1
|
Taguchi K, Fukami K, Elias BC, Brooks CR. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. Toxins (Basel) 2021; 13:361. [PMID: 34069405 PMCID: PMC8158751 DOI: 10.3390/toxins13050361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| |
Collapse
|
2
|
Taguchi K, Elias BC, Brooks CR, Ueda S, Fukami K. Uremic Toxin-Targeting as a Therapeutic Strategy for Preventing Cardiorenal Syndrome. Circ J 2019; 84:2-8. [PMID: 31827008 DOI: 10.1253/circj.cj-19-0872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic kidney disease (CKD) is a global health problem. CKD patients are at high risk of developing cardiovascular disease (CVD), including coronary artery disease, heart failure and stroke. Several factors invoke a vicious cycle of CKD and CVD, which is referred as to "cardiorenal syndrome". Among these factors, the compounds retained through loss of renal excretion play a pathological role in causing atherosclerosis and CVD. These compounds have been broadly classified as uremic toxins because of their accumulation with declining renal function and cytotoxicity. The major uremic toxins contributing to CVD are asymmetric dimethylarginine (ADMA), advanced glycation endproducts (AGE), and trimethyl amine N-oxide (TMAO). ADMA is linked to CVD through regulation of nitric oxide, reactive oxygen species, and renal anemia. AGE not only directly accumulates in the heart and kidney, but interacts with the receptor for AGE (RAGE), leading to cell damage in CVD. TMAO correlates with a high prevalence of CVD and promotes organ fibrosis by itself. The levels of these and other uremic toxins rise with worsening CKD, inducing multiplicative damage in the heart and kidney. Therefore, a better understanding of uremic toxins has great clinical importance for preventing cardiorenal syndrome. This review highlights the molecular mechanism by which these uremic toxins are implicated in CVD and suggests the possible mutual relationship between them.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine.,Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Bertha C Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Craig R Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Seiji Ueda
- Division of Nephrology, Department of Internal Medicine, Juntendo University
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| |
Collapse
|
3
|
Baraibar MA, Hyzewicz J, Rogowska-Wrzesinska A, Bulteau AL, Prip-Buus C, Butler-Browne G, Friguet B. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging (Albany NY) 2017; 8:3375-3389. [PMID: 27922824 PMCID: PMC5270674 DOI: 10.18632/aging.101126] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023]
Abstract
Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood. In the present study we have addressed the potential impact of oxidatively modified proteins on the altered metabolism of senescent human satellite cells. By using a modified proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during the replicative senescence of satellite cells. Inactivation of the proteasome appeared to be a likely contributor to the accumulation of such damaged proteins. Metabolic and functional analyses revealed an impaired glucose metabolism in senescent cells. A metabolic shift leading to increased mobilization of non-carbohydrate substrates such as branched chain amino acids or long chain fatty acids was observed. Increased levels of acyl-carnitines indicated an increased turnover of storage and membrane lipids for energy production. Taken together, these results support a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts.
Collapse
Affiliation(s)
- Martín A Baraibar
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing- IBPS, CNRS UMR 8256, INSERM U1164, Paris, France
| | - Janek Hyzewicz
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing- IBPS, CNRS UMR 8256, INSERM U1164, Paris, France
| | | | - Anne-Laure Bulteau
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Carina Prip-Buus
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Gillian Butler-Browne
- Institut de Myologie, UPMC Univ Paris 06, UMRS INSERM U974, CNRS UMR 7215, CHU Pitié-Salpétrière, Sorbonne Universités, Paris, France
| | - Bertrand Friguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing- IBPS, CNRS UMR 8256, INSERM U1164, Paris, France
| |
Collapse
|
4
|
Hafizur RM, Momin S, Fatima N. Prevention of advanced glycation end-products formation in diabetic rats through beta-cell modulation by Aegle marmelos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:227. [PMID: 28431540 PMCID: PMC5399853 DOI: 10.1186/s12906-017-1743-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/13/2017] [Indexed: 01/09/2023]
Abstract
Background Although the anti-diabetic activity of Aegle marmelos (AM) is known, however, its anti-glycation activity is not reported yet. In this study, we have investigated its anti-glycation activity under in vitro and in vivo conditions and determined possible mechanism(s) in streptozotocin-induced diabetic rats. Methods Effective dose of AM (400 mg/kg) was administrated orally to diabetic rats for 42 days. Thereafter, blood glucose, serum insulin, HbA1c, antioxidant status, and advanced glycation end-products (AGEs) were measured. AGEs and its receptor (RAGE) in kidney were analyzed by immunohistochemistry and immunoblotting. Additionally, pancreatic sections were co-stained for insulin and glucagon and images were acquired using NIKON TE2000E fluorescence microscopy. Results Oral administration of AM extract resulted in a significant increase in serum insulin by better functioning of β-cell and preserving pancreatic β-cell integrity in diabetic rats. Treatment of AM extract significantly (p = 0.000) prevented the formation of HbA1c in the diabetic rats (8.20 ± 0.18% vs. 11.92 ± 0.59%). The circulatory AGEs level found in diabetic rat was significantly (p = 0.002) attenuated by AM treatment (0.66 ± 0.05 mg/ml vs. 1.18 ± 0.19 mg/ml). AM treatment also reduced AGEs accumulation around Bowman’s capsule and in tubular basement membrane around arteries in diabetic rat kidney. The accumulation of RAGE was very similar to that of AGEs in diabetic rats and RAGE accumulation was also prevented by AM treatment. The extract showed potent antioxidant activity both under in vitro and in vivo systems. Eugenol, one of the active constituent of AM fruit extract, showed acute blood glucose-lowering activity in diabetic rats and enhanced glucose-stimulated insulin secretion from mice islets. Conclusion AM extract prevents AGEs formation by modulating β-cell function, and eugenol may play important role in preventing complications of diabetes in this rat model.
Collapse
|
5
|
Contribution of receptor for advanced glycation end products to vasculature-protecting effects of exercise training in aged rats. Eur J Pharmacol 2014; 741:186-94. [PMID: 25160740 DOI: 10.1016/j.ejphar.2014.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/29/2023]
Abstract
The aim of present work was to investigate the underlying mechanism of vasculature-protecting effects of exercise training in aged rats. Experiment 1: aged rats were given moderate-intensity exercise for 12 weeks. Exercise training suppressed advanced glycation evidenced by reduced activity of aldose reductase, increased activity of glyoxalase 1, reduced levels of methylglyoxal and N(ε)-(carboxymethyl) lysine, and decreased expression of receptor for advanced glycation end products (RAGE) in aged aortas. Experiment 2: aged rats were given moderate-intensity exercise for 12 weeks or treated with FPS-ZM1, an inhibitor of RAGE. Exercise training attenuated aortic stiffening with age marked by reduced collagen levels, increased elastin levels and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by restored endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Exercise training in aging aortas reduced formation of malondialdehyde, 3-nitrotyrosin and reactive oxygen species, increased GSH/GSSG ratio, suppressed activation of NFκB, and reduced levels of IL-6 and chemokine (C-C motif) ligand 2. Similar effects were demonstrated in aged rats treated with FPS-ZM1. Collectively, exercise suppressed advanced glycation in the aortas of aged rats, which, at least in part, explained the vasculature-protecting effects of exercise training in aged population.
