1
|
Postigo C, Moreno-Merino L, López-García E, López-Martínez J, López de Alda M. Human footprint on the water quality from the northern Antarctic Peninsula region. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131394. [PMID: 37086669 DOI: 10.1016/j.jhazmat.2023.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This study assessed the human footprint on the chemical pollution of Antarctic waters by characterizing inorganic chemicals and selected organic anthropogenic contaminants of emerging concern (CECs) in inland freshwater and coastal seawater and the associated ecotoxicological risk. Nicotine and tolytriazole, present in 74% and 89% of the samples analyzed, respectively, were the most ubiquitous CECs in the investigated area. The most abundant CECs were citalopram, clarithromycin, and nicotine with concentrations reaching 292, 173, and 146 ng/L, respectively. The spatial distribution of CECs was not linked to any water characteristic or inorganic component. The contamination pattern by CECs in inland freshwater varied among locations, whereas it was very similar in coastal seawater. This suggests that concentrations in inland freshwater may be ruled by environmental processes (reemission from ice, atmospheric deposition, limited photo- and biodegradation processes, etc.) in addition to human activities. Following risk assessment, citalopram, clarithromycin, nicotine, venlafaxine, and hydrochlorothiazide should be considered of concern in this area, and hence, included in future monitoring of Antarctic waters and biota. This work provides evidence on the fact that current measures taken to protect the pristine environment of Antarctica from human activities are not effective to avoid CEC spread in its aquatic environment.
Collapse
Affiliation(s)
- Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain.
| | - Luis Moreno-Merino
- Spanish Geological Survey CN IGME (CSIC), Ríos Rosas, 23, Madrid 28003, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jerónimo López-Martínez
- Faculty of Sciences, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
2
|
Ángel de la Serna Calleja M, Bolado S, José Jiménez J, López-Serna R. Performance critical comparison of offline SPE, online SPE, and direct injection for the determination of CECs in complex liquid environmental matrices. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Barcellos DDS, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151128. [PMID: 34710408 DOI: 10.1016/j.scitotenv.2021.151128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical micropollutants' contamination of urban waters has been studied globally for decades, but the concentration of innovations in management initiatives is still in developed economies. The gap between the locus of innovations in pharmaceuticals and the relative stagnation in less developed economies to manage waste originating in this activity seems fruitful for investigations on innovation in integrated micropollutant management strategies. These tensions allow for advances in current knowledge for environmental management and, particularly, finding solutions for the contamination by pharmaceutical micropollutants of urban water bodies in developing countries. We aim to list the main strategies for managing pharmaceutical micropollutants discussed to point out opportunities for developing countries to advance in this direction. Methodologically, we conducted a systematic literature review from 1990 to 2020, covering 3027 documents on "pharmaceutical micropollutants management." The framework formed by the macro-approach to integrated management operationalized by the dimensional micro-approaches: technical, organizational, community, and governmental allowed us to understand that (1) the management of pharmaceutical micropollutants tends to occur through a technical approach centered on the removal of aquatic matrices, green chemistry, and urine diversion; (2) management with an organizational approach has enabled removing drugs from water bodies by drug take-back program, collaborative projects, drug use reduction, and better organizational practices; (3) the community approach have helped minimize this type of pollution by reducing the consumption of medicines and the proper destination for medicines that are no longer in use. Finally, the government management approach emerges as a source of legal, economic, and informational instruments to reduce pollution by pharmaceutical micropollutants. Furthermore, these management approaches allowed us to identify 15 opportunities for possible adjustments for developing societies. These opportunities can be promising for practices and research and, in the medium term, contribute to minimizing pollution by pharmaceutical micropollutants in urban waters.
Collapse
Affiliation(s)
- Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Mario Procopiuck
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Harry Alberto Bollmann
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| |
Collapse
|
4
|
Yang Y, Zhang X, Jiang J, Han J, Li W, Li X, Yee Leung KM, Snyder SA, Alvarez PJJ. Which Micropollutants in Water Environments Deserve More Attention Globally? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13-29. [PMID: 34932308 DOI: 10.1021/acs.est.1c04250] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Shane A Snyder
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Legacy and Emerging Pollutants in an Urban River Stretch and Effects on the Bacterioplankton Community. WATER 2021. [DOI: 10.3390/w13233402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
River contamination is due to a chemical mixture of point and diffuse pollution, which can compromise water quality. Polycyclic Aromatic Hydrocarbons (PAHs) and emerging compounds such as pharmaceuticals and antibiotics are frequently found in rivers flowing through big cities. This work evaluated the presence of fifteen priority PAHs, eight pharmaceuticals including the antibiotics ciprofloxacin (CIP) and sulfamethoxazole (SMX), together with their main antibiotic resistant genes (ARGs) and the structure of the natural bacterioplankton community, in an urbanized stretch of the river Danube. SMX and diclofenac were the most abundant chemicals found (up to 20 ng/L). ARGs were also found to be detected as ubiquitous contaminants. A principal component analysis of the overall microbiological and chemical data revealed which contaminants were correlated with the presence of certain bacterial groups. The highest concentrations of naphthalene were associated with Deltaproteobacteria and intI1 gene. Overall, the most contaminated site was inside the city and located immediately downstream of a wastewater treatment plant. However, both the sampling points before the river reached the city and in its southern suburban area were still affected by emerging and legacy contamination. The diffuse presence of antibiotics and ARGs causes particular concern because the river water is used for drinking purposes.
