1
|
Ge G, Sivasubramanian BP, Geng BD, Zhao S, Zhou Q, Huang G, O'Connor JC, Clark RA, Li S. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson's disease. Gene Ther 2024; 31:324-334. [PMID: 38627469 PMCID: PMC11245959 DOI: 10.1038/s41434-024-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.
Collapse
Affiliation(s)
- Guo Ge
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou, 550025, China
| | | | - Bill D Geng
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Shujie Zhao
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Qing Zhou
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jason C O'Connor
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert A Clark
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Senlin Li
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int J Mol Sci 2023; 24:ijms24043866. [PMID: 36835277 PMCID: PMC9968045 DOI: 10.3390/ijms24043866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), spinal cord injury (SCI), and amyotrophic lateral sclerosis (ALS), are characterized by acute or chronic progressive loss of one or several neuronal subtypes. However, despite their increasing prevalence, little progress has been made in successfully treating these diseases. Research has recently focused on neurotrophic factors (NTFs) as potential regenerative therapy for neurodegenerative diseases. Here, we discuss the current state of knowledge, challenges, and future perspectives of NTFs with a direct regenerative effect in chronic inflammatory and degenerative disorders. Various systems for delivery of NTFs, such as stem and immune cells, viral vectors, and biomaterials, have been applied to deliver exogenous NTFs to the central nervous system, with promising results. The challenges that currently need to be overcome include the amount of NTFs delivered, the invasiveness of the delivery route, the blood-brain barrier permeability, and the occurrence of side effects. Nevertheless, it is important to continue research and develop standards for clinical applications. In addition to the use of single NTFs, the complexity of chronic inflammatory and degenerative diseases may require combination therapies targeting multiple pathways or other possibilities using smaller molecules, such as NTF mimetics, for effective treatment.
Collapse
|
3
|
Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med 2022; 28:1813-1822. [PMID: 36064599 PMCID: PMC9499868 DOI: 10.1038/s41591-022-01956-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3–5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation. A phase 1/2a study shows that human neural progenitor cells modified to release the growth factor GDNF are safely transplanted into the spinal cord of patients with ALS, with cell survival and GDNF production for over 3 years.
Collapse
|
4
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
5
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:301-313. [PMID: 30829619 PMCID: PMC6597995 DOI: 10.3233/jpd-191576] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Intraputamenal glial cell line-derived neurotrophic factor (GDNF), administered every 4 weeks to patients with moderately advanced Parkinson’s disease, did not show significant clinical improvements against placebo at 40 weeks, although it significantly increased [18F]DOPA uptake throughout the entire putamen. Objective: This open-label extension study explored the effects of continued (prior GDNF patients) or new (prior placebo patients) exposure to GDNF for another 40 weeks. Methods: Using the infusion protocol of the parent study, all patients received GDNF without disclosing prior treatment allocations (GDNF or placebo). The primary outcome was the percentage change from baseline to Week 80 in the OFF state Unified Parkinson’s Disease Rating Scale (UPDRS) motor score. Results: All 41 parent study participants were enrolled. The primary outcome decreased by 26.7±20.7% in patients on GDNF for 80 weeks (GDNF/GDNF; N = 21) and 27.6±23.6% in patients on placebo for 40 weeks followed by GDNF for 40 weeks (placebo/GDNF, N = 20; least squares mean difference: 0.4%, 95% CI: –13.9, 14.6, p = 0.96). Secondary endpoints did not show significant differences between the groups at Week 80 either. Prespecified comparisons between GDNF/GDNF at Week 80 and placebo/GDNF at Week 40 showed significant differences for mean OFF state UPDRS motor (–9.6±6.7 vs. –3.8±4.2 points, p = 0.0108) and activities of daily living score (–6.9±5.5 vs. –1.0±3.7 points, p = 0.0003). No treatment-emergent safety concerns were identified. Conclusions: The aggregate study results, from the parent and open-label extension suggest that future testing with GDNF will likely require an 80- rather than a 40-week randomized treatment period and/or a higher dose.