Collapse
|
6
|
Hou X, Hu Z, Xu H, Xu J, Zhang S, Zhong Y, He X, Wang N. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol 2014; 13:78. [PMID: 24725502 PMCID: PMC3998738 DOI: 10.1186/1475-2840-13-78] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Methods Rat neonate cardiomyocytes were cultured and treated with AGEs at different concentration. Two classic autophagy markers, microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1, were detected by western blot assay. The inhibition of RAGE and phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mTOR pathway were applied to cells, respectively. Results AGEs administration enhanced the expression of Beclin-1 and LC3 II in cardiomyocytes, increased the number of autophagic vacuoles and impaired the cell viability in dose-dependant manners. Also, AGEs inhibited the PI3K/Akt/mTOR pathway via RAGE. Inhibition of RAGE with RAGE antibody reduced expression of Beclin-1 and LC3 II/I and inhibited the cellular autophagy, accompanied by the reactivation of PI3K/Akt/mTOR pathway in cultured cells. Notably, the presence of inhibition of PI3K/Akt/mTOR pathway abolished the protective effect of RAGE inhibition on cardiomyocytes. Conclusion This study provides evidence that AGEs induces cardiomyocyte autophagy by, at least in part, inhibiting the PI3K/Akt/mTOR pathway via RAGE. Previous studies showed that the accumulation of advanced glycation end products (AGEs) induce cardiomyocyte apoptoisis, leading to heart dysfunction. However, the effect of AGEs on another cell death pathway, autophagy, in cardiomyocytes remains unknown.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Cardiology, Hangzhou Hospital, Nanjing Medical University & Hangzhou First Municipal Hospital, Hangzhou 310006, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ramamurthy B, Larsson L. Detection of an aging-related increase in advanced glycation end products in fast- and slow-twitch skeletal muscles in the rat. Biogerontology 2013; 14:293-301. [PMID: 23681254 DOI: 10.1007/s10522-013-9430-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/29/2013] [Indexed: 01/23/2023]
Abstract
Glycation, a non-enzymatic addition of reducing sugars to ε-amino groups of proteins, is a post-translational modification that results in the formation of irreversible advanced glycation end products (AGEs). Ageing related decline in myofibrillar protein function is effected by a number of structural and functional modifications including glycation. Functional properties of skeletal muscles, such as maximum velocity of unloaded shortening, are known to be profoundly affected by ageing at the motor unit, cellular and tissue levels. However, the contribution of protein modifications to a decline in muscle function is not well understood. In this study we measured AGEs of intracellular and sarcolemmal proteins, using an anti-AGE antibody in soleus (SOL) and extensor digiotorum longus (EDL) muscles of male and female rats of five different age groups. Using a fluorescent secondary antibody to visualize AGEs in the confocal microscope, we found that myosin is glycated in both fiber types in all age groups; an ageing related increase in AGEs was observed in both intracellular and sarcolemmal regions in all age groups, with the exception of sarcolemma of SOL (unchanged) and EDL (reduced) in female rats; the greatest concentration of AGEs was found intracellularly in the SOL of the oldest age group (27-30) of females. While an ageing related decline in motor properties can be partially attributed to the observed increase in myofibrillar protein glycation, our results also indicate that intracellular and the less well studied sarcolemmal protein modification likely contribute to an aging-related decline in muscle function. Further studies are required to establish a link between the observed ageing related increase in glycation and muscle function at the motor unit, cellular and tissue levels.
Collapse
Affiliation(s)
- B Ramamurthy
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
8
|
Abstract
The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.
Collapse
|
9
|
Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M. Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 2011; 286:35007-19. [PMID: 21768101 DOI: 10.1074/jbc.m111.252395] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in the balance of cytoskeleton as well as energetic proteins are involved in the cardiac remodeling occurring in dilated cardiomyopathy (DCM). We used two-dimensional DIGE proteomics as a discovery approach to identify key molecular changes taking place in a temporally controlled model of DCM triggered by cardiomyocyte-specific serum response factor (SRF) knock-out in mice. We identified muscle creatine kinase (MCK) as the primary down-regulated protein followed by α-actin and α-tropomyosin down-regulation leading to a decrease of polymerized F-actin. The early response to these defects was an increase in the amount of desmin intermediate filaments and phosphorylation of the αB-crystallin chaperone. We found that αB-crystallin and desmin progressively lose their striated pattern and accumulate at the intercalated disk and the sarcolemma, respectively. We further show that desmin is a preferential target of advanced glycation end products (AGE) in mouse and human DCM. Inhibition of CK in cultured cardiomyocytes is sufficient to recapitulate both the actin depolymerization defect and the modification of desmin by AGE. Treatment with either cytochalasin D or glyoxal, a cellular AGE, indicated that both actin depolymerization and AGE contribute to desmin disorganization. Heat shock-induced phosphorylation of αB-crystallin provides a transient protection of desmin against glyoxal in a p38 MAPK-dependent manner. Our results show that the strong down-regulation of MCK activity contributes to F-actin instability and induces post-translational modification of αB-crystallin and desmin. Our results suggest that AGE may play an important role in DCM because they alter the organization of desmin filaments that normally support stress response and mitochondrial functions in cardiomyocytes.
Collapse
Affiliation(s)
- Nicolas Diguet
- Department of Aging, UPMC University Paris 6, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chougale AD, Bhat SP, Bhujbal SV, Zambare MR, Puntambekar S, Somani RS, Boppana R, Giri AP, Kulkarni MJ. Proteomic Analysis of Glycated Proteins from Streptozotocin-Induced Diabetic Rat Kidney. Mol Biotechnol 2011; 50:28-38. [DOI: 10.1007/s12033-011-9409-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 2010; 9:252-72. [PMID: 20102351 DOI: 10.1111/j.1474-9726.2010.00555.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins build up and potentially affect cellular function during replicative senescence of WI-38 fibroblasts, proteins targeted by these modifications have been identified using a bidimensional gel electrophoresis-based proteomic approach coupled with immunodetection of HNE-, AGE-modified and carbonylated proteins. Thirty-seven proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during cellular senescence. Finally, in contrast to the proteasome, the activity of which is decreased in senescent fibroblasts, the mitochondrial matrix ATP-stimulated Lon-like proteolytic activity is increased in senescent cells but does not seem to be sufficient to cope with the increased load of modified mitochondrial proteins.
