1
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
2
|
Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic Radiation Force: A Review of Four Mechanisms for Biomedical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3261-3269. [PMID: 34520353 DOI: 10.1109/tuffc.2021.3112505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation force is a universal phenomenon in any wave motion where the wave energy produces a static or transient force on the propagation medium. The theory of acoustic radiation force (ARF) dates back to the early 19th century. In recent years, there has been an increasing interest in the biomedical applications of ARF. Following a brief history of ARF, this article describes a concise theory of ARF under four physical mechanisms of radiation force generation in tissue-like media. These mechanisms are primarily based on the dissipation of acoustic energy of propagating waves, the reflection of the incident wave, gradients of the compressional wave speeds, and the spatial variations of energy density in standing acoustic waves. Examples describing some of the practical applications of ARF under each mechanism are presented. This article concludes with a discussion on selected ideas for potential future applications of ARF in biomedicine.
Collapse
|
3
|
Zemzemi C, Aichele J, Catheline S. Multiple sources array controls shear-wave field in soft tissue using time reversal. Phys Med Biol 2018; 63:18NT02. [PMID: 30152787 DOI: 10.1088/1361-6560/aadd3f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In most elastography experiments, shear waves are generated using a single source on the surface with a shaker, or in the bulk with radiation pressure of ultrasound. However, emitting controlled shear waves from multiple sources is a good way to improve the signal to-noise-ratio for shear-wave elastography. The experiments are conducted using six shakers with independent driving electronics in gelatin-graphite to mimic the tissue. Based on time reversal, our approach shows the feasibility of controlling shear-wave field in space with multiple focal spots at chosen locations, and in time with a chosen delay between each focusing. Improved by 10 dB compared to the use of a single source, the signal-to-noise ratio demonstrates that time-reversal as an adaptive filter is a good method to deliver maximum energy vibrations toward deep regions. Furthermore, this adaptive approach allows controlled vibrations to be delivered through bone conduction: a shear-wave focal spot is experimentally observed in a soft brain tissue-mimicking phantom using the multiple sources array applied to a skull model.
Collapse
Affiliation(s)
- C Zemzemi
- LabTau, Inserm, U1032, Lyon, F-69003, France. Université de Lyon, Lyon, F-69003, France. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
4
|
Giammarinaro B, Zorgani A, Catheline S. Shear-Wave Sources for Soft Tissues in Ultrasound Elastography. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Acoustic Radiation Force Based Ultrasound Elasticity Imaging for Biomedical Applications. SENSORS 2018; 18:s18072252. [PMID: 30002352 PMCID: PMC6069000 DOI: 10.3390/s18072252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Abstract
Pathological changes in biological tissue are related to the changes in mechanical properties of biological tissue. Conventional medical screening tools such as ultrasound, magnetic resonance imaging or computed tomography have failed to produce the elastic properties of biological tissues directly. Ultrasound elasticity imaging (UEI) has been proposed as a promising imaging tool to map the elastic parameters of soft tissues for the clinical diagnosis of various diseases include prostate, liver, breast, and thyroid gland. Existing UEI-based approaches can be classified into three groups: internal physiologic excitation, external excitation, and acoustic radiation force (ARF) excitation methods. Among these methods, ARF has become one of the most popular techniques for the clinical diagnosis and treatment of disease. This paper provides comprehensive information on the recently developed ARF-based UEI techniques and instruments for biomedical applications. The mechanical properties of soft tissue, ARF and displacement estimation methods, working principle and implementation instruments for each ARF-based UEI method are discussed.
Collapse
|
6
|
Astaneh AV, Urban MW, Aquino W, Greenleaf JF, Guddati MN. Arterial waveguide model for shear wave elastography: implementation andin vitrovalidation. Phys Med Biol 2017; 62:5473-5494. [DOI: 10.1088/1361-6560/aa6ee3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Cheviakov AF, Ganghoffer JF. One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes. J Mech Behav Biomed Mater 2015; 58:105-121. [PMID: 26410196 DOI: 10.1016/j.jmbbm.2015.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023]
Abstract
The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures.
