the neuronal regulation of female urogenital function. These findings could provide new insights into the symptoms related to the reproductive system frequently observed in female cystic fibrosis patients.
Collapse
Affiliation(s)
- Meng Su
- Department of Pathology, Shantou University Medical College, Shantou, China
| | | | | | | | | |
Collapse
|
26
|
Gomes-Alves P, Imrie M, Gray RD, Nogueira P, Ciordia S, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Guardiano M, Porteous DJ, Albar JP, Boyd AC, Penque D. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Clin Biochem 2009; 43:168-77. [PMID: 19850022 DOI: 10.1016/j.clinbiochem.2009.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this work was to establish protein profiles in serum and nasal epithelial cells of cystic fibrosis individuals in comparison with controls, asthma and chronic obstructive pulmonary disease patients for specific biomarker signatures identification. DESIGN AND METHODS Protein extracts were analyzed by Surface Enhanced Laser Desorption/Ionization Time-Of-Flight Mass-Spectrometry (SELDI-TOF-MS). RESULTS The mass spectra revealed a set of peaks with differential expression in serum and nasal cells among the different groups studied, resulting into peak signatures representative/specific of each pathology. Logistic regressions were applied to those peaks; sensitivity, specificity, Youden's indexes and area under the curve (AUC) of the respective receiver operating characteristic (ROC) curves were compared. DISCUSSION Multivariate analysis demonstrated that combination of peaks has a better predictive value than the individual ones. These protein signatures may serve as diagnostic/prognostic markers for the studied diseases with common clinical features, or as follow-up assessment markers of therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Gomes-Alves
- Laboratório de Proteómica, Departamento de Genética, INSA-IP, Av Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sanz J, von Känel T, Schneider M, Steiner B, Schaller A, Gallati S. The CFTR frameshift mutation 3905insT and its effect at transcript and protein level. Eur J Hum Genet 2009; 18:212-7. [PMID: 19724303 DOI: 10.1038/ejhg.2009.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.
Collapse
Affiliation(s)
- Javier Sanz
- Department of Paediatrics, Division of Human Genetics, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Davidson H, Wilson A, Gray RD, Horsley A, Pringle IA, McLachlan G, Nairn AC, Stearns C, Gibson J, Holder E, Jones L, Doherty A, Coles R, Sumner-Jones SG, Wasowicz M, Manvell M, Griesenbach U, Hyde SC, Gill DR, Davies J, Collie DDS, Alton EWFW, Porteous DJ, Boyd AC. An immunocytochemical assay to detect human CFTR expression following gene transfer. Mol Cell Probes 2009; 23:272-80. [PMID: 19615439 DOI: 10.1016/j.mcp.2009.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND To assess gene therapy treatment for cystic fibrosis (CF) in clinical trials it is essential to develop robust assays that can accurately detect transgene expression in human airway epithelial cells. Our aim was to develop a reproducible immunocytochemical assay for human CFTR protein which can measure both endogenous CFTR levels and augmented CFTR expression after gene delivery. METHODS We characterised an antibody (G449) which satisfied the criteria for use in clinical trials. We optimised our immunocytochemistry method and identified G449 dilutions at which endogenous CFTR levels were negligible in CF samples, thus enhancing detection of transgenic CFTR protein. After developing a transfection technique for brushed human nasal epithelial cells, we transfected non-CF and CF cells with a clinically relevant CpG-free plasmid encoding human CFTR. RESULTS The optimised immunocytochemistry method gave improved discrimination between CF and non-CF samples. Transfection of a CFTR expression vector into primary nasal epithelial cells resulted in detectable RNA and protein expression. CFTR protein was present in 0.05-10% of non-CF cells and 0.02-0.8% of CF cells. CONCLUSION We have developed a sensitive, clinically relevant immunocytochemical assay for CFTR protein and have used it to detect transgene-expressed CFTR in transfected human primary airway epithelial cells.
Collapse
Affiliation(s)
- Heather Davidson
- Medical Genetics, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH42XU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dannhoffer L, Blouquit-Laye S, Regnier A, Chinet T. Functional Properties of Mixed Cystic Fibrosis and Normal Bronchial Epithelial Cell Cultures. Am J Respir Cell Mol Biol 2009; 40:717-23. [DOI: 10.1165/rcmb.2008-0018oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Ebner A, Nikova D, Lange T, Häberle J, Falk S, Dübbers A, Bruns R, Hinterdorfer P, Oberleithner H, Schillers H. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. NANOTECHNOLOGY 2008; 19:384017. [PMID: 21832576 DOI: 10.1088/0957-4484/19/38/384017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl(-)) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute for Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pan P, Guo Y, Gu J. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts. Neurosci Lett 2008; 441:35-8. [PMID: 18584958 DOI: 10.1016/j.neulet.2008.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) as an important chloride-selective channel is known to distribute on the apical membrane of chloride-secreting epithelial cells. However, CFTR is also reported to express in the neurons of human and rat brain. In this study we aim to investigate the expression of CFTR in ganglion cells of the hearts. We used immunohistochemistry, in situ hybridization, laser microdissection (LMD) and nested reverse transcriptase polymerase chain reaction (nested RT-PCR) to detect CFTR in the ganglion cells of the Sprague-Dawley rat hearts and found widespread and abundant the expression of CFTR protein and its mRNA in the ganglion cells of the rat hearts. The presence of CFTR in ganglia does not only provide a possible explanation for cardiovascular symptoms of cystic fibrosis patients but also may lead to a better understanding of a possible role for CFTR in the neuronal regulation of the heart.