Collapse
|
12
|
Shcheglova T, Makker S, Tramontano A. Reactive immunization suppresses advanced glycation and mitigates diabetic nephropathy. J Am Soc Nephrol 2009; 20:1012-9. [PMID: 19389854 DOI: 10.1681/asn.2008050555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Agents that inhibit glycation end products by reducing the carbonyl load from glycation and glycoxidation are an emerging pharmacologic approach to treat complications of diabetes. We previously demonstrated that antibodies generated to the glycoprotein keyhole limpet hemocyanin (KLH) can cross-link with reactive carbonyl residues on protein conjugates. Here, we immunized streptozotocin-induced diabetic rats with KLH to assess the capacity of the elicited antibodies to intercept carbonyl residues on glycated proteins and to mitigate glycation-related pathology. Compared with diabetic rats immunized with adjuvant alone, KLH-immunized diabetic rats had decreased levels of glycated peptides in sera and demonstrated a reduction in albuminuria, proteinuria, deposition of glycation end products in the kidney, and histologic damage. In vitro, low molecular weight glycated peptides from rat serum reacted with anti-KLH antibodies at a faster rate than normal IgG and selectively modified the lambda chains. The reaction products contained peptide sequences from type I collagen alpha chain, albumin, and LDL receptor-related protein. These adduction reactions were inhibited by free KLH and by reduction of glycated peptides with borohydride. In summary, these results suggest that inherent reactivity of Ig light chains provides a natural mechanism for the removal of cytotoxic glycation products. This reactivity can be augmented by glycoprotein-specific reactive immunization, a potential biopharmaceutical approach to glycation-related pathology.
Collapse
Affiliation(s)
- Tatiana Shcheglova
- Department of Pediatrics, University of California, Davis, Medical School, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
13
|
Wilson JS, Mruthinti S, Buccafusco JJ, Schade RF, Mitchell MB, Harrell DU, Gulati NK, Stephen Miller L. Anti-RAGE and Abeta immunoglobulin levels are related to dementia level and cognitive performance. J Gerontol A Biol Sci Med Sci 2009; 64:264-71. [PMID: 19196906 PMCID: PMC2655015 DOI: 10.1093/gerona/gln002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 04/03/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Blood-based immunoglobulins (IgGs) may mark the presence of amyloid plaques characterizing the progression of Alzheimer's disease (AD). Previous studies suggest that anti-RAGE and anti-Abeta IgGs increase proportionately with accumulation of amyloid-beta (Abeta) peptides at receptor sites for advanced glycation end products (RAGE), within cortical areas of brain tissue. We assessed the relationship between these potential markers and an AD-type cognitive profile. We hypothesized that these specific IgG levels would be positively correlated with Clinical Dementia Rating (CDR) scores as well as index scores on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in domains associated with cortical function. METHODS Participants were 118 older adults (mean age = 74, standard deviation = 10.5) drawn from the community and local physician referrals. Participants were reassigned into five groups based on CDR. Blood IgG levels were determined through an affinity purification process. RESULTS Analysis of covariance analyses revealed that CDR scores were significantly related to anti-RAGE, F(4,106) = 12.93, p < .001, and anti-Abeta, F(4,106) = 17.08, p < .001, after controlling for age and total IgG levels. Regression analyses indicated significant variance accounted for by anti-RAGE and anti-Abeta above and beyond total IgG effects. Additional regression identified specific RBANS domains accounting for significant variance in anti-RAGE levels including language (t = -3.74, p < .001) and delayed memory (t = -2.31, p < .05), whereas language accounted for a significant amount of variance in anti-Abeta levels (t = -3.96, p < .001). CONCLUSIONS Anti-RAGE and anti-Abeta IgGs correlate strongly with global scores of dementia. Furthermore, they are associated with a profile of deficiency in domains associated with specific cortical function. Results suggest potential for anti-Abeta and anti-RAGE IgGs as blood biomarkers for AD.
Collapse
Affiliation(s)
| | - Shyamala Mruthinti
- Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Pharmacology and Toxicology
| | - Jerry J. Buccafusco
- Charlie Norwood VA Medical Center, Augusta, Georgia
- Alzheimer's Research Center
| | - Rosann F. Schade
- Charlie Norwood VA Medical Center, Augusta, Georgia
- Alzheimer's Research Center
| | | | | | - Nidhi K. Gulati
- Department of Family Medicine, Medical College of Georgia, Augusta
- Georgia War Veterans Nursing Home, Department of Family Medicine, Augusta
| | | |
Collapse
|
14
|
Rubio-Ruiz ME, Díaz-Díaz E, Cárdenas-León M, Argüelles-Medina R, Sánchez-Canales P, Larrea-Gallo F, Soria-Castro E, Guarner-Lans V. Glycation does not modify bovine serum albumin (BSA)-induced reduction of rat aortic relaxation: the response to glycated and nonglycated BSA is lost in metabolic syndrome. Glycobiology 2008; 18:517-25. [PMID: 18458031 PMCID: PMC2430009 DOI: 10.1093/glycob/cwn034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effects of nonglycated bovine serum albumin (BSA) and advanced glycosylation end products of BSA (AGE-BSA) on vascular responses of control and metabolic syndrome (MS) rats characterized by hypertriglyceridemia, hypertension, hyperinsulinemia, and insulin resistance were studied. Albumin and in vitro prepared AGE-BSA have vascular effects; however, recent studies indicate that some effects of in vitro prepared AGEs are due to the conditions in which they were generated. We produced AGEs by incubating glucose with BSA for 60 days under sterile conditions in darkness and at 37 degrees C. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weanling. Six month old animals were used. Blood pressure, insulin, triglycerides, and serum albumin were increased in MS rats. Contraction of aortic rings elicited with norepinephrine was stronger. There were no effects of nonglycated BSA or AGE-BSA on contractions in control or MS rats; however, both groups responded to L-NAME, an inhibitor of nitric oxide synthesis. Arterial relaxation induced using acetylcholine was smaller in MS rats. Nonglycated BSA and AGE-BSA significantly diminished relaxation in a 35% in the control group but the decrease was similar when using nonglycated BSA and AGE-BSA. This decrease was not present in the MS rats and was not due to increased RAGEs or altered biochemical characteristics of BSA. In conclusion, both BSA and AGE-BSA inhibit vascular relaxation in control artic rings. In MS rats the effect is lost possibly due to alterations in endothelial cells that are a consequence of the illness.