Collapse
Affiliation(s)
- Alan L Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Mihaela Boca
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Matthias Luz
- Med Genesis Therapeutix Inc., Victoria, BC, Canada
| | - Max Woolley
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Lucy Mooney
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Sonali Dharia
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Jack Broadfoot
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - David Cronin
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Christian Schroers
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Neil U Barua
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Lara Longpre
- Med Genesis Therapeutix Inc., Victoria, BC, Canada
| | | | - Chris Boiko
- Med Genesis Therapeutix Inc., Victoria, BC, Canada
| | | | | | - Rob Harrison
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Owen Lewis
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Gemma Pritchard
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Mike Howell
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Charlie Irving
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - David Johnson
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Suk Kinch
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Christopher Marshall
- The Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, UK
| | | | - Stephan Blinder
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Paul Skinner
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Erich Mohr
- Med Genesis Therapeutix Inc., Victoria, BC, Canada
| | - Steven S Gill
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK.,Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| |
Collapse
|
7
|
Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson's disease. Brain 2020; 142:512-525. [PMID: 30808022 PMCID: PMC6391602 DOI: 10.1093/brain/awz023] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/24/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson’s disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35–75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2–3 and Unified Parkinson’s Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: −4.9%, 95% CI: −16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.
Collapse
Affiliation(s)
- Alan Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Matthias Luz
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | - Mihaela Boca
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Max Woolley
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Lucy Mooney
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Sonali Dharia
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Jack Broadfoot
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - David Cronin
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Christian Schroers
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Neil U Barua
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Lara Longpre
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | | | - Chris Boiko
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | | | | | - Rob Harrison
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Owen Lewis
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Gemma Pritchard
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Mike Howell
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Charlie Irving
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - David Johnson
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Suk Kinch
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Christopher Marshall
- The Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, UK
| | | | - Stephan Blinder
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Paul Skinner
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Erich Mohr
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | - Steven S Gill
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
- Correspondence regarding study concept, drug-delivery device and surgical implantation to: Professor Steven S. Gill, FRCS Consultant Neurosurgeon, Department of Neurosurgery, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK E-mail: Correspondence regarding trial oversight/execution and study data to: Dr Alan Whone, PhD, FRCP Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5NB, UK E-mail:
| |
Collapse
|
8
|
Abstract
Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and
differentiation of neurons. Due to their neuroprotective and neurorestorative properties,
their therapeutic potential has been tested in various neurodegenerative diseases.
Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based
therapies. Various intracerebral delivery approaches, both protein and gene
transfer-based, have been tested with varying outcomes. Three growth factors, glial
cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth
factor (PDGF-BB) have been tested in clinical trials in Parkinson’s disease (PD) during
the past 20 years. A new protein can now be added to this list, as cerebral dopamine
neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading
names, CDNF, together with its closest relative mesencephalic astrocyte-derived
neurotrophic factor (MANF), form a novel family of unconventional NTF that are both
structurally and mechanistically distinct from other growth factors. CDNF and MANF are
localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function
appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER
stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of
chronic degenerative diseases, and is an important target for therapeutic modulation.
Intraputamenally administered recombinant human CDNF has shown robust neurorestorative
effects in a number of small and large animal models of PD, and had a good safety profile
in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions
of CDNF are currently being tested in a randomized placebo-controlled phase I–II clinical
study in moderately advanced PD patients. Here, we review the history of growth
factor-based clinical trials in PD, and discuss how CDNF differs from the previously
tested growth factors.