Collapse
Affiliation(s)
- A F Cheviakov
- Department of Mathematics and Statistics, University of Saskatchewan, Canada.
| | | |
Collapse
|
8
|
Nabavizadeh A, Song P, Chen S, Greenleaf JF, Urban MW. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:647-62. [PMID: 25881343 PMCID: PMC4400871 DOI: 10.1109/tuffc.2014.006805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Elasticity imaging is becoming established as a means of assisting in diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. Comb-push ultrasound shear elastography (CUSE) is one of these methods that apply acoustic radiation force to induce the shear wave in soft tissues. CUSE uses multiple ultrasound beams that are transmitted simultaneously to induce multiple shear wave sources into the tissue, with improved shear wave SNR and increased shear wave imaging frame rate. We propose a novel method that uses steered push beams (SPB) that can be applied for beam formation for shear wave generation. In CUSE beamforming, either unfocused or focused beams are used to create the propagating shear waves. In SPB methods we use unfocused beams that are steered at specific angles. The interaction of these steered beams causes shear waves to be generated in more of a random nature than in CUSE. The beams are typically steered over a range of 3 to 7° and can either be steered to the left (-θ) or right (+θ).We performed simulations of 100 configurations using Field II and found the best configurations based on spatial distribution of peaks in the resulting intensity field. The best candidates were ones with a higher number of the intensity peaks distributed over all depths in the simulated beamformed results. Then these optimal configurations were applied on a homogeneous phantom and two different phantoms with inclusions. In one of the inhomogeneous phantoms we studied two spherical inclusions with 10 and 20 mm diameters, and in the other phantom we studied cylindrical inclusions with diameters ranging from 2.53 to 16.67 mm. We compared these results with those obtained using conventional CUSE with unfocused and focused beams. The mean and standard deviation of the resulting shear wave speeds were used to evaluate the accuracy of the reconstructions by examining bias with nominal values for the phantoms as well as the contrast-to-noise ratio in the inclusion phantom results. In general the contrast-to-noise ratio (CNR) was higher and the bias was lower using the SPB method compared with the CUSE realizations except in the largest inclusions. In the cylindrical inclusion with 10.4 mm diameter, the CNR in CUSE methods ranged between 18.52 and 22.02 and the bias ranged between 5.50 and 11.12%, whereas for SPB methods provided CNR values between 23.07 and 48.90 and bias values between 3.78 and 9.22%. In a smaller cylindrical inclusion with diameter of 4.05 mm, CUSE methods gave CNR between 14.69 and 22.28 and bias ranging between 28.95 and 29.28%, whereas the SPB methods provided CNR values between 16.7 and 25.2 and bias values varying from 25.54 to 30.44%. The SPB method provides a flexible framework to produce shear wave sources that are widely distributed within the field-of-view for robust shear wave speed imaging.
Collapse
|
9
|
Doherty JR, Trahey GE, Nightingale KR, Palmeri ML. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:685-701. [PMID: 23549529 PMCID: PMC3679553 DOI: 10.1109/tuffc.2013.2617] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.
Collapse
Affiliation(s)
- Joshua R Doherty
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
10
|
Lee KH, Szajewski BA, Hah Z, Parker KJ, Maniatty AM. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:678-696. [PMID: 25364845 DOI: 10.1002/cnm.1488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/11/2011] [Accepted: 11/03/2011] [Indexed: 06/04/2023]
Abstract
In this study, a finite element model of a tissue-mimicking, viscoelastic phantom with a stiffer cylindrical inclusion subjected to an acoustic radiation force (ARF) is presented, and the resulting shear waves through the heterogeneous media are simulated, analyzed, and compared with experimental data. Six different models for the ARF were considered and compared. Each study used the same finite element model, but applied the following: (1) full radiation push; (2) focal region push; (3) single element focal point source; or (4) various thresholds of the full radiation push. For each case, displacements at discrete locations were determined and compared. The finite element simulation results for the full radiation push matched well with the experimental data with respect to replicating the shear wave speed and attenuation in the peak displacements through the background medium and inclusion, but did not illustrate comparable recovery after the peak displacements. As a result of this study, it has been shown that a focal region or point source push is not adequate to accurately model the effects of the full radiation push, but thresholding the full push can produce comparable results and reduce computation time.
Collapse
Affiliation(s)
- Kristen H Lee
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | | | | | | | | |
Collapse
|
11
|
Hazard C, Hah Z, Rubens D, Parker K. Integration of crawling waves in an ultrasound imaging system. Part 1: system and design considerations. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:296-311. [PMID: 22178166 PMCID: PMC3254834 DOI: 10.1016/j.ultrasmedbio.2011.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 10/06/2011] [Accepted: 10/29/2011] [Indexed: 05/04/2023]
Abstract
An ultrasound system (GE Logiq 9) was modified to produce a synthetic crawling wave using shear wave displacements generated by the radiation force of focused beams formed at the left and the right edge of the region of interest (ROI). Two types of focusing, normal and axicon, were implemented. Baseband (IQ) data was collected to determine the left and right displacements, which were then used to calculate an interference pattern. By imposing a variable delay between the two pushes, the interference pattern moves across the ROI to produce crawling waves. Also temperature and pressure measurements were made to assess the safety issues. The temperature profiles measured in a veal liver along the focal line showed the maximum temperature rise less than 0.8°C, and the pressure measurements obtained in degassed water and derated by 0.3 dB/cm/MHz demonstrate that the system can operate within FDA safety guidelines.