Collapse
Affiliation(s)
- Maria Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 2007; 87:1175-213. [PMID: 17928583 DOI: 10.1152/physrev.00047.2006] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Maximum life span differences among animal species exceed life span variation achieved by experimental manipulation by orders of magnitude. The differences in the characteristic maximum life span of species was initially proposed to be due to variation in mass-specific rate of metabolism. This is called the rate-of-living theory of aging and lies at the base of the oxidative-stress theory of aging, currently the most generally accepted explanation of aging. However, the rate-of-living theory of aging while helpful is not completely adequate in explaining the maximum life span. Recently, it has been discovered that the fatty acid composition of cell membranes varies systematically between species, and this underlies the variation in their metabolic rate. When combined with the fact that 1) the products of lipid peroxidation are powerful reactive molecular species, and 2) that fatty acids differ dramatically in their susceptibility to peroxidation, membrane fatty acid composition provides a mechanistic explanation of the variation in maximum life span among animal species. When the connection between metabolic rate and life span was first proposed a century ago, it was not known that membrane composition varies between species. Many of the exceptions to the rate-of-living theory appear explicable when the particular membrane fatty acid composition is considered for each case. Here we review the links between metabolic rate and maximum life span of mammals and birds as well as the linking role of membrane fatty acid composition in determining the maximum life span. The more limited information for ectothermic animals and treatments that extend life span (e.g., caloric restriction) are also reviewed.
Collapse
Affiliation(s)
- A J Hulbert
- Metabolic Research Centre, Institute for Conservation Biology, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
| | | | | | | |
Collapse
|
16
|
Nissimov J, Elchalal U, Bakala H, Brownlee M, Berry E, Phillip M, Milner Y. Method for chronological recording of antigen appearance in human head-hair shafts and its use for monitoring glycation products in diabetes. J Immunol Methods 2007; 320:1-17. [PMID: 17210162 DOI: 10.1016/j.jim.2006.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 09/05/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
We describe immunochemical assays of non-enzymatic glycation products in human head-hair protein extracts and hair cross sections using Western blots and a novel "dot-block" methodology. In the latter, groups of approximately 15 hair fibers, clipped at about 1 mm proximal to the scalp-skin were aligned, wound around, and attached to 3 mm diameter araldite screw rods. Up to 40 such rods were next embedded lengthwise in additional araldite polymer creating a solid block and the top surface of the block was sectioned off to the half-diameters of the screw rods thus exposing accurately transected hair cross sections at regular ( approximately 0.5 cm) intervals. Early- and advanced-glycation products (EGAs and AGEs, respectively) were determined in the exposed cross sections in-situ using specific antibodies and ECL densitometry as in conventional Western blots. Both Western blots and this technique demonstrated 3.1 fold EGAs increases in the proximal 2 cm of hair of diabetics as compared to non-diabetics. Dot-blocks, in addition, were less variable and demonstrated exponential EGAs decreases along fibers distally, with calculated intercepts (at the hair roots) of 4.9 fold increases in diabetics as opposed to non-diabetics and half-lives of 6.0, 5.9 and 9.0 months in hair of non-diabetics, gestational diabetics and diabetic patients, respectively. Correlations in amounts of BG vs. HbA1(c), BG vs. EGAs, and HbA1(c) vs. EGAs, using dot-block and clinical lab data were all significant (p<0.05). Acute onset T1D patients, defined as previously unsuspected patients diagnosed upon hospitalization due to diabetic complications, exhibited nearly identical EGAs levels in their proximal 0-9 cm hair as did T1D patients with long-established diabetes, thus supporting the notion of long and insidious T1D etiology. Removal of 1-2 microm layers from dot-block surfaces enabled their re-use for multiple assays. Applied anti-AGEs antibodies demonstrated slight decreases or no significant changes in CML and MGI along hair shafts of normal and diabetic subjects. Fluctuations in EGAs and AGEs along hair shafts, indicating alterations in glycemic control were also observed. We conclude that the dot-block method has a potential for early diagnosis and monitoring of diabetes, and more generally, as a long term "biological record" of various chronic medical conditions.
Collapse
Affiliation(s)
- Joseph Nissimov
- Myers Skin Biology and Biochemistry Laboratory, Department of Biological Chemistry, Institute of Life Sciences, Givat Ram - Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Zimanyi MA, Denton KM, Forbes JM, Thallas-Bonke V, Thomas MC, Poon F, Black MJ. A developmental nephron deficit in rats is associated with increased susceptibility to a secondary renal injury due to advanced glycation end-products. Diabetologia 2006; 49:801-10. [PMID: 16496120 DOI: 10.1007/s00125-006-0175-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 11/28/2005] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the effects of a secondary renal insult, due to chronic infusion of AGEs on renal function, and on early pathological markers in rats with a developmental nephron deficit. METHODS Female Wistar-Kyoto rats were fed a low-protein diet (LPD; 8.7% casein) or a normal-protein diet (NPD; 20% casein) during pregnancy and lactation. Nephron number was estimated in 4-week-old female offspring. Male offspring were allowed to grow to 20 weeks of age, when AGEs derived from BSA (AGE-BSA) or BSA was infused subcutaneously (20 mg kg(-1) day(-1)) for 4 weeks. At 24 weeks, blood pressure, renal function and circulating and renal AGEs were assessed. Real-time PCR was used to investigate early molecular markers of renal pathology. RESULTS As expected, maternal protein restriction led to reduced nephron endowment in LPD offspring. This alone did not affect blood pressure or lead to hyperfiltration in adulthood. However, when coupled with the secondary renal insult, the expression of the genes encoding transforming growth factor-beta(1) and procollagen III was significantly upregulated in the kidneys. In addition, there was renal accumulation of AGEs in LPD offspring, and this was exacerbated by AGE infusion. CONCLUSIONS/INTERPRETATION Our results demonstrate that the adult kidney with a reduced nephron endowment is more vulnerable to secondary renal insult from AGE-BSA. Since AGE formation is markedly elevated with hyperglycaemia, our findings suggest that a developmental or acquired deficit may render the kidney susceptible to diabetic renal disease.
Collapse
Affiliation(s)
- M A Zimanyi
- Department of Anatomy and Cell Biology, Monash University, P.O. Box 13C, Clayton, VIC, 3800, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Chronic hyperglycemia and oxidative stress in diabetes results in the formation and accumulation advanced glycation end products (AGEs). AGEs have a wide range of chemical, cellular, and tissue effects that contribute to the development of microvascular complications. In particular, AGEs appear to have a key role in the diabetic nephropathy. Their importance as downstream mediators of tissue injury in diabetic kidney disease is demonstrated by animal studies using inhibitors of advanced glycation to retard the development of nephropathy without directly influencing glycemic control. AGE modification of proteins may produce in changes charge, solubility, and conformation leading to molecular dysfunction as well as disrupting interactions with other proteins. AGEs also interact with specific receptors and binding proteins to influence the renal expression of growth factors and cytokines, implicated in the progression of diabetic renal disease. The effects of AGEs appears to be synergistic with other pathogenic pathways in diabetes including oxidative stress, hypertension, and activation of the renin-angiotensin system. Each of these pathways may be activated by AGEs, and each may promote the formation of AGEs in the vicious cycle associated with progressive renal damage. It is likely that therapies that inhibit the formation of AGEs or remove established AGE modifications will form an important component part of future therapy in patients with diabetes, acting in concert with conventional approaches to prevent diabetic renal injury.