Collapse
Affiliation(s)
- Peng Pan
- Department of Pathology, School of Basic Medical Sciences, Beijing University Health Science Center, Beijing, China
| | | | | |
Collapse
|
32
|
Regnier A, Dannhoffer L, Blouquit-Laye S, Bakari M, Naline E, Chinet T. Expression of cystic fibrosis transmembrane conductance regulator in the human distal lung. Hum Pathol 2007; 39:368-76. [PMID: 18045644 DOI: 10.1016/j.humpath.2007.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/13/2007] [Indexed: 12/14/2022]
Abstract
The determination of the expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the lung is essential for a full understanding of the normal lung physiology and the pathogenesis of the lung disease in cystic fibrosis (CF). However, studies on the expression of CFTR in the distal adult human lung have yielded conflicting results despite functional evidence of expression of CFTR in bronchiolar and alveolar epithelial cells. We used 2 high-affinity monoclonal anti-CFTR antibodies, MAb24-1 and MAb13-1, to determine the expression of CFTR in samples of bronchiolar and alveolar tissues obtained from the same non-CF individuals. CFTR immunostaining was detected in the epithelium of bronchiolar and alveolar tissues. The staining pattern was similar with both antibodies. In bronchioles, CFTR labeling was present mostly in ciliated cells; in alveoli, CFTR labeling was detected in both type I and type II cells. We conclude that CFTR is expressed in human bronchiolar and alveolar epithelial cells. The potential importance of CFTR expression in alveoli should be further investigated, particularly with respect to the CF lung disease and the physiology of the alveolar region.
Collapse
Affiliation(s)
- Agathe Regnier
- AP-HP, Hôpital Ambroise Paré, Service d'Anatomie Pathologique, 92104 Boulogne, France
| | | | | | | | | | | |
Collapse
|
33
|
Marcorelles P, Montier T, Gillet D, Lagarde N, Ferec C. Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol 2007; 42:1032-40. [PMID: 17902144 DOI: 10.1002/ppul.20690] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to determine whether or not CFTR protein distribution differs between the airways of fetuses with Cystic Fibrosis (CF) from the airways of normal fetuses we studied the distribution pattern of the CFTR protein in lung. Cases of normal and CF human fetuses as well as cases of normal neonates were examinated. Our aim was to establish whether CFTR expression during pregnancy could be correlated with the maturation of the airways, and to compare normal and CF samples. We hypothesized that any difference between normal and CF fetal lung in CFTR protein expression could be related to a functional change appearing in early development even if no morphological differences could be detected at the light microscopic level. The distribution of CFTR protein progressively increased from 10 weeks of gestation (WG) to mid-gestation, but thereafter decreased until term. The CFTR protein was first detected in the cytoplasm of undifferentiated epithelial cells. Before mid-gestation, the immunostaining was strongly positive in bronchi, in sub-mucosal glands, and in lung parenchyma. Then, it became localized to the apical zone of the epithelial cells. This pattern correlated with differentiation during the second half of gestation. The main difference observed between normal and CF fetuses was a 3-week delay in detectability of the CFTR protein expression in the latter until 15 weeks of gestation. These results support the hypothesis of an early functional change. Abnormal fetal lung CFTR protein regulation could give rise to a predisposition to the post-natal inflammatory changes of the airways that characterize CF disease.
Collapse
Affiliation(s)
- Pascale Marcorelles
- Service d'Anatomie Pathologique, Centre Hospitalo-Universitaire, 2, Avenue Foch, 29609 Brest Cedex, France.
| | | | | | | | | |
Collapse
|
34
|
Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, Stanton BA. The Short Apical Membrane Half-life of Rescued ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Results from Accelerated Endocytosis of ΔF508-CFTR in Polarized Human Airway Epithelial Cells. J Biol Chem 2005; 280:36762-72. [PMID: 16131493 DOI: 10.1074/jbc.m508944200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.
