1
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
2
|
Hu Y, Jin L, Pan Y, Zou J, Wang Z. Apela gene therapy alleviates pulmonary hypertension in rats. FASEB J 2022; 36:e22431. [PMID: 35747913 DOI: 10.1096/fj.202200266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV-ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno-associated virus (AAV) was injected into monocrotaline (MCT)-induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N-terminal pro-brain natriuretic peptide (NT-proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial-to-mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up-regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Pyrrolizidine alkaloid-induced transcriptomic changes in rat lungs in a 28-day subacute feeding study. Arch Toxicol 2021; 95:2785-2796. [PMID: 34185104 PMCID: PMC8298252 DOI: 10.1007/s00204-021-03108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.
Collapse
|
4
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Sanada TJ, Sun XQ, Happé C, Guignabert C, Tu L, Schalij I, Bogaard HJ, Goumans MJ, Kurakula K. Altered TGFβ/SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells 2021; 10:cells10010084. [PMID: 33419137 PMCID: PMC7825543 DOI: 10.3390/cells10010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recent translational studies highlighted the inhibition of transforming growth factor (TGF)-β signaling as a promising target to treat pulmonary arterial hypertension (PAH). However, it remains unclear whether alterations in TGF-β signaling are consistent between PAH patients and animal models. Therefore, we compared TGF-β signaling in the lungs of PAH patients and rats with experimental PAH induced by monocrotaline (MCT) or SU5416+hypoxia (SuHx). In hereditary PAH (hPAH) patients, there was a moderate increase in both TGFβR2 and pSMAD2/3 protein levels, while these were unaltered in idiopathic PAH (iPAH) patients. Protein levels of TGFβR2 and pSMAD2/3 were locally increased in the pulmonary vasculature of PAH rats under both experimental conditions. Conversely, the protein levels of TGFβR2 and pSMAD2/3 were reduced in SuHx while slightly increased in MCT. mRNA levels of plasminogen activator inhibitor (PAI)-1 were increased only in MCT animals and such an increase was not observed in SuHx rats or in iPAH and hPAH patients. In conclusion, our data demonstrate considerable discrepancies in TGFβ-SMAD signaling between iPAH and hPAH patients, as well as between patients and rats with experimental PAH.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Disease Models, Animal
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Phosphorylation
- Plasminogen Activator Inhibitor 1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Signal Transduction
- Smad Proteins/metabolism
- Systole
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Takayuki Jujo Sanada
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Xiao-Qing Sun
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Chris Happé
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Christophe Guignabert
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; (C.G.); (L.T.)
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; (C.G.); (L.T.)
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ingrid Schalij
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Harm-Jan Bogaard
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Marie-José Goumans
- Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Kondababu Kurakula
- Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-715-269-265; Fax: +31-715-268-270
| |
Collapse
|
6
|
The BMP Receptor 2 in Pulmonary Arterial Hypertension: When and Where the Animal Model Matches the Patient. Cells 2020; 9:cells9061422. [PMID: 32521690 PMCID: PMC7348993 DOI: 10.3390/cells9061422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Mutations in bone morphogenetic protein receptor type II (BMPR2) are leading to the development of hereditary pulmonary arterial hypertension (PAH). In non-hereditary forms of PAH, perturbations in the transforming growth factor-β (TGF-β)/BMP-axis are believed to cause deficient BMPR2 signaling by changes in receptor expression, the activity of the receptor and/or downstream signaling. To date, BMPR2 expression and its activity in the lungs of patients with non-hereditary PAH is poorly characterized. In recent decades, different animal models have been used to understand the role of BMPR2 signaling in PAH pathophysiology. Specifically, the monocrotaline (MCT) and Sugen-Hypoxia (SuHx) models are extensively used in interventional studies to examine if restoring BMPR2 signaling results in PAH disease reversal. While PAH is assumed to develop in patients over months or years, pulmonary hypertension in experimental animal models develops in days or weeks. It is therefore likely that modifications in BMP and TGF-β signaling in these models do not fully recapitulate those in patients. In order to determine the translational potential of the MCT and SuHx models, we analyzed the BMPR2 expression and activity in the lungs of rats with experimentally induced PAH and compared this to the BMPR2 expression and activity in the lungs