Collapse
Affiliation(s)
- Merlin C Thomas
- Danielle Alberti Memorial Centre for Diabetes Complications, Baker Medical Research Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
19
|
Greven WL, Waanders F, Nagai R, van den Heuvel MC, Navis G, van Goor H. Mesangial accumulation of GA-pyridine, a novel glycolaldehyde-derived AGE, in human renal disease. Kidney Int 2005; 68:595-602. [PMID: 16014036 DOI: 10.1111/j.1523-1755.2005.00437.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) contribute to diabetic and atherosclerotic end-organ damage, but the mechanisms of AGE-formation and AGE-induced damage are unclear. Glycolaldehyde (GA) is a Maillard-reaction intermediate and can be formed by reaction of L-serine with the myeloperoxidase-system. GA reacts with proteins to form AGEs, such as GA-pyridine, which is specific for protein modification by GA. GA-pyridine accumulates in human atherosclerotic lesions. As atherosclerosis and progressive glomerulosclerosis share many similarities, we hypothesized that GA-pyridine accumulates in renal diseases, especially those with prominent mesangial involvement. METHODS Paraffin-embedded renal biopsies from 55 patients with various renal diseases, as well as control tissue, obtained from the unaffected part of kidneys from 10 patients with renal cell carcinoma were immunohistochemically stained with a monoclonal antibody directed against GA-pyridine and were scored semiquantitatively. Additional sections were scored for mesangial matrix expansion (MME) and focal glomerular sclerosis (FGS). RESULTS In normal human kidneys, GA-pyridine was mainly localized in tubular epithelial cells, but not in the glomerular mesangium. Significant mesangial GA-pyridine accumulation was found in disorders with mesangial involvement as a common denominator. In contrast, mesangial GA-pyridine accumulation was less prominent in renal diseases without prominent mesangial involvement. Moreover, mesangial GA-pyridine accumulation was more pronounced in kidneys with higher MME and FGS scores across the different diagnoses. CONCLUSION GA-pyridine accumulates in the mesangium in human renal disease, in particular in disorders with mesangial involvement. Further studies should elucidate whether mesangial GA-pyridine plays a role in the progression of glomerular damage.
Collapse
Affiliation(s)
- Wendela L Greven
- Department of Pathology and Laboratory Medicine, and Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Lapolla A, Traldi P, Fedele D. Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem 2005; 38:103-15. [PMID: 15642271 DOI: 10.1016/j.clinbiochem.2004.09.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/16/2004] [Accepted: 09/03/2004] [Indexed: 02/02/2023]
Abstract
Non-enzymatic glycation products are a complex and heterogeneous group of compounds which accumulate in plasma and tissues in diabetes and renal failure. There is emerging evidence that these compounds may play a role in the pathogenesis of chronic complications associated with diabetes and renal failure. So measurement of the products of non-enzymatic glycation has a twofold meaning: on one hand, measurement of early glycation products can estimate the extent of exposure to glucose and the subject's previous metabolic control; on the other hand, measurement of intermediate and late products of the glycation reaction is a precious instrument in verifying the relationship between glycation products and tissue modifications. This review summarizes current knowledge about the diagnostic utility of measuring non-enzymatic glycation products.
Collapse
Affiliation(s)
- Annunziata Lapolla
- Dipartimento di Scienze Mediche e Chirurgiche, Cattedra di Malattie del Metabolismo, Università di Padova, Padova, Italy.
| | | | | |
Collapse
|
21
|
Vougier S, Mary J, Friguet B. Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells. Biochem J 2003; 373:531-7. [PMID: 12693988 PMCID: PMC1223498 DOI: 10.1042/bj20030443] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 04/14/2003] [Indexed: 12/21/2022]
Abstract
Proteins are sensitive to reactive oxygen species, and the accumulation of oxidized proteins has been implicated in the aging process and in other age-related pathologies. In proteins, methionine residues are especially sensitive to oxidation, leading to S - and R -methionine sulphoxide diastereoisomers, the reversion of which is achieved by the peptide methionine sulphoxide reductases MsrA and MsrB respectively. The MsrA enzyme, in addition to its role in repair, forms part of the reactive oxygen species scavenging systems that are important in cellular antioxidant defence. MsrA is present in most living organisms, and the mammalian enzyme has been detected in all tissues investigated. In the present study, we investigated the subcellular distribution of MsrA in rat liver cells. Since it seemed likely that MsrA may be localized in areas where reactive oxygen species are produced, rat liver mitochondrial matrix and cytosolic extracts were prepared. The presence of MsrA was assayed in these subcellular compartments by monitoring peptide methionine sulphoxide reductase enzymic activity, by Western blotting and by in situ immunolocalization by electron microscopy using a specific antibody. Moreover, MsrA was identified by MS in a partially purified cytosolic fraction and in a mitochondrial matrix crude extract. Rat MsrA isoforms are encoded by a single gene, and it is suggested that the precursor of the mitochondrial form contains an N-terminal cleavable signal sequence that localizes the MsrA to this organelle. Finally, two-dimensional gel electrophoresis followed by Western-blot analysis of partially purified MsrA from the cytosol and mitochondria, and comparison with the two-dimensional patterns of oxidized recombinant MsrA, revealed oxidative modifications of cysteine residues.
Collapse
Affiliation(s)
- Stéphanie Vougier
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, CC 7128, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
22
|
Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, Friguet B. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2295-302. [PMID: 12752449 DOI: 10.1046/j.1432-1033.2003.03598.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is accompanied by a gradual deterioration of cell functions. Mitochondrial dysfunction and accumulation of protein damage have been proposed to contribute to this process. The present study was carried out to examine the effects of aging in mitochondrial matrix isolated from rat liver. The activity of Lon protease, an enzyme implicated in the degradation of abnormal matrix proteins, was measured and the accumulation of oxidation and glycoxidation (Nepsilon-carboxymethyllysine, CML) products was monitored using immunochemical assays. The function of isolated mitochondria was assessed by measuring respiratory chain activity. Mitochondria from aged (27 months) rats exhibited the same rate of oxygen consumption as those from adult (10 months) rats without any change in coupling efficiency. At the same time, the ATP-stimulated Lon protease activity, measured as fluorescent peptides released, markedly decreased from 10-month-old rats (1.15 +/- 0.15 FU x micro g protein-1 x h-1) to 27-month-old-rats (0.59 +/- 0.08 FU x micro g protein-1 x h-1). In parallel with this decrease in activity, oxidized proteins accumulated in the matrix upon aging while the CML-modified protein content assessed by ELISA significantly increased by 52% from 10 months (11.71 +/- 0.61 pmol CML x micro g protein-1) to 27 months (17.81 +/- 1.83 pmol CML x micro g protein-1). These results indicate that the accumulation of deleterious oxidized and carboxymethylated proteins in the matrix concomitant with loss of the Lon protease activity may affect the ability of aging mitochondria to respond to additional stress.