Collapse
|
35
|
Swiatecka-Urban A, Moreau-Marquis S, Maceachran DP, Connolly JP, Stanton CR, Su JR, Barnaby R, O'toole GA, Stanton BA. Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized human airway epithelial cells. Am J Physiol Cell Physiol 2005; 290:C862-72. [PMID: 16236828 DOI: 10.1152/ajpcell.00108.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), DeltaF508, leads to the absence of CFTR Cl(-) channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl(-) channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl(-) secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl(-) secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and DeltaF508-CFTR Cl(-) channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of DeltaF508-CFTR.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Physiology, Dartmouth Medical School, 1 Rope Ferry Road, HB 7701, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 2005; 16:2154-67. [PMID: 15716351 PMCID: PMC1087225 DOI: 10.1091/mbc.e04-11-1010] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies in native tissues have produced conflicting data on the localization and metabolic fate of WT and deltaF508 cystic fibrosis transmembrane regulator (CFTR) in the lung. Combining immunocytochemical and biochemical studies utilizing new high-affinity CFTR mAbs with ion transport assays, we examined both 1) the cell type and region specific expression of CFTR in normal airways and 2) the metabolic fate of deltaF508 CFTR and associated ERM proteins in the cystic fibrosis lung. Studies of lungs from a large number of normal subjects revealed that WT CFTR protein localized to the apical membrane of ciliated cells within the superficial epithelium and gland ducts. In contrast, other cell types in the superficial, gland acinar, and alveolar epithelia expressed little WT CFTR protein. No deltaF508 CFTR mature protein or function could be detected in airway specimens freshly excised from a large number of deltaF508 homozygous subjects, despite an intact ERM complex. In sum, our data demonstrate that WT CFTR is predominantly expressed in ciliated cells, and deltaF508 CFTR pathogenesis in native tissues, like heterologous cells, reflects loss of normal protein processing.
Collapse
Affiliation(s)
- Silvia M Kreda
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Farinha CM, Mendes F, Roxo-Rosa M, Penque D, Amaral MD. A comparison of 14 antibodies for the biochemical detection of the cystic fibrosis transmembrane conductance regulator protein. Mol Cell Probes 2004; 18:235-42. [PMID: 15271383 DOI: 10.1016/j.mcp.2004.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Interest in the biochemical detection of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein followed soon after cloning of the gene and prediction of the protein structure. Ever since, antibodies (Abs) have been produced and used to detect CFTR in both heterologously and endogenously expressing cells and tissues. Although designed to be sensitive and specific, these Abs produce, in most cases, unsatisfactory results when used for the biochemical detection of CFTR either by Western blot or by immunoprecipitation. The lack of Abs that can reliably detect the CFTR protein is a major constraint to studies of CF. We compared 14 different Abs for their ability to detect CFTR in both stably transfected and endogenously expressing cell lines.
Collapse
Affiliation(s)
- Carlos M Farinha
- Centre of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
38
|
Mendes F, Doucet L, Hinzpeter A, Férec C, Lipecka J, Fritsch J, Edelman A, Jorna H, Willemsen R, Bot AGM, De Jonge HR, Hinnrasky J, Castillon N, Taouil K, Puchelle E, Penque D, Amaral MD. Immunohistochemistry of CFTR in native tissues and primary epithelial cell cultures. J Cyst Fibros 2004; 3 Suppl 2:37-41. [PMID: 15463923 DOI: 10.1016/j.jcf.2004.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies on CFTR protein expression and localization in native tissues or in primary cultures of human epithelial cells are scarce due to the intrinsic instability of this protein, its low expression in most tissues and also to technical difficulties. However, such data are of the highest importance to understand the pathophysiology of CF. The purpose of this article is to outline several assays for the characterization of primary epithelial cultures and to review different CFTR immunostaining protocols.
Collapse
Affiliation(s)
- Filipa Mendes
- Center of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Av Padre Cruz, 1649-016, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Harris CM, Mendes F, Dragomir A, Doull IJM, Carvalho-Oliveira I, Bebok Z, Clancy JP, Eubanks V, Sorscher EJ, Roomans GM, Amaral MD, McPherson MA, Penque D, Dormer RL. Assessment of CFTR localisation in native airway epithelial cells obtained by nasal brushing. J Cyst Fibros 2004; 3 Suppl 2:43-8. [PMID: 15463924 DOI: 10.1016/j.jcf.2004.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reliable methods for determining the localisation of mutant CFTR protein in native cells from CF individuals are necessary to allow the degree of mislocalisation of any genotype to be defined and to assess the effect of therapeutic agents on CFTR trafficking. Here, we present procedures for obtaining ciliated epithelial cells from CF patients by nasal brushing and a description of protocols for immunolocalisation of CFTR. The protocols are a consensus, following comparison of some aspects of methods currently used in the authors' laboratories.
Collapse
Affiliation(s)
- Ceinwen M Harris
- Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Heath Park, Cardiff, Wales CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mendes F, Farinha CM, Roxo-Rosa M, Fanen P, Edelman A, Dormer R, McPherson M, Davidson H, Puchelle E, De Jonge H, Heda GD, Gentzsch M, Lukacs G, Penque D, Amaral MD. Antibodies for CFTR studies. J Cyst Fibros 2004; 3 Suppl 2:69-72. [PMID: 15463931 DOI: 10.1016/j.jcf.2004.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For most expression studies focusing on the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, sensitive and specific antibodies (Abs) are critically needed. Several Abs have been produced commercially or by research laboratories for CFTR detection in both cell lines with heterologous or endogenous expression and native cells/tissues. Here, we review the applicability of most Abs currently in use in CF research for the biochemical and/or immunocytochemical detection of CFTR.
Collapse
Affiliation(s)
- Filipa Mendes
- Center of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|