of PAH patients. Methods: the BMPR2 expression was analyzed by Western blot analysis and immunofluorescence (IF) microscopy to determine the quantity and localization of the receptor in the lung tissue from normal control subjects and patients with hereditary or idiopathic PAH, as well as in the lungs of control rats and rats with MCT or SuHx-induced PAH. The activation of the BMP pathway was analyzed by determining the level and localization of phosphorylated Smad1/5/8 (pSmad 1/5/8), a downstream mediator of canonical BMPR2 signaling. Results: While BMPR2 and pSmad 1/5/8 expression levels were unaltered in whole lung lysates/homogenates from patients with hereditary and idiopathic PAH, IF analysis showed that BMPR2 and pSmad 1/5/8 levels were markedly decreased in the pulmonary vessels of both PAH patient groups. Whole lung BMPR2 expression was variable in the two PAH rat models, while in both experimental models the expression of BMPR2 in the lung vasculature was increased. However, in the human PAH lungs, the expression of pSmad 1/5/8 was downregulated in the lung vasculature of both experimental models. Conclusion: BMPR2 receptor expression and downstream signaling is reduced in the lung vasculature of patients with idiopathic and hereditary PAH, which cannot be appreciated when using human whole lung lysates. Despite increased BMPR2 expression in the lung vasculature, the MCT and SuHx rat models did develop PAH and impaired downstream BMPR2-Smad signaling similar to our findings in the human lung.
Collapse
|
7
|
Novel Molecular Mechanisms of Pulmonary Hypertension: A Search for Biomarkers and Novel Drug Targets-From Bench to Bed Site. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7265487. [PMID: 32566097 PMCID: PMC7261339 DOI: 10.1155/2020/7265487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Collapse
|
8
|
Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt DL, Mazer CD, Connelly KA, Verma S, Hess DA. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun 2020; 524:50-56. [PMID: 31980166 DOI: 10.1016/j.bbrc.2020.01.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, but progressive and devastating vascular disease with few treatment options to prevent the advancement to right ventricular dysfunction hypertrophy and failure. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, enhances urinary glucose excretion as well as reduces cardiovascular events and mortality in individuals with type 2 diabetes. While empagliflozin has been reported to lower systemic hypertension due to increased diuresis, the effect of empagliflozin on PAH is unknown. We used monocrotaline (MCT)-treated Sprague-Dawley rats to determine if empagliflozin alters PAH-associated outcomes. Compared to vehicle control, daily empagliflozin administration significantly improved survival in rats with severe MCT-induced PAH. Hemodynamic assessments showed that empagliflozin treatment significantly reduced mean pulmonary artery pressure, right ventricular systolic pressure, and increased pulmonary acceleration time. Empagliflozin treatment resulted in reduced right ventricular hypertrophy and fibrosis. Histological and molecular assessments of lung vasculature revealed significantly reduced medial wall thickening and decreased muscularization of pulmonary arterioles after empagliflozin treatment compared to vehicle-treated rats. In summary, SGLT2 inhibition with empagliflozin lowered mortality, reduced right ventricle systolic pressure, and attenuated maladaptive pulmonary remodeling in MCT-induced PAH. Clinical studies evaluating the efficacy of SGLT-2 inhibition should be considered for patients with PAH.
Collapse
Affiliation(s)
- Biswajit Chowdhury
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Albert Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Golam Kabir
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Sandra Sabongui
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA, USA
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kim A Connelly
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
9
|
Rol N, Kurakula KB, Happé C, Bogaard HJ, Goumans MJ. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int J Mol Sci 2018; 19:ijms19092585. [PMID: 30200294 PMCID: PMC6164161 DOI: 10.3390/ijms19092585] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Knowledge pertaining to the involvement of transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in pulmonary arterial hypertension (PAH) is continuously increasing. There is a growing understanding of the function of individual components involved in the pathway, but a clear synthesis of how these interact in PAH is currently lacking. Most of the focus has been on signaling downstream of BMPR2, but it is imperative to include the role of TGF-β signaling in PAH. This review gives a state of the art overview of disturbed signaling through the receptors of the TGF-β family with respect to vascular remodeling and cardiac effects as observed in PAH. Recent (pre)-clinical studies in which these two pathways were targeted will be discussed with an extended view on cardiovascular research fields outside of PAH, indicating novel future perspectives.