Collapse
Affiliation(s)
- Hilaire Bakala
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris7-Denis Diderot, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hamelin M, Borot-Laloi C, Friguet B, Bakala H. Increased level of glycoxidation product N(epsilon)-(carboxymethyl)lysine in rat serum and urine proteins with aging: link with glycoxidative damage accumulation in kidney. Arch Biochem Biophys 2003; 411:215-22. [PMID: 12623070 DOI: 10.1016/s0003-9861(02)00735-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accumulation of carboxymethylated proteins (CML-proteins) is taken as a biomarker of glycoxidative stress which is thought to contribute to the age-related impairment in tissue and cell function. To investigate the occurrence and extent of glycoxidative damage with aging in rat kidney, serum and urine, we have prepared a polyclonal antibody against CML-modified bovine serum albumin. We subsequently used it for immunolocalization and in enzyme-linked immunosorbent assays to evaluate CML-protein content. In the serum, CML-protein level was 1.43+/-0.14 pmol CML/micrograms protein at 3 months and significantly increased by 50% from 10 to 27 months (1.50+/-0.14 pmol CML/micrograms protein vs 2.27+/-0.26 pmol CML/micrograms protein), albumin and transferrin being the main modified proteins. In the urine, CML-protein level was 2.50+/-0.14 pmol CML/micrograms protein at 3 months and markedly increased from 10 months (2.99+/-0.24 pmol CML/micrograms protein) to 27 months (3.76+/-0.25 pmol CML/micrograms protein), with albumin as the main excreted modified protein. Immunolocalization of CML-proteins in kidney provided evidence for an age-dependent increased accumulation in extracellular matrices. Intense staining of the glomerular basement membrane (GBM), Bowman's capsule, and the tubular basement membrane was found. Additionally, the CML content for collagen from GBM was 195.85+/-28.95 pmol CML/microgrms OHPro at 3 months and significantly increased from 10 months (187.61+/-21.99 pmol CML/micrograms OHPro) to 27 months (334.55+/-62.21 pmol CML/micrograms OHPro). These data show that circulating CML-protein level in serum and urine and CML accumulation in nephron extracellular matrices with aging are increasing in parallel. The CML-protein measurement in serum and urine may thus be used as an index for the assessment of age-associated glycoxidative kidney damage.
Collapse
Affiliation(s)
- Maud Hamelin
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris7-Denis Diderot, T23-33 1er étage CC 7128, 2 Place Jussieu 75252, Paris, France
| | | | | | | |
Collapse
|
24
|
Poggioli S, Bakala H, Friguet B. Age-related increase of protein glycation in peripheral blood lymphocytes is restricted to preferential target proteins. Exp Gerontol 2002; 37:1207-15. [PMID: 12470833 DOI: 10.1016/s0531-5565(02)00145-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Advanced glycation end products (AGE) have been analyzed in aging human peripheral blood lymphocytes since protein glycation and glycoxidation are believed to contribute to the intracellular age-related accumulation of damaged proteins, a process that has been associated with the cellular functional deficits that occur with age. The appearance of AGE in cell lysates was monitored with an enzyme-linked immunosorbent assay using an anti-AGE antibody raised against glycated RNAse. When lymphocyte cytosolic extracts from old donors (86-91 years old) were compared with those from young donors (20-25 years old), a small but significant 40% increase of protein glycation was observed. In both age groups, further analysis of the pattern of glycated proteins by two-dimensional gel electrophoresis followed by western blotting with the same anti-AGE antibody, showed that the protein silver stain and the immunoblot patterns were not superimposable indicating that glycoxidative modifications are targeting only a restricted set of proteins. Among these preferential protein targets, seven of them exhibited a significant age-related increased immunoreactivity with the anti-AGE antibody suggesting that the corresponding modified proteins might serve as biomarkers of aging lymphocytes.
Collapse
Affiliation(s)
- Sylvie Poggioli
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, CC 7128, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
25
|
Teillet L, Ribière P, Gouraud S, Bakala H, Corman B. Cellular signaling, AGE accumulation and gene expression in hepatocytes of lean aging rats fed ad libitum or food-restricted. Mech Ageing Dev 2002; 123:427-39. [PMID: 11744052 DOI: 10.1016/s0047-6374(01)00400-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of food restriction on liver glucagon and vasopressin V1a receptors, on AGE accumulation and on gene expression were investigated in 10- and 30-month-old WAG/Rij female rats fed ad libitum or chronically food-restricted by 30%. The age-related increase in glucagon and vasopressin V1a receptor density, as well as the rise in glucagon-induced cAMP generation was prevented by the restriction. AGE accumulation, characteristic of the aging process, was normalized in food-restricted animals. Gene expression determined with rat Atlas cDNA Expression Arrays containing 1176 cDNA indicates that a few genes exhibited a greater than twofold change in mRNA ratios with age. Most down-regulated genes were related to oxidative metabolism of lipids, and most of the up-regulated genes were concerned with the cell cycle and transcription factors. Chronic food restriction partially prevents these changes in gene expression and induces up- and down-regulation of several mRNAs which are not modified with age in ad libitum fed rats.
Collapse
Affiliation(s)
- L Teillet
- Hôpital Sainte-Périne, Assistance Publique-Hôpitaux de Paris (AP-HP), 75016, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Yoon S, Gingras D, Bendayan M. Alterations of vitronectin and its receptor alpha(v) integrin in the rat renal glomerular wall during diabetes. Am J Kidney Dis 2001; 38:1298-306. [PMID: 11728964 DOI: 10.1053/ajkd.2001.29228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vitronectin, a multifunctional glycoprotein present in blood and extracellular matrix, is not only a member of the cell adhesion molecules, but also a regulator of proteolytic enzyme cascades, thereby providing a unique regulatory factor for proteolytic degradation of extracellular matrix and tissue remodeling. Vitronectin interacts with the cell surface through integrins of the alpha(v)-related system. Because vitronectin and its receptor may have a role in various renal physiological and pathological processes, we evaluated their expression in renal tissues of streptozotocin-induced short- and long-term hyperglycemic rats by applying quantitative immunoelectron microscopy and Western blot analysis. Vitronectin was shown over the glomerular basement membrane (GBM) and mesangial matrix (MM), whereas alpha(v) was located along the plasma membrane of endothelial, epithelial, and mesangial cells. Although distribution patterns of vitronectin and alpha(v) integrin labeling in renal tissues from short- and long-term hyperglycemic rats, as well age-matched normoglycemic rats, were similar, increases in their immunoreactive sites were detected in hyperglycemic conditions. Changes also were present in old compared with young normoglycemic animals. The diabetes-related increase in vitronectin was more significant in the GBM than MM, whereas the increase in alpha(v) integrin was as significant in podocytes as mesangial cells. Western blot analysis, performed on isolated glomerular material from normoglycemic and hyperglycemic animals, confirmed those changes. Our results suggest that vitronectin and its receptor, alpha(v) integrin, must have defined roles in molecular mechanisms involved in the pathogenesis of both diabetic and aging nephropathy.