Collapse
|
12
|
Hah Z, Hazard C, Mills B, Barry C, Rubens D, Parker K. Integration of crawling waves in an ultrasound imaging system. Part 2: signal processing and applications. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:312-23. [PMID: 22178168 PMCID: PMC3254836 DOI: 10.1016/j.ultrasmedbio.2011.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/23/2011] [Accepted: 10/16/2011] [Indexed: 05/04/2023]
Abstract
This paper introduces methods to generate crawling wave interference patterns from the displacement fields generated from radiation force pushes on a GE Logiq 9 scanner. The same transducer and system provides both the pushing pulses to generate the shear waves and the tracking pulses to measure the displacements. Acoustic power and system limitations result in largely impulsive displacement fields. Measured displacements from pushes on either side of a region-of-interest (ROI) are used to calculate continuously varying interference patterns. This technique is explained along with a brief discussion of the conventional mechanical source-driven crawling waves for comparison. We demonstrate the method on three example cases: a gelatin-based phantom with a cylindrical inclusion, an oil-gelatin phantom and mouse livers. The oil-gelatin phantom and the mouse livers demonstrate not only shear speed estimation, but the frequency dependence of the shear wave speeds.
Collapse
Affiliation(s)
- Zaegyoo Hah
- University of Rochester, Department of Electrical and Computer Engineering, Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Hoyt K, Hah Z, Hazard C, Parker KJ. Experimental validation of acoustic radiation force induced shear wave interference patterns. Phys Med Biol 2011; 57:21-30. [PMID: 22127377 DOI: 10.1088/0031-9155/57/1/21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel elasticity imaging system founded on the use of acoustic radiation forces from a dual beam arrangement to generate shear wave interference patterns is described. Acquired pulse-echo data and correlation-based techniques were used to estimate the resultant deformation and to visualize tissue viscoelastic response. The use of normal versus axicon focal configurations was investigated for effects on shear wave generation. Theoretical models were introduced and shown in simulation to accurately predict shear wave propagation and interference pattern properties. In a tissue-mimicking phantom, experimental results are in congruence with theoretical predictions. Using dynamic acoustic radiation force excitation, results confirm that shear wave interference patterns can be produced remotely in a particular tissue region of interest (ROI). Overall, preliminary results are encouraging and the system described may prove feasible for interrogating the viscoelastic properties of normal and diseased tissue types.
Collapse
Affiliation(s)
- Kenneth Hoyt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
14
|
Deffieux T, Gennisson JL, Bercoff J, Tanter M. On the effects of reflected waves in transient shear wave elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:2032-5. [PMID: 21989866 DOI: 10.1109/tuffc.2011.2052] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years, novel quantitative techniques have been developed to provide noninvasive and quantitative stiffness images based on shear wave propagation. Using radiation force and ultrafast ultrasound imaging, the supersonic shear imaging technique allows one to remotely generate and follow a transient plane shear wave propagating in vivo in real time. The tissue shear modulus, i.e., its stiffness, can then be estimated from the shear wave local velocity. However, because the local shear wave velocity is estimated using a time-of- flight approach, reflected shear waves can cause artifacts in the estimated shear velocity because the incident and reflected waves propagate in opposite directions. Such effects have been reported in the literature as a potential drawback of elastography techniques based on shear wave speed, particularly in the case of high stiffness contrasts, such as in atherosclerotic plaque or stiff lesions. In this letter, we present our implementation of a simple directional filter, previously used for magnetic resonance elastography, which separates the forward- and backward-propagating waves to solve this problem. Such a directional filter could be applied to many elastography techniques based on the local estimation of shear wave speed propagation, such as acoustic radiation force imaging (ARFI), shearwave dispersion ultrasound vibrometry (SDUV), needle-based elastography, harmonic motion imaging, or crawling waves when the local propagation direction is known and high-resolution spatial and temporal data are acquired.
Collapse
|
15
|
Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods. Interface Focus 2011; 1:553-64. [PMID: 22419986 PMCID: PMC3262278 DOI: 10.1098/rsfs.2011.0023] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/18/2011] [Indexed: 12/14/2022] Open
Abstract
Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies.
Collapse
Affiliation(s)
- Mark L. Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|