Collapse
Affiliation(s)
- Nina Rol
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Konda Babu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| | - Chris Happé
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Harm Jan Bogaard
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| |
Collapse
|
10
|
Maarman GJ. Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:161-178. [PMID: 29047086 DOI: 10.1007/978-3-319-63245-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Guignabert C, Bailly S, Humbert M. Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opin Ther Targets 2016; 21:181-190. [DOI: 10.1080/14728222.2017.1275567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Sabine Bailly
- INSERM U1036, Grenoble, France
- Laboratoire Biologie du Cancer et de l’Infection, Commissariat à l’Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France
| |
Collapse
|
12
|
Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm Pharmacol Ther 2015; 35:8-16. [DOI: 10.1016/j.pupt.2015.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
|
13
|
Gore B, Izikki M, Mercier O, Dewachter L, Fadel E, Humbert M, Dartevelle P, Simonneau G, Naeije R, Lebrin F, Eddahibi S. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS One 2014; 9:e100310. [PMID: 24956016 PMCID: PMC4067299 DOI: 10.1371/journal.pone.0100310] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/25/2014] [Indexed: 01/14/2023] Open
Abstract
Mutations affecting transforming growth factor-beta (TGF-β) superfamily receptors, activin receptor-like kinase (ALK)-1, and endoglin (ENG) occur in patients with pulmonary arterial hypertension (PAH). To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs) and pulmonary endothelial cells (PECs) from 14 patients with idiopathic PAH (iPAH) and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/-) and wild-type (Eng+/+) mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Endoglin
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme-Linked Immunosorbent Assay
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Female
- Follow-Up Studies
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Immunoenzyme Techniques
- Intracellular Signaling Peptides and Proteins/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Prognosis
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
| | | | - Olaf Mercier
- Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Laurence Dewachter
- Laboratory of Physiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Elie Fadel
- Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | | | | | | | - Robert Naeije
- Laboratory of Physiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | | | - Saadia Eddahibi
- INSERM U999, Le Plessis-Robinson, France
- Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
- * E-mail:
| |
Collapse
|
14
|
Maarman G, Lecour S, Butrous G, Thienemann F, Sliwa K. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ 2013; 3:739-56. [PMID: 25006392 PMCID: PMC4070827 DOI: 10.1086/674770] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a disorder that develops as a result of remodeling of the pulmonary vasculature and is characterized by narrowing/obliteration of small pulmonary arteries, leading to increased mean pulmonary artery pressure and pulmonary vascular resistance. Subsequently, PH increases the right ventricular afterload, which leads to right ventricular hypertrophy and eventually right ventricular failure. The pathophysiology of PH is not fully elucidated, and current treatments have only a modest impact on patient survival and quality of life. Thus, there is an urgent need for improved treatments or a cure. The use of animal models has contributed extensively to the current understanding of PH pathophysiology and the investigation of experimental treatments. However, PH in current animal models may not fully represent current clinical observations. For example, PH in animal models appears to be curable with many therapeutic interventions, and the severity of PH in animal models is also believed to correlate poorly with that observed in humans. In this review, we discuss a variety of animal models in PH research, some of their contributions to the field, their shortcomings, and how these have been addressed. We highlight the fact that the constant development and evolution of animal models will help us to more closely model the severity and heterogeneity of PH observed in humans.