Collapse
Affiliation(s)
- S Yoon
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Schwedler SB, Verbeke P, Bakala H, Weiss MF, Vilar J, Depreux P, Fourmaintraux E, Striker LJ, Striker GE. N-phenacylthiazolium bromide decreases renal and increases urinary advanced glycation end products excretion without ameliorating diabetic nephropathy in C57BL/6 mice. Diabetes Obes Metab 2001; 3:230-9. [PMID: 11520302 DOI: 10.1046/j.1463-1326.2001.00096.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Advanced glycation end products (AGE), which form from the non-enzymatic reaction of proteins and sugars, have been implicated in the pathogenesis of diabetic nephropathy. Recently, a compound [N-phenacylthiazolium bromide (PTB)] has been described which cleaves alpha,beta-dicarbonyl compounds. In the present study we used diabetic C57BL/6 mice to determine if PTB altered renal AGE levels and reduced diabetic glomerulosclerosis. METHODS Mice with stable hyperglycaemia induced by streptozotocin were given daily subcutaneous injections of either PTB (10 microg/g) or saline for 12 weeks. Renal-collagen bound AGE and urinary AGE-peptides were measured by ELISA using an anti-AGE-RNase antibody. Renal collagen-released Nepsilon(carboxymethyl)lysine (CML) and pentosidine were determined by high pressure liquid chromatography (HPLC). Glomerular lesions (volume and mesangial/total surface area) were evaluated by computer-assisted image analysis. We determined urinary protein/creatinine ratio as a functional parameter. AGE localization was examined by immunohistochemistry using the anti-AGE-RNase antibody. RESULTS Renal collagen-bound AGE were decreased and urinary AGE excretion was increased in PTB-treated diabetic mice. However, collagen-released CML and pentosidine were similar in both groups. Glomerular histology and morphometric analysis revealed also no differences between PTB-and saline-treated diabetic mice. The urinary protein/creatinine ratio was unaffected by PTB-treatment. AGE staining by anti-AGE-RNase antibody was present in Bowman's capsules, glomerular basement membranes and cortical tubules. It was decreased in all structures in PTB-treated diabetic mice. CONCLUSION In summary, PTB decreased renal AGE accumulation but did not ameliorate glomerular lesions or proteinuria. Thus, cleavage of AGE by PTB is not sufficient to prevent development of diabetic nephropathy in C57BL/6 mice.
Collapse
Affiliation(s)
- S B Schwedler
- Laboratory of Renal Cell Biology, Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Teillet L, Gouraud S, Preisser L, Tordjmann T, Morel A, Corman B. Glucagon and vasopressin V1a receptor signaling in hepatocytes from aging rats. Mech Ageing Dev 2001; 122:385-400. [PMID: 11240161 DOI: 10.1016/s0047-6374(00)00251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose tolerance is reduced with age. The relationship between this change in glucose homeostasis and signaling of glucagon and vasopressin V1a receptors was investigated in hepatocytes isolated from 10- and 30-month-old female WAG/Rij rats. Binding capacity of hepatocytes for 125I glucagon and 3H vasopressin increased 2- and 1.8-fold, respectively, between 10 and 30 months. Intracellular cAMP accumulation induced by glucagon was 40% greater in hepatocytes of aging rats than of adults, although EC(50) were similar in the two groups. Conversely, phosphodiesterases activity and nucleotides leakage out of the cells were unchanged with age. The rise in intracellular calcium consecutive to the stimulation of V1a receptor was comparable in adult and senescent animals. Finally, glucose release by hepatocyte suspensions was greater in senescent than in adult animals in absence as in presence of glucagon. These experiments suggest that increase in glucagon receptor expression and cAMP generation would contribute to the impaired glucose tolerance characteristic of the aging process.
Collapse
Affiliation(s)
- L Teillet
- Service de Biologie Cellulaire, CEA/Saclay, Gif-sur-Yvette 91191 Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Verbeke P, Perichon M, Friguet B, Bakala H. Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:481-94. [PMID: 11068190 DOI: 10.1016/s0925-4439(00)00071-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nitric oxide (NO) is important in the regulation of renal tubular function. We have investigated whether glycated proteins could impair the NO production by examining the effects of Amadori products (AP-BSA) and advanced glycation end products (AGE-BSA) on primary cultures of rabbit proximal tubular epithelial (PTE) cells. Nitric oxide synthase activity was assessed by measurement of the conversion of L-arginine to L-citrulline and by production of NO, after short-term (30 min) or long-term (1 or 3 days) incubation. Short incubations of PTE cells with either 200 microg/ml AP-BSA or 40 microg/ml AGE-BSA significantly decreased NO production. AP-BSA (3000 microg/ml) inhibited the Ca(2+)-dependent NOS activity even though above 50 microg/ml it increased Ca(2+)-independent NOS activity. In contrast, 40 microg/ml AGE-BSA inhibited both isoforms of NOS. Longer incubations with 200 microg/ml AP-BSA or 250 microg/ml AGE-BSA decreased NO release and inhibited Ca(2+)-dependent and -independent NOS activities. APs did not affect NO release by S-nitroso-N-acetyl-penicillamine (SNAP), while 250 microg/ml AGEs decreased it. After 3 days incubation, glycation products had no effect on the NOS cell content. Cell viability and proliferation were not modified under these experimental conditions, suggesting that the fall in NO production was not due to there being fewer cells. These data indicate that APs and AGEs directly inhibit NOS activity, and additionally that AGEs quench released NO. Thus, both types of glycated proteins alter the production of NO by PTE cells and could participate in the renal tubule dysfunction associated with aging and diabetes.