Collapse
Affiliation(s)
- Henri J Huttunen
- 1 Herantis Pharma Plc, Espoo, Finland.,2 Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- 3 Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
10
|
Zhang GL, Wang LH, Liu XY, Zhang YX, Hu MY, Liu L, Fang YY, Mu Y, Zhao Y, Huang SH, Liu T, Wang XJ. Cerebral Dopamine Neurotrophic Factor (CDNF) Has Neuroprotective Effects against Cerebral Ischemia That May Occur through the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2018; 19:ijms19071905. [PMID: 29966219 PMCID: PMC6073452 DOI: 10.3390/ijms19071905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF), previously known as the conserved dopamine neurotrophic factor, belongs to the evolutionarily conserved CDNF/mesencephalic astrocyte-derived neurotrophic factor MANF family of neurotrophic factors that demonstrate neurotrophic activities in dopaminergic neurons. The function of CDNF during brain ischemia is still not known. MANF is identified as an endoplasmic reticulum (ER) stress protein; however, the role of CDNF in ER stress remains to be fully elucidated. Here, we test the neuroprotective effect of CDNF on middle cerebral artery occlusion (MCAO) rats and neurons and astrocytes treated with oxygen–glucose depletion (OGD). We also investigate the expression of CDNF in cerebral ischemia and in primary neurons treated with ER stress-inducing agents. Our results show that CDNF can significantly reduce infarct volume, reduce apoptotic cells and improve motor function in MCAO rats, while CDNF can increase the cell viability of neurons and astrocytes treated by OGD. The expression of CDNF was upregulated in the peri-infarct tissue at 2 h of ischemia/24 h reperfusion. ER stress inducer can induce CDNF expression in primary cultured neurons. Our data indicate that CDNF has neuroprotective effects on cerebral ischemia and the OGD cell model and the protective mechanism of CDNF may occur through ER stress pathways.
Collapse
Affiliation(s)
- Geng-Lin Zhang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
- Key Laboratory for Biotech-Drugs Ministry of Health and Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Li-Hong Wang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Xing-Yu Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Ya-Xuan Zhang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Meng-Yang Hu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Lin Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yuan-Yuan Fang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yu Mu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yan Zhao
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Shu-Hong Huang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Ting Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Xiao-Jing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| |
Collapse
|
11
|
Intermittent convection-enhanced delivery of GDNF into rhesus monkey putamen: absence of local or cerebellar toxicity. Arch Toxicol 2018; 92:2353-2367. [PMID: 29785638 PMCID: PMC6015623 DOI: 10.1007/s00204-018-2222-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/17/2018] [Indexed: 11/23/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson’s disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.
Collapse
|
12
|
Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH. Trophic factors for Parkinson's disease: To live or let die. Mov Disord 2016; 30:1715-24. [PMID: 26769457 DOI: 10.1002/mds.26426] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Trophic factors show great promise in laboratory studies as potential therapies for PD. However, multiple double-blind, clinical trials have failed to show benefits in comparison to a placebo control. This article will review the scientific rationale for testing trophic factors in PD, the results of the different clinical trials that have been performed to date, and the possible explanations for these failed outcomes. We will also consider future directions and the likelihood that trophic factors will become a viable therapy for patients with PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
13
|
A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16027. [PMID: 27069954 PMCID: PMC4813607 DOI: 10.1038/mtm.2016.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
Abstract
Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.