Collapse
|
6
|
Pharmaceuticals and Environment: a web-based decision support for considering environmental aspects of medicines in use. Eur J Clin Pharmacol 2020; 76:1151-1160. [PMID: 32388641 PMCID: PMC7351842 DOI: 10.1007/s00228-020-02885-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Purpose The database Pharmaceuticals and Environment is a non-commercial, freely available web-based decision support presenting compiled environmental information for pharmaceutical substances. It was developed by Region Stockholm and launched in 2016 at janusinfo.se. The purpose of this paper is to present the database, report on its current use, and reflect on lessons learned from developing and managing the database. Methods A standard operating procedure describes the work and content of the database, e.g., how information is retrieved, processed, and presented. Google Analytics was used for metrics. Issues related to the database have been discussed and handled by a reference group. The experiences from this work are presented. Results The database contains environmental hazard and risk information, primarily gathered from regulatory authorities and pharmaceutical companies. There are also assessments comparing substances within some groups of pharmaceuticals. The database is used by the Swedish Drug and Therapeutics Committees to include environmental aspects when recommending pharmaceuticals for health care providers. Page views show that users primarily look for information on commonly used substances, e.g., diclofenac and paracetamol/acetaminophen. Major problems for the development of the database are lack of data, lack of transparency, and discrepancies in the available environmental information. Conclusion In the absence of an adequate decision support produced by the regulatory authorities, we find the database Pharmaceuticals and Environment to be useful for Swedish Drug and Therapeutics Committees and health care providers, and it is our belief that the information can be valuable also in other settings.
Collapse
|
7
|
Yadav IC, Devi NL, Kumar A, Li J, Zhang G. Airborne brominated, chlorinated and organophosphate ester flame retardants inside the buildings of the Indian state of Bihar: Exploration of source and human exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110212. [PMID: 32006868 DOI: 10.1016/j.ecoenv.2020.110212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Since many household products used by individuals contain flame retardants (FRs), there is more chance that these chemicals may be present in the various exhibit of the indoor environment. Despite being one of the fastest-growing economies worldwide, the contamination level, sources, products, and pathways of FRs in India, is either not known or limited. This inspired us to investigate the level, profile, spatial distribution, and sources of different classes of FRs in the indoor air. For this purpose, 15 brominated, 2 chlorinated, and 8 organophosphate FRs (OPFRs) were investigated in indoor air samples from urban and suburban sites of an Indian state of Bihar. Additionally, inhalation health risk exposure to children and the adult was estimated to predict the risk of these chemicals. Overall, ∑8OPFRs (median 351 pg/m3) was the most prominent in air, followed by novel brominated FR (∑6NBFRs) (median 278 pg/m3), polybrominated diphenyl ether (∑9PBDE) (median 5.05 pg/m3), and dechlorane plus (∑2DPs) (median 2.52 pg/m3), and accounted for 55%, 44%, 0.8% and 0.4% of ∑FRs, respectively. Generally, ∑9PBDEs (median 6.29 pg/m3) and ∑8OPFRs (median 355 pg/m3) were measured high at sub-urban sites, while urban sites had the highest level of ∑2DPs (median 2.81 pg/m3) and ∑6NBFRs (median 740 pg/m3). BDE-209 was most abundant among ∑9PBDEs, while syn-DP dominated in ∑2DPs. Likewise, DBDPE was most prevalent in ∑6NBFRs, while TMPP topped among ∑8OPFRs. The principal component analysis revealed contribution from household items, food packaging and paints, hydraulic fluid, a gasoline additive, and de-bromination of BDE-209 as the primary sources of FRs. The estimated daily inhalation exposure (DIE) indicated a relatively high risk to children than the adult. The DIE of individual FR was several folds lower than their corresponding oral reference dose (RfDs), suggesting minimal risk. However, exposure risk, especially to children, may still need attention because other routes of intake may always be significant in the case of Bihar.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo, 1838509, Japan; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India.
| | - Amrendra Kumar
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
8
|
Oliveira NRD, Lacerda PSBD, Kligerman DC, Oliveira JLDM. [Review of national and international legal and regulatory mechanisms on the management of drugs and the residues thereof]. CIENCIA & SAUDE COLETIVA 2019; 24:2939-2950. [PMID: 31389541 DOI: 10.1590/1413-81232018248.05712017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/27/2017] [Indexed: 11/21/2022] Open
Abstract
This paper presents a descriptive review of laws and regulations on the management of drugs and the residues thereof adopted by countries in Europe, the Americas and Australia. This review integrates relevant points of official documents of regulatory agencies in these countries, as well as important scientific works. All countries surveyed carry out drug management concomitant with the management of the residues thereof, ranging from awareness programs on the rational use and the risks of drugs through to the collection and safe disposal of such residues. Germany, the USA and Sweden demand a prior assessment of the environmental impact caused by a given drug as a criterion for its registration. Sweden is noteworthy in that it periodically updates a list of essential drugs based on risk assessment and the environmental risks posed by the residues thereof. In Brazil, the legal measures proposed including rational prescription and reverse logistics have not yet been effectively implemented. Prior environmental impact assessment safeguards the risks to human health and the wild biota caused by exposure to drug residues. Therefore, these international models could serve as a basis for discussion and/or legal and regulatory changes in Brazil.