Collapse
Affiliation(s)
- P Verbeke
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris 7-Denis Diderot, T23-33 1er étage CC 7128, 2 Place Jussieu, 75252, Paris, France
| | | | | | | |
Collapse
|
30
|
Teillet L, Verbeke P, Gouraud S, Bakala H, Borot-Laloi C, Heudes D, Bruneval P, Corman B. Food restriction prevents advanced glycation end product accumulation and retards kidney aging in lean rats. J Am Soc Nephrol 2000; 11:1488-1497. [PMID: 10906162 DOI: 10.1681/asn.v1181488] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ABSTRACT.: Tissue content of advanced glycation end products (AGE) increases with age and contributes to the changes in structure and function of the renal and cardiovascular systems. The effect of chronic food restriction on this AGE accumulation was investigated in lean WAG/Rij rats. A 30% food restriction performed from 10 to 30 mo in female rats reduced their mean body weight from 240 +/- 7 to 160 +/- 12 g, but did not modify their survival. AGE collagen content increased from 14.3 +/- 5.5 to 104.7 +/- 13.0 arbitrary units per microgram (AU/microg) of hydroxyproline (OHPro) in kidney between 10 and 30 mo, and from 9.7 +/- 1.2 to 310.6 +/- 34.6 AU/microg OHPro in the abdominal aorta. Food restriction reduced AGE accumulation to 21.4 +/- 3.3 and 74.6 +/- 16.5 AU/microg OHPro in kidney and aorta of 30-mo-old animals. Similar results were found for collagen prepared from isolated glomeruli (7.8 +/- 1.2, 81.2 +/- 16.1, and 10.3 +/- 4.3 AU/microg OHPro in 10-mo, 30-mo, and restricted 30-mo-old rats). Reduction of intrarenal and arterial AGE accumulation by food restriction was confirmed by immunostaining in optical microscopy. Age-related changes in arterial and kidney structures as polyuria and proteinuria were mainly prevented by food restriction. These data indicate that chronic food restriction reduces the accumulation of AGE and preserves the structure and function of the renal and cardiovascular systems in learn rats, although it did not affect survival of the animals between 10 and 30 mo.
Collapse
Affiliation(s)
- Laurent Teillet
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette, France
- AP-HP, Hôpital Sainte-Périne, Paris, France
| | - Philippe Verbeke
- Université Paris VII, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Paris, France
| | - Sabine Gouraud
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette, France
| | - Hilaire Bakala
- Université Paris VII, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Paris, France
| | - Caroline Borot-Laloi
- Université Paris VII, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Paris, France
| | - Didier Heudes
- Institut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| | - Bruno Corman
- Service de Biologie Cellulaire, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Petropoulos I, Conconi M, Wang X, Hoenel B, Brégégère F, Milner Y, Friguet B. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 2000; 55:B220-7. [PMID: 10819308 DOI: 10.1093/gerona/55.5.b220] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the process of aging in epidermal cells to be characterized, the status of oxidized and damaged protein accumulation and removal by the proteasome has been investigated. Modified protein content and proteasome activity were assayed in lysates of epidermal cells from donors of different ages. Increased levels of oxidized proteins, glycated proteins, and proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal were observed in cells from old donors. At the same time, a decline of chymotrypsin-like and peptidylglutamyl-peptide hydrolase activities of the proteasome was found in aging keratinocytes. This age-related decline of the proteasome peptidase activities can be explained, at least in part, by a decreased proteasome content as observed by immunoblotting and enzyme-linked immunosorbent assay. In keratinocyte cultures, a decrease of proteasome activity and content was observed upon serial passaging. In cultures, as well as in skin, an inverse relationship was found between the aging marker 1-galactosidase and the proteasome content. These results suggest that proteasome is downregulated during replicative senescence as well as in aged cells in vivo, possibly resulting in the accumulation of modified proteins.
Collapse
Affiliation(s)
- I Petropoulos
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Raj DS, Choudhury D, Welbourne TC, Levi M. Advanced glycation end products: a Nephrologist's perspective. Am J Kidney Dis 2000; 35:365-80. [PMID: 10692262 DOI: 10.1016/s0272-6386(00)70189-2] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of molecules that accumulate in plasma and tissues with advancing age, diabetes, and renal failure. There is emerging evidence that AGEs are potential uremic toxins and may have a role in the pathogenesis of vascular and renal complications associated with diabetes and aging. AGEs are formed when a carbonyl of a reducing sugar condenses with a reactive amino group in target protein. These toxic molecules interact with specific receptors and elicit pleiotropic responses. AGEs accelerate atherosclerosis through cross-linking of proteins, modification of matrix components, platelet aggregation, defective vascular relaxation, and abnormal lipoprotein metabolism. In vivo and in vitro studies indicate that AGEs have a vital role in the pathogenesis of diabetic nephropathy and the progression of renal failure. The complications of normal aging, such as loss of renal function, Alzheimer's disease, skin changes, and cataracts, may also be mediated by progressive glycation of long-lived proteins. AGEs accumulate in renal failure as a result of decreased excretion and increased generation resulting from oxidative and carbonyl stress of uremia. AGE-modified beta(2)-microglobulin is the principal pathogenic component of dialysis-related amyloidosis in patients undergoing dialysis. Available dialytic modalities are not capable of normalizing AGE levels in patients with end-stage renal disease. A number of reports indicated that restoration of euglycemia with islet-cell transplantation normalized and prevented further glycosylation of proteins. Aminoguanidine (AGN), a nucleophilic compound, not only decreases the formation of AGEs but also inhibits their action. A number of studies have shown that treatment with AGN improves neuropathy and delays the onset of retinopathy and nephropathy. N-Phenacylthiazolium bromide is a prototype AGE cross-link breaker that reacts with and can cleave covalent AGE-derived protein cross-links. Thus, there is an exciting possibility that the complications of diabetes, uremia, and aging may be prevented with these novel agents.
Collapse
Affiliation(s)
- D S Raj
- Department of Medicine, Lousiana State University Medical Center, Shreveport, LA,USA
| | | | | | | |
Collapse
|
33
|
Bendayan M. Immunocytochemical detection of advanced glycated end products in rat renal tissue as a function of age and diabetes. Kidney Int 1998; 54:438-47. [PMID: 9690210 DOI: 10.1046/j.1523-1755.1998.00030.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND High blood glucose levels play major roles in the pathogenesis of renal diabetic complications through non-enzymatic glycation. For long-lived molecules this leads to formation of advanced glycation end products (AGE), and the renal extracellular matrix appears to be one of the targets for such processes. Using immunocytochemistry, we studied the appearance and deposition of AGE products in renal tissues from normal and diabetic rats at different ages, to evaluate the effects of aging and hyperglycemia. METHODS The streptozotocin-injected rat represented our model of hyperglycaemic condition. The immunogold techniques were applied at the light and electron microscope levels using specific monoclonal and polyclonal antibodies against AGE adducts. The results were analyzed by morphometry. RESULTS In normoglycemic animals, significant increases in labeling were detected in tubular basement membranes and mesangial matrix at 12 to 15 months of age. In contrast, in diabetic animals, significant increases in labeling were found for all extracellular matrices as soon as after two months of hyperglycemia. Labelings were also detected in cellular compartments, particularly in nuclei that showed increases in diabetic conditions. The labeling was particularly intense in proximal convoluted tubules and their endosomal compartment, due to the reabsorption of urinary AGE products. CONCLUSION The presence of AGE products in the renal extracellular matrix of old normoglycemic animals and their rapid appearance in hyperglycemia, indicate that AGE products may participate in the pathogenesis of renal complications. Furthermore, the non-enzymatic glycation is not restricted to extracellular matrices but also affects cellular proteins.
Collapse
Affiliation(s)
- M Bendayan
- Department of Pathology and Cell Biology, Université de Montréal, Quebec, Canada.
| |
Collapse
|