Collapse
|
14
|
GDNF-induced cerebellar toxicity: A brief review. Neurotoxicology 2015; 52:46-56. [PMID: 26535469 DOI: 10.1016/j.neuro.2015.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
Abstract
Recombinant-methionyl human glial cell line-derived neurotrophic factor (GDNF) is known for its neurorestorative and neuroprotective effects in rodent and primate models of Parkinson's disease (PD). When administered locally into the putamen of Parkinsonian subjects, early clinical studies showed its potential promise as a disease-modifying agent. However, the development of GDNF for the treatment of PD has been significantly clouded by findings of cerebellar toxicity after continuous intraputamenal high-dose administration in a 6-month treatment/3-month recovery toxicology study in rhesus monkeys. Specifically, multifocal cerebellar Purkinje cell loss affecting 1-21% of the cerebellar cortex was observed in 4 of 15 (26.7%; 95% confidence interval [CI]: 10.5-52.4%) animals treated at the highest dose level tested (3000μg/month). No cerebellar toxicity was observed at lower doses (450 and 900μg/month) in the same study, or at similar or higher doses (up to 10,000μg/month) in subchronic or chronic toxicology studies testing intermittent intracerebroventricular administration. While seemingly associated with the use of GDNF, the pathogenesis of the cerebellar lesions has not been fully understood to date. This review integrates available information to evaluate potential pathogenic mechanisms and provide a consolidated assessment of the findings. While other explanations are considered, the existing evidence is most consistent with the hypothesis that leakage of GDNF into cerebrospinal fluid during chronic infusions into the putamen down-regulates GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF generates the observed lesions. The implications of these findings for clinical studies with GDNF are discussed.
Collapse
|
15
|
Bender T, Migliore M, Campbell R, John Gatley S, Waszczak B. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience 2015; 303:569-76. [DOI: 10.1016/j.neuroscience.2015.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
|
16
|
Vuillemenot BR, Kennedy D, Reed RP, Boyd RB, Butt MT, Musson DG, Keve S, Cahayag R, Tsuruda LS, O'Neill CA. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution. Toxicol Appl Pharmacol 2014; 277:49-57. [DOI: 10.1016/j.taap.2014.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
17
|
Little PB, Krinke G. Special neuropathology problems. Toxicol Pathol 2010; 39:170-1. [PMID: 21078922 DOI: 10.1177/0192623310385146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Lindholm P, Saarma M. Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 2010; 70:360-71. [PMID: 20186704 DOI: 10.1002/dneu.20760] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current therapeutic interventions for neurodegenerative diseases alleviate only disease symptoms, while treatments that could stop or reverse actual degenerative processes are not available. Parkinson's disease (PD) is a movement disorder with characteristic degeneration of dopaminergic neurons in the midbrain. Few neurotrophic factors (NTFs) that promote survival, maintenance, and differentiation of affected brain neurons are considered as potential therapeutic agents for the treatment of neurodegenerative diseases. Thus, it is important to search and study new NTFs that could also be used in therapy. In this review, we discuss novel evolutionary conserved family of NTFs consisting of two members in the vertebrates, cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF). Invertebrates, including Drosophila and Caenorhabditis have a single protein homologous to vertebrate CDNF/MANF. Characteristic feature of these proteins is eight structurally conserved cysteine residues, which determine the protein fold. The crystal structure analysis revealed that CDNF and MANF consist of two domains; an amino-terminal saposin-like domain that may interact with lipids or membranes, and a presumably unfolded carboxy-terminal domain that may protect cells against endoplasmic reticulum stress. CDNF and MANF protect midbrain dopaminergic neurons and restore motor function in 6-hydroxydopamine rat model of PD in vivo. In line, Drosophila MANF is needed for the maintenance of dopaminergic neurites and dopamine levels in the fly, suggesting that the function of CDNF/MANF proteins is evolutionary conserved. Future studies will reveal the receptors and mode of action of these novel factors, which are potential therapeutic proteins for the treatment of PD.