Collapse
Affiliation(s)
- Nubia Regina de Oliveira
- Far-manguinhos, Fiocruz. Av. Comandante Guaranys 447, Jacarepaguá. 22775-903 Rio de Janeiro RJ Brasil.
| | | | | | | |
Collapse
|
9
|
Olalla A, Negreira N, López de Alda M, Barceló D, Valcárcel Y. A case study to identify priority cytostatic contaminants in hospital effluents. CHEMOSPHERE 2018; 190:417-430. [PMID: 29024886 DOI: 10.1016/j.chemosphere.2017.09.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 05/24/2023]
Abstract
This study analyses the presence of 17 cytostatic agents from seven different groups, based on their different mechanisms of action, in the effluent from a medium-sized hospital located in eastern Spain. Analysis of the compounds found in the effluents studied involved solidphase extraction (SPE) coupled on-line to a high performance liquid chromatograph tandem mass spectrometer (HPLC-MS/MS). The environmental risk of the compounds studied was then assessed by calculating the hazard quotient (HQ), combining the measured environmental concentrations (MECs) with dose-response data based on the predicted no effect concentrations (PNECs). In addition, the environmental hazard associated was evaluated in accordance with their intrinsic characteristics by calculating the PBT (Persistence Bioaccumulation Toxicity) index. The results of this study showed the presence of seven of the 17 compounds analysed in a range of between 25 and 4761 ng/L. The highest concentrations corresponded to ifosfamide (58-4761 ng/L), methotrexate (394-4756 ng/L) and cyclophosphamide (46-3000 ng/L). Assessment of the environmental hazard showed that the three hormonal agents (tamoxifen and its metabolites endoxifen and hydroxytamoxifen) exhibited a maximum PBT value of 9 due to their inherent harm to the environment resulting from their characteristics of persistence, bioaccumulation and toxicity. A combined evaluation of the risk and environmental hazard showed that three of the 17 compounds studied, namely, ifosfamide, imatinib and irinotecan, all of which exhibited HQ values higher than 10 and PBT indices of 6, indicative of a particularly high potential to harm the environment, deserve special attention.
Collapse
Affiliation(s)
- A Olalla
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain.
| | - N Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; International Iberian Nanotechnology Laboratory (INL), Avda, Mestre José Veiga s/n, 4715 Braga, Portugal
| | - M López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Y Valcárcel
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas, s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
10
|
Burns EE, Thomas-Oates J, Kolpin DW, Furlong ET, Boxall ABA. Are exposure predictions, used for the prioritization of pharmaceuticals in the environment, fit for purpose? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2823-2832. [PMID: 28477358 DOI: 10.1002/etc.3842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/17/2016] [Accepted: 04/26/2017] [Indexed: 05/11/2023]
Abstract
Prioritization methodologies are often used for identifying those pharmaceuticals that pose the greatest risk to the natural environment and to focus laboratory testing or environmental monitoring toward pharmaceuticals of greatest concern. Risk-based prioritization approaches, employing models to derive exposure concentrations, are commonly used, but the reliability of these models is unclear. The present study evaluated the accuracy of exposure models commonly used for pharmaceutical prioritization. Targeted monitoring was conducted for 95 pharmaceuticals in the Rivers Foss and Ouse in the City of York (UK). Predicted environmental concentration (PEC) ranges were estimated based on localized prescription, hydrological data, reported metabolism, and wastewater treatment plant (WWTP) removal rates, and were compared with measured environmental concentrations (MECs). For the River Foss, PECs, obtained using highest metabolism and lowest WWTP removal, were similar to MECs. In contrast, this trend was not observed for the River Ouse, possibly because of pharmaceutical inputs unaccounted for by our modeling. Pharmaceuticals were ranked by risk based on either MECs or PECs. With 2 exceptions (dextromethorphan and diphenhydramine), risk ranking based on both MECs and PECs produced similar results in the River Foss. Overall, these findings indicate that PECs may well be appropriate for prioritization of pharmaceuticals in the environment when robust and local data on the system of interest are available and reflective of most source inputs. Environ Toxicol Chem 2017;36:2823-2832. © 2017 SETAC.
Collapse
Affiliation(s)
| | | | | | - Edward T Furlong
- National Water Quality Laboratory, US Geological Survey, Denver, Colorado, USA
| | | |
Collapse
|
11
|
Blum KM, Andersson PL, Renman G, Ahrens L, Gros M, Wiberg K, Haglund P. Non-target screening and prioritization of potentially persistent, bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:265-275. [PMID: 27744155 DOI: 10.1016/j.scitotenv.2016.09.135] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 05/20/2023]
Abstract
On-site sewage treatment facilities (OSSFs), which are used to reduce nutrient emissions in rural areas, were screened for anthropogenic compounds with two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). The detected compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, removal efficiency, and concentrations. This comprehensive prioritization strategy, which was used for the first time on OSSF samples, ranked galaxolide, α-tocopheryl acetate, octocrylene, 2,4,7,9-tetramethyl-5-decyn-4,7-diol, several chlorinated organophosphorus flame retardants and linear alkyl benzenes as the most relevant compounds being emitted from OSSFs. Twenty-six target analytes were then selected for further removal efficiency analysis, including compounds from the priority list along with substances from the same chemical classes, and a few reference compounds. We found significantly better removal of two polar contaminants 2,4,7,9-tetramethyl-5-decyn-4,7-diol (p=0.0003) and tris(2-butoxyethyl) phosphate (p=0.005) in soil beds, a common type of OSSF in Sweden, compared with conventional sewage treatment plants. We also report median removal efficiencies in OSSFs for compounds not studied in this context before, viz. α-tocopheryl acetate (96%), benzophenone (83%), 2-(methylthio)benzothiazole (64%), 2,4,7,9-tetramethyl-5-decyn-4,7-diol (33%), and a range of organophosphorus flame retardants (19% to 98%). The environmental load of the top prioritized compounds in soil bed effluents were in the thousands of nanogram per liter range, viz. 2,4,7,9-tetramethyl-5-decyn-4,7-diol (3000ngL-1), galaxolide (1400ngL-1), octocrylene (1200ngL-1), and α-tocopheryl acetate (660ngL-1).