Collapse
Affiliation(s)
- Päivi Lindholm
- Institute of Biotechnology, Viikinkaari 9, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
19
|
Redmond DE, Elsworth JD, Roth RH, Leranth C, Collier TJ, Blanchard B, Bjugstad KB, Samulski RJ, Aebischer P, Sladek JR. Embryonic substantia nigra grafts in the mesencephalon send neurites to the host striatum in non-human primate after overexpression of GDNF. J Comp Neurol 2009; 515:31-40. [PMID: 19399891 DOI: 10.1002/cne.22028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In spite of partial success in treating Parkinson's disease by using ectopically placed grafts of dopamine-producing cells, restoration of the original neuroanatomical circuits, if possible, might work better. Previous evidence of normal anatomic projections from ventral mesencephalic (VM) grafts placed in the substantia nigra (SN) has been limited to neonatal rodents and double grafting or bridging procedures. This study attempted to determine whether injection of a potent growth-promoting factor, glial cell line-derived neurotrophic factor (GDNF), into the target regions or placement of fetal striatal co-grafts in the nigrostriatal pathway might elicit neuritic outgrowth to the caudate nucleus. Four adult St. Kitts green monkeys received embryonic VM grafts into the rostral mesencephalon near the host SN, and injections of adeno-associated virus 2 (AAV2)/GDNF or equine infectious anemia virus (EIAV)/GDNF into the caudate. Three adult monkeys were co-grafted with fetal VM tissue near the SN and fetal striatal grafts (STR) 2.5 mm rostral in the nigrostriatal pathway. Before sacrifice, the striatal target regions were injected with the retrograde tracer Fluoro-Gold (FG). FG label was found in tyrosine hydroxylase-labeled neurons in VM grafts in the SN of only those monkeys that received AAV2/GDNF vector injections into the ipsilateral striatum. All monkeys showed FG labeling in the host SN when FG labeling was injected on the same side. These data show that grafted dopaminergic neurons can extend neurites to a distant target releasing an elevated concentration of GDNF, and suggest that grafted neurons can be placed into appropriate loci for potential tract reconstruction.
Collapse
Affiliation(s)
- D E Redmond
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Herzog CD, Brown L, Gammon D, Kruegel B, Lin R, Wilson A, Bolton A, Printz M, Gasmi M, Bishop KM, Kordower JH, Bartus RT. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. Neurosurgery 2009; 64:602-12; discussion 612-3. [PMID: 19349823 DOI: 10.1227/01.neu.0000340682.06068.01] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Parkinson's disease is characterized by profound motor deficits that result mainly as a consequence of degeneration of midbrain dopaminergic neurons. No current therapy slows or halts disease progression. Neurturin (NTN) and glial cell line-derived neurotrophic factor have potent neuroprotective and neurorestorative effects on dopaminergic neurons, but their use in treating Parkinson's disease has been limited by significant delivery obstacles. In this study, we examined the long-term expression, bioactivity, and safety/tolerability of CERE-120, an adeno-associated virus type 2 vector encoding human NTN, after bilateral stereotactic delivery to the striatum of nonhuman primates. METHODS Twelve naïve rhesus macaques received bilateral stereotactic injections of 1 of 2 CERE-120 doses or vehicle to the caudate and putamen. Neurological and clinical parameters were monitored for up to 1 year postadministration, after which animals were sacrificed for histological analyses. RESULTS Dose-related NTN expression was observed at 1 year and was associated with enhanced tyrosine hydroxylase immunolabeling in the striatum, hypertrophy of tyrosine hydroxylase-positive cells in the substantia nigra, and induction of extracellular signal-regulated kinase signaling in the substantia nigra. Extensive, formal analyses, conducted in accordance with Good Laboratory Practice Regulations, across multiple time points revealed no evidence of clinical, neurological, or systemic toxicity. CONCLUSION The present study provides evidence of long-term expression and bioactivity of NTN on the dopaminergic nigrostriatal system after bilateral stereotactic delivery of CERE-120 to the striatum. Furthermore, no evidence of any adverse effects for up to 1 year postadministration was observed. These findings reveal a wide safety margin for CERE-120 and collectively support the ongoing clinical testing of the efficacy and safety of CERE-120 in patients with Parkinson's disease.
Collapse
|
21
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Transgene Expression, Bioactivity, and Safety of CERE-120 (AAV2-Neurturin) Following Delivery to the Monkey Striatum. Mol Ther 2008; 16:1737-44. [DOI: 10.1038/mt.2008.170] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|