Collapse
Affiliation(s)
- Kristin M Blum
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | - Gunno Renman
- Dept. of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lutz Ahrens
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Meritxell Gros
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Karin Wiberg
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Peter Haglund
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Singer HP, Wössner AE, McArdell CS, Fenner K. Rapid Screening for Exposure to "Non-Target" Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6698-707. [PMID: 26938046 DOI: 10.1021/acs.est.5b03332] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Active pharmaceutical ingredients (APIs) have raised considerable concern over the past decade due to their widespread detection in water resources and their potential to affect ecosystem health. This triggered many attempts to prioritize the large number of known APIs to target monitoring efforts and testing of fate and effects. However, so far, a comprehensive approach to screen for their presence in surface waters has been missing. Here, we explore a combination of an automated suspect screening approach based on liquid chromatography coupled to high-resolution mass spectrometry and a model-based prioritization using consumption data, readily predictable fate properties and a generic mass balance model for activated sludge treatment to comprehensively detect APIs with relevant exposure in wastewater treatment plant effluents. The procedure afforded the detection of 27 APIs that had not been covered in our previous target method, which included 119 parent APIs. The newly detected APIs included seven compounds with a high potential for bioaccumulation and persistence, and also three compounds that were suspected to stem from point sources rather than from consumption as medicines. Analytical suspect screening proved to be more selective than model-based prioritization, making it the method of choice for focusing analytical method development or fate and effect testing on those APIs most relevant to the aquatic environment. However, we found that state-of-the-practice exposure modeling used to predict potential high-exposure substances can be a useful complement to point toward oversights and known or suspected detection gaps in the analytical method, most of which were related to insufficient ionization.
Collapse
Affiliation(s)
- Heinz P Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Annika E Wössner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Environmental Systems Science (D-USYS), ETH Zürich , 8092 Zürich, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Environmental Systems Science (D-USYS), ETH Zürich , 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Mendoza A, Aceña J, Pérez S, López de Alda M, Barceló D, Gil A, Valcárcel Y. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard. ENVIRONMENTAL RESEARCH 2015; 140:225-41. [PMID: 25880605 DOI: 10.1016/j.envres.2015.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
This work analyses the presence of twenty-five pharmaceutical compounds belonging to seven different therapeutic groups and one iodinated contrast media (ICM) in a Spanish medium-size hospital located in the Valencia Region. Analysis of the target compounds in the hospital wastewater was performed by means of solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (HPLC-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on Predicted No Effect Concentration (PNEC) was also applied to estimate Hazard Quotients (HQs) for the compounds investigated. Additionally, the environmental hazard associated to the various compounds measured was assessed through the calculation of the Persistence, Bioaccumulation and Toxicity (PBT) Index, which categorizes compounds according to their environmentally damaging characteristics. The results of the study showed the presence of twenty-four out of the twenty-six compounds analysed at individual concentrations ranging from 5 ng L(-1) to 2 mg L(-1). The highest concentrations corresponded to the ICM iomeprol, found at levels between 424 and 2093 μg L(-1), the analgesic acetaminophen (15-44 μg L(-1)), the diuretic (DIU) furosemide (6-15 μg L(-1)), and the antibiotics (ABIs) ofloxacin and trimethoprim (2-5 μg L(-1)). The lowest levels corresponded to the anti-inflammatory propyphenazone, found at concentrations between 5 and 44 ng L(-1). Differences in terms of concentrations of the analysed compounds have been observed in all the therapeutic groups when comparing the results obtained in this and other recent studies carried out in hospitals with different characteristics from different geographical areas and in different seasons. The screening level risk assessment performed in raw water from the hospital effluent showed that the analgesics and anti-inflammatories (AAFs) acetaminophen, diclofenac, ibuprofen and naproxen, the antibiotics (ABIs) clarithromycin, ofloxacin and trimethoprim, and the β-blocker (BBL) propranolol were present at concentrations leading to HQ values higher than 10, thus indicating high risk. When applying a factor to take into account potential dilution and degradation processes, only the compound ibuprofen showed a HQ higher than 1. Likewise, the cumulative HQ or Toxic Units (TUs) calculated in the raw water for each of the therapeutic groups studied showed that these three classes of drugs were at concentrations high enough to potentially generate high risk to aquatic organisms while taking into account possible dilution and degradation processes only one of them, the AAFs can be considered to represent high risk. Finally, the environmental hazard assessment performed showed that the AAFs diclofenac and ibuprofen and the ABI clarithromycin have the highest, maximum value of 9 of PBT Index due to their inherent environmentally damaging characteristics of persistence, bioaccumulation and toxicity. The methodology followed in the present case study can be taken as a novel approach to classify and categorize pharmaceuticals on the basis of their occurrence in hospital effluents, their derived environmental risks, and their associated environmental hazard. This classification becomes important because it can be used as a model or orientation for hospitals in the process of developing environmentally sustainable policies and as an argument to justify the adoption of advanced, specific treatments for hospital effluents before being discharged into the public sewage system.
Collapse
Affiliation(s)
- A Mendoza
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Occupational Health and Safety. University Hospital of Fuenlabrada. Camino del Molino, s/n. 28942 Fuenlabrada (Madrid), Spain.
| | - J Aceña
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - S Pérez
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - M López de Alda
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - A Gil
- Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain
| | - Y Valcárcel
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain.
| |
Collapse
|
14
|
Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunström B, Fick J, Gunnarsson L, Larsson DGJ, Sumpter JP, Tysklind M, Rudén C. Improving environmental risk assessment of human pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5336-45. [PMID: 25844810 DOI: 10.1021/acs.est.5b00302] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper presents 10 recommendations for improving the European Medicines Agency's guidance for environmental risk assessment of human pharmaceutical products. The recommendations are based on up-to-date, available science in combination with experiences from other chemical frameworks such as the REACH-legislation for industrial chemicals. The recommendations concern: expanding the scope of the current guideline; requirements to assess the risk for development of antibiotic resistance; jointly performed assessments; refinement of the test proposal; mixture toxicity assessments on active pharmaceutical ingredients with similar modes of action; use of all available ecotoxicity studies; mandatory reviews; increased transparency; inclusion of emission data from production; and a risk management option. We believe that implementation of our recommendations would strengthen the protection of the environment and be beneficial to society. Legislation and guidance documents need to be updated at regular intervals in order to incorporate new knowledge from the scientific community. This is particularly important for regulatory documents concerning pharmaceuticals in the environment since this is a research field that has been growing substantially in the last decades.
Collapse
Affiliation(s)
- Marlene Ågerstrand
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Cecilia Berg
- ‡Department of Environmental Toxicology, Uppsala University, Uppsala SE-752 36, Sweden
| | - Berndt Björlenius
- §Division of Industrial Biotechnology, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Magnus Breitholtz
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Björn Brunström
- ‡Department of Environmental Toxicology, Uppsala University, Uppsala SE-752 36, Sweden
| | - Jerker Fick
- ∥Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Lina Gunnarsson
- ⊥Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg SE-405 30, Sweden
- #Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - D G Joakim Larsson
- ⊥Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg SE-405 30, Sweden
| | - John P Sumpter
- ∇Institute for the Environment, Brunel University, Uxbridge UB8 3PH, United Kingdom
| | - Mats Tysklind
- ∥Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Christina Rudén
- †Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
15
|
Ojajuni O, Saroj D, Cavalli G. Removal of organic micropollutants using membrane-assisted processes: a review of recent progress. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/21622515.2015.1036788] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oluwatosin Ojajuni
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Devendra Saroj
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Gabriel Cavalli
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| |
Collapse
|
16
|
Qin L, Lin YL, Xu B, Hu CY, Tian FX, Zhang TY, Zhu WQ, Huang H, Gao NY. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes. WATER RESEARCH 2014; 65:271-81. [PMID: 25141357 DOI: 10.1016/j.watres.2014.07.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 05/12/2023]
Abstract
Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.
Collapse
Affiliation(s)
- Lang Qin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Fu-Xiang Tian
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wen-Qian Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - He Huang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Navarro AE, Lim H, Chang E, Lee Y, Manrique AS. Uptake of Sulfa Drugs from Aqueous Solutions by Marine Algae. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.926930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Godman B, Wettermark B, Hoffmann M, Andersson K, Haycox A, Gustafsson LL. Multifaceted national and regional drug reforms and initiatives in ambulatory care in Sweden: global relevance. Expert Rev Pharmacoecon Outcomes Res 2014; 9:65-83. [DOI: 10.1586/14737167.9.1.65] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Abstract
Background: Human health is dependent upon environmental sustainability. Many have argued that environmental sustainability advocacy and environmentally responsible healthcare practice are imperative healthcare actions. Research questions: What are the key obstacles to healthcare professionals supporting environmental sustainability? How may these obstacles be overcome? Research design: Data-driven thematic qualitative analysis of semi-structured interviews identified common and pertinent themes, and differences between specific healthcare disciplines. Participants: A total of 64 healthcare professionals and academics from all states and territories of Australia, and multiple healthcare disciplines were recruited. Ethical considerations: Institutional ethics approval was obtained for data collection. Participants gave informed consent. All data were de-identified to protect participant anonymity. Findings: Qualitative analysis indicated that Australian healthcare professionals often take more action in their personal than professional lives to protect the environment, particularly those with strong professional identities. The healthcare sector’s focus on economic rationalism was a substantial barrier to environmentally responsible behaviour. Professionals also feared conflict and professional ostracism, and often did not feel qualified to take action. This led to healthcare professionals making inconsistent moral judgements, and feeling silenced and powerless. Constraints on non-clinical employees within and beyond the sector exacerbated these difficulties. Discussion: The findings are consistent with the literature reporting that organisational constraints, and strong social identification, can inhibit actions that align with personal values. This disparity can cause moral distress and residue, leading to feelings of powerlessness, resulting in less ethical behaviour. Conclusion: The data highlight a disparity between personal and professional actions to address environmental sustainability. Given the constraints Australian healthcare professionals encounter, they are unlikely to shift to environmentally responsible practice without support from institutions and professional associations. Professional development is required to support this endeavour. The poor transference of pro-ecological behaviour from one setting to another is likely to have international implications for healthcare practice.
Collapse
|
20
|
Dohle S, Campbell VEA, Arvai JL. Consumer-perceived risks and choices about pharmaceuticals in the environment: a cross-sectional study. Environ Health 2013; 12:45. [PMID: 23734758 PMCID: PMC3680168 DOI: 10.1186/1476-069x-12-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/29/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND There is increasing concern that pollution from pharmaceuticals used in human medicine and agriculture can be a threat to the environment. Little is known, however, if people are aware that pharmaceuticals may have a detrimental influence on the environment. The present study examines people's risk perception and choices in regard to environmental risks of pharmaceuticals used in human medicine and for agricultural purposes. METHODS A representative sample of the U.S. population (N = 640) was surveyed. Respondents completed a hypothetical choice task that involved tradeoffs between human and environmental health. In addition, it was examined how much people would support an environment policy related to drug regulation. RESULTS For agricultural pharmaceuticals, respondents reported a high level of satisfaction for a policy requiring farms to limit their use of antibiotics. In the domain of pharmaceuticals used in human medicine, we found that people were willing to consider environmental consequences when choosing a drug, but only when choices were made about treatment options for a rather harmless disease. In contrast, when decisions were made about treatment options for a severe disease, the drug's effectiveness was the most important criterion. CONCLUSIONS It can be concluded that the environmental impact of a drug will be hardly considered in decisions about pharmaceuticals for severe diseases like cancer, and this may be due to the fact that these decisions are predominantly affective in nature. However, for less severe health risks, people are willing to balance health and environmental considerations.
Collapse
Affiliation(s)
- Simone Dohle
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
| | - Victoria E A Campbell
- Department of Communication and Culture, University of Calgary, Calgary, Canada
- Department of Geography, University of Calgary, Calgary, Canada
| | - Joseph L Arvai
- Department of Geography, University of Calgary, Calgary, Canada
- Decision Research, Eugene, OR, USA
| |
Collapse
|
21
|
Daughton CG, Ruhoy IS. Lower-dose prescribing: minimizing "side effects" of pharmaceuticals on society and the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013. [PMID: 23201698 DOI: 10.1016/j.scitotenv.2012.10.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The prescribed use of pharmaceuticals can result in unintended, unwelcomed, and potentially adverse consequences for the environment and for those not initially targeted for treatment. Medication usage frequently results in the collateral introduction to the environment (via excretion and bathing) of active pharmaceutical ingredients (APIs), bioactive metabolites, and reversible conjugates. Imprudent prescribing and non-compliant patient behavior drive the accumulation of unused medications, which pose major public health risks from diversion as well as risks for the environment from unsound disposal, such as flushing to sewers. The prescriber has the unique wherewithal to reduce each of these risks by modifying various aspects of the practice of prescribing. By incorporating consideration of the potential for adverse environmental impacts into the practice of prescribing, patient care also could possibly be improved and public health better protected. Although excretion of an API is governed by its characteristic pharmacokinetics, this variable can be somewhat controlled by the prescriber in selecting APIs possessing environment-friendly excretion profiles and in selecting the lowest effective dose. This paper presents the first critical examination of the multi-faceted role of drug dose in reducing the ambient levels of APIs in the environment and in reducing the incidence of drug wastage, which ultimately necessitates disposal of leftovers. Historically, drug dose has been actively excluded from consideration in risk mitigation strategies for reducing ambient API levels in the environment. Personalized adjustment of drug dose also holds the potential for enhancing therapeutic outcomes while simultaneously reducing the incidence of adverse drug events and in lowering patient healthcare costs. Optimizing drug dose is a major factor in improving the sustainability of health care. The prescriber needs to be cognizant that the "patient" encompasses the environment and other "bystanders," and that prescribed treatments can have unanticipated, collateral impacts that reach far beyond the healthcare setting.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| | | |
Collapse
|
22
|
Prioritization. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62657-8.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
23
|
Roos V, Gunnarsson L, Fick J, Larsson DGJ, Rudén C. Prioritising pharmaceuticals for environmental risk assessment: Towards adequate and feasible first-tier selection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 421-422:102-10. [PMID: 22361586 DOI: 10.1016/j.scitotenv.2012.01.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 05/02/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment, and the concerns for negative effects on aquatic organisms, has gained increasing attention over the last years. As ecotoxicity data are lacking for most active pharmaceutical ingredients (APIs), it is important to identify strategies to prioritise APIs for ecotoxicity testing and environmental monitoring. We have used nine previously proposed prioritisation schemes, both risk- and hazard-based, to rank 582 APIs. The similarities and differences in overall ranking results and input data were compared. Moreover, we analysed how well the methods ranked seven relatively well-studied APIs. It is concluded that the hazard-based methods were more successful in correctly ranking the well-studied APIs, but the fish plasma model, which includes human pharmacological data, also showed a high success rate. The results of the analyses show that the input data availability vary significantly; some data, such as logP, are available for most API while information about environmental concentrations and bioconcentration are still scarce. The results also suggest that the exposure estimates in risk-based methods need to be improved and that the inclusion of effect measures at first-tier prioritisation might underestimate risks. It is proposed that in order to develop an adequate prioritisation scheme, improved data on exposure such as degradation and sewage treatment removal and bioconcentration ability should be further considered. The use of ATC codes may also be useful for the development of a prioritisation scheme that includes the mode of action of pharmaceuticals and, to some extent, mixture effects.
Collapse
Affiliation(s)
- V Roos
- Division of Philosophy, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Prados-Joya G, Sánchez-Polo M, Rivera-Utrilla J, Ferro-García M. Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. WATER RESEARCH 2011; 45:393-403. [PMID: 20850862 DOI: 10.1016/j.watres.2010.08.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 05/16/2023]
Abstract
The objective of this study was to analyze the efficacy of ultraviolet (UV) radiation in the direct photodegradation of nitroimidazoles. For this purpose, i) a kinetic study was performed, determining the quantum yield of the process; and ii) the influence of the different operational variables was analyzed (initial concentration of antibiotic, pH, presence of natural organic matter compounds, and chemical composition of water), and the time course of total organic carbon (TOC) concentration and toxicity during nitroimidazole photodegradation was studied. The very low quantum yields obtained for the four nitroimidazoles are responsible for the low efficacy of the quantum process during direct photon absorption in nitroimidazole phototransformation. The R(254) values obtained show that the dose habitually used for water disinfection is not sufficient to remove this type of pharmaceutical; therefore, higher doses of UV irradiation or longer exposure times are required for their removal. The time course of TOC and toxicity during direct photodegradation (in both ultrapure and real water) shows that oxidation by-products are not oxidized to CO(2) to the desired extent, generating oxidation by-products that are more toxic than the initial product. The concentration of nitroimidazoles has a major effect on their photodegradation rate. The study of the influence of pH on the values of parameters ɛ (molar absorption coefficient) and k'(E) (photodegradation rate constant) showed no general trend in the behavior of nitroimidazoles as a function of the solution pH. The components of natural organic matter, gallic acid (GAL), tannic acid (TAN) and humic acid (HUM), may act as promoters and/or inhibitors of OH· radicals via photoproduction of H(2)O(2). The effect of GAL on the metronidazole (MNZ) degradation rate markedly differed from that of TAN or HUM, with a higher rate at low GAL concentrations. Differences in MNZ degradation rate among waters with different chemical composition are not very marked, although the rate is slightly lower in wastewaters, mainly due to the UV radiation filter effect of this type of water.
Collapse
Affiliation(s)
- G Prados-Joya
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | | | | |
Collapse
|
25
|
Méndez-Díaz J, Prados-Joya G, Rivera-Utrilla J, Leyva-Ramos R, Sánchez-Polo M, Ferro-García M, Medellín-Castillo N. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J Colloid Interface Sci 2010; 345:481-90. [DOI: 10.1016/j.jcis.2010.01.089] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
26
|
Gauthier H, Yargeau V, Cooper DG. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:1701-6. [PMID: 20089297 DOI: 10.1016/j.scitotenv.2009.12.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/30/2009] [Accepted: 12/06/2009] [Indexed: 05/05/2023]
Abstract
This work investigated the possible fate of pharmaceuticals in the environment that are known to be resistant to biodegradation. A co-metabolism approach, adding a readily degradable carbon source, was used to study the biodegradation of some pharmaceuticals. The pharmaceuticals selected were all known to be micro pollutants and frequently used by humans. The microorganisms used primarily were Rhodococcus rhodochrous, known to co-metabolize difficult to degrade hydrocarbons and Aspergillus niger. Because of the long periods of time required for the degradation experiments after growth had reached the stationary phase, it was found to be necessary to correct for water loss from the media. Co-metabolism of carbamazepine, sulfamethizole and sulfamethoxazole was observed and as much as 20% of these compounds could be removed. Small amounts of stable metabolites were observed during the degradation of some of these drugs and these were different from the metabolites obtained from abiotic degradation. A metabolite arising from the biodegradation of sulfamethoxazole by R.rhodochrous was identified.
Collapse
Affiliation(s)
- Hervé Gauthier
- Department of Chemical Engineering, McGill University, 3610 University, Montreal, Canada
| | | | | |
Collapse
|
27
|
Mota AJ, Prados-Joya G, Arráez-Román D, Sánchez-Polo M, Robles R, Ferro-García M, Rivera-Utrilla J. A convenient antibiotic indicator in the ozone treatment of wastewaters. An experimental and theoretical study. NEW J CHEM 2010. [DOI: 10.1039/c0nj00171f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García MA, Bautista-Toledo I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2009; 170:298-305. [PMID: 19464791 DOI: 10.1016/j.jhazmat.2009.04.096] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 05/16/2023]
Abstract
The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.
Collapse
Affiliation(s)
- J Rivera-Utrilla
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
29
|
Comerton AM, Andrews RC, Bagley DM. Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:3923-3939. [PMID: 19736228 DOI: 10.1098/rsta.2009.0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The detection of organic micropollutants, such as endocrine-disrupting compounds, pharmaceuticals and personal care products, in wastewater and the aquatic environment has brought increasing concern over their potential adverse ecological and human impacts. These compounds are generally present at trace levels (ng l(-1)) and in complex water matrices, such as wastewaters and surface waters, making their analysis difficult. Currently, no standardized analytical methods are available for the analysis of organic micropollutants in environmental waters. Owing to the diversity of physico-chemical properties exhibited by the various classes of organic micropollutants, the majority of established analytical methods described in the literature focus on a specific class of compounds, with few methods applicable to multi-class compound analysis. As such, analytical challenges and limitations contribute to the lack of understanding of the effectiveness of drinking water and wastewater treatment processes to remove organic micropollutants. This paper provides a practical overview of current analytical methods that have been developed for the analysis of multiple classes of organic micropollutants from various water matrices and describes the challenges and limitations associated with the development of these methods.
Collapse
Affiliation(s)
- Anna M Comerton
- Department of Civil Engineering, University of Toronto, , 35 Saint George Street, Toronto, Ontario, Canada M5S 1A4.
| | | | | |
Collapse
|
30
|
Agerstrand M, Wester M, Rudén C. The Swedish Environmental Classification and Information System for Pharmaceuticals--an empirical investigation of the motivations, intentions and expectations underlying its development and implementation. ENVIRONMENT INTERNATIONAL 2009; 35:778-786. [PMID: 19135253 DOI: 10.1016/j.envint.2008.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 12/01/2008] [Indexed: 05/27/2023]
Abstract
In 2005 the Swedish Association of the Pharmaceutical Industry (LIF) initiated a national environmental classification and information system for pharmaceuticals. This investigation reports the results from a survey, conducted among the persons involved in the start-up process. The aim of this study is to generate knowledge contributing to the clarification of the motivations, expectations, and intentions underlying the development and implementation of the system. The decision to implement a classification and information system for pharmaceuticals was the result of a combination of several driving forces, mainly political pressure and a possibility to increase the industries' goodwill, while at the same time keeping the process under the industries' control. The expected possible effects of the system, other than increased goodwill, are according to this survey assumed to be low. The system offers little guidance for end-users in the substitution of one pharmaceutical for another. One possible reason for this could be that LIF needs to observe the interests of all its members' and should not affect competition. The affiliation of the involved actors correlates to how these actors view and value the system, but this has not hampered the collaborative process to develop and implement it.
Collapse
Affiliation(s)
- M Agerstrand
- Division of Philosophy, Royal Institute of Technology (KTH), Teknikringen 78 B, SE-100 44 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Pastor-Navarro N, Brun EM, Gallego-Iglesias E, Maquieira Á, Puchades R. Development of immunoassays to determinate sulfamethoxazole residues in wastewaters. ACTA ACUST UNITED AC 2009; 11:1094-100. [DOI: 10.1039/b818299j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Titz A, Döll P. Actor modelling and its contribution to the development of integrative strategies for management of pharmaceuticals in drinking water. Soc Sci Med 2008; 68:672-81. [PMID: 19110360 DOI: 10.1016/j.socscimed.2008.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Indexed: 10/21/2022]
Abstract
Widespread presence of human pharmaceuticals in water resources across the globe is documented. While some, but certainly not enough, research on the occurrence, fate and effect of pharmaceuticals in water resources has been carried out, a holistic risk management strategy is missing. The transdisciplinary research project "start" aimed to develop an integrative strategy by the participation of experts representing key actors in the problem field "pharmaceuticals in drinking water". In this paper, we describe a novel modelling method, actor modelling with the semi-quantitative software DANA (Dynamic Actor Network Analysis), and its application in support of identifying an integrative risk management strategy. Based on the individual perceptions of different actors, the approach allows the identification of optimal strategies. Actors' perceptions were elicited by participatory model building and interviews, and were then modelled in perception graphs. Actor modelling indicated that an integrative strategy that targets environmentally-responsible prescription, therapy, and disposal of pharmaceuticals on one hand, and the development of environmentally-friendly pharmaceuticals on the other hand, will likely be most effective for reducing the occurrence of pharmaceuticals in drinking water (at least in Germany where the study was performed). However, unlike most other actors, the pharmaceutical industry itself does not perceive that the production of environmentally-friendly pharmaceuticals is an action that helps to achieve its goals, but contends that continued development of highly active pharmaceutical ingredients will help to reduce the occurrence of pharmaceuticals in the water cycle. Investment in advanced waste or drinking water treatment is opposed by both the wastewater treatment company and the drinking water supplier, and is not mentioned as appropriate by the other actors. According to our experience, actor modelling is a useful method to suggest effective and realisable integrative risk management strategies in complex problem fields that involve many societal actors.
Collapse
Affiliation(s)
- Alexandra Titz
- Institute of Physical Geography, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
33
|
A method to include the environmental hazard in drug prescribing. ACTA ACUST UNITED AC 2008; 31:24-31. [DOI: 10.1007/s11096-008-9260-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 10/11/2008] [Indexed: 10/21/2022]
|
34
|
Sánchez-Polo M, Rivera-Utrilla J, Prados-Joya G, Ferro-García MA, Bautista-Toledo I. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. WATER RESEARCH 2008; 42:4163-71. [PMID: 18762314 DOI: 10.1016/j.watres.2008.05.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/26/2008] [Accepted: 05/30/2008] [Indexed: 05/16/2023]
Abstract
The main objective of this study was to analyze the effectiveness of technologies based on the use of ozone and activated carbon for the removal of nitroimidazoles from water, considering them as model of pharmaceutical compounds. A study was undertaken of the influence of the different operational variables on the effectiveness of each system studied (O(3), O(3)/activated carbon), and on the kinetics involved in each process. Ozone reaction kinetics showed that nitroimidazoles have a low reactivity, with K(O)(3) values <350 M(-1)s(-1) regardless of the nitroimidazole and solution pH considered. However, nitroimidazoles have a high affinity for HO radicals, with radical rate constant (k(HO)) values of around 10(10)M(-1)s(-1). Among the nitroimidazole ozonation by-products, nitrate ions and 3-acetyl-2-oxazolidinone were detected. The presence of activated carbon during nitroimidazole ozonation produces (i) an increase in the removal rate, (ii) a reduction in the toxicity of oxidation by-products, and (iii) a reduction in the concentration of dissolved organic matter. These results are explained by the generation of HO radicals at the O(3)-activated carbon interface.
Collapse
Affiliation(s)
- M Sánchez-Polo
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
35
|
Comerton AM, Andrews RC, Bagley DM, Hao C. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.01.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Khetan SK, Collins TJ. Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chem Rev 2007; 107:2319-64. [PMID: 17530905 DOI: 10.1021/cr020441w] [Citation(s) in RCA: 577] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sushil K Khetan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
37
|
Daughton CG. Chapter 1 Pharmaceuticals in the environment: sources and their management. ANALYSIS, FATE AND REMOVAL OF PHARMACEUTICALS IN THE WATER CYCLE 2007. [DOI: 10.1016/s0166-526x(07)50001-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|