Collapse
Affiliation(s)
- Gerald Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ghazwan Butrous
- Pulmonary Vascular Research Institute, Kent Enterprise Hub, University of Kent, Canterbury, United Kingdom
| | - Friedrich Thienemann
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Wang YY, Luan Y, Zhang X, Lin M, Zhang ZH, Zhu XB, Ma Y, Wang YB. Proteasome inhibitor PS-341 attenuates flow-induced pulmonary arterial hypertension. Clin Exp Med 2013; 14:321-9. [PMID: 23771811 DOI: 10.1007/s10238-013-0244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
PS-341, a proteasome inhibitor, is suggested to prevent the vascular remodeling induced by high-flow pulmonary artery hypertension (PAH), but the mechanism remains unclear. The aim of the current study was to investigate the effects and possible mechanism of PS-341 on hypertension-induced vascular remodeling. Male Sprague-Dawley rats were subjected to surgical methods to produce a shunt model of PAH. Three days after the surgical procedure, the animals randomly assigned to four groups (n = 10 in each group): I: sham group; II: shunt group; III: vehicle; IV: treated group. Eight weeks postoperative, the hemodynamics data were measured through Swan-Ganz catheter; the protein expression level of proliferating cell nuclear antigen, nuclear factor-κB (NF-κB), inhibitor of nuclear factor-κB (I-κBα), transforming growth factor beta-β (TGF-β), drosophila mothers against decapentaplegic protein (Smad) and vascular endothelia growth factor (VEGF) were investigated by immunohistochemical and Western blotting; the mRNA expression level of Ubiquitin (Ub), Smad3, TGF-β1and Smad2 in lung were performed to detect by real-time reverse transcription-polymerase chain reaction analysis. The results showed that hemodynamic data and right ventricular hypertrophy were significantly improved (P < 0.05), the expression level of Ub, NF-κB, TGF-β1, Smad2 and VEGF were decreased (P < 0.05), but the level of I-κBα was increased in PS-341 treated group as compared with the shunt and vehicle groups (P < 0.05). In conclusion, the present study indicated that PS-341 could significantly improve the lung damage, attenuate pulmonary vascular remodeling induced by high blood PAH model. The mechanism may be mediated by inhibition of NF-κB and TGF-β/Smad signaling pathway and modulation the effect of VEGF.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Pediatrics, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xie J, Hu D, Niu L, Qu S, Wang S, Liu S. Mesenchymal stem cells attenuate vascular remodeling in monocrotaline-induced pulmonary hypertension rats. ACTA ACUST UNITED AC 2012; 32:810-817. [PMID: 23271278 DOI: 10.1007/s11596-012-1039-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Indexed: 12/20/2022]
Abstract
Intravenous and intratracheal implantation of mesenchymal stem cells (MSCs) may offer ameliorating effects on pulmonary hypertension (PH) induced by monocrotaline (MCT) in rats. The aim of this study was to examine the anti-remodeling effect of intravenous MSCs (VMSCs) and intratracheal MSCs (TMSCs) in rats with PH, and the underlying mechanisms. MSCs were isolated from rat bone marrow and cultured. PH was induced in rats by intraperitoneal injection of MCT. One week after MCT administration, the rats were divided into 3 groups in terms of different treatments: VMSCs group (intravenous injection of MSCs), TMSCs group (intratracheal injection of MSCs), PH group (no treatment given). Those receiving saline instead of MCT served as negative control (control group). Pulmonary arterial structure was pathologically observed, pulmonary arterial dynamics measured, and remodeling-associated cytokines Smad2 and Smad3 detected in the lungs, three weeks after MCT injection. The results showed that PH group versus control group had higher pulmonary arterial pressure (PAP) and wall thickness index (WTI) 21 days after MCT treatment. The expression of phosphorylated (p)-Smad2 and the ratio of p-Smad2/Smad2 were much higher in PH group than in control group. Fluorescence-labeled MSCs were extensively distributed in rats' lungs in VMSCs and TMSCs groups 3 and 14 days after transplantation, but not found in the media of the pulmonary artery. WTI and PAP were significantly lower in both VMSCs and TMSCs groups than in PH group three weeks after MCT injection. The p-Smad2 expression and the ratio of p-Smad2/Smad2 were obviously reduced in VMSCs and TMSCs groups as compared with those in PH group. In conclusion, both intravenous and intratracheal transplantation of MSCs can attenuate PAP and pulmonary artery remodeling in MCT-induced PH rats, which may be associated with the early suppression of Smad2 phosphorylation via paracrine pathways.
Collapse
Affiliation(s)
- Jiang Xie
- Pulmonary-heart Center of Beijing Anzhen Hospital, Capital Medical University, Beijing, 100023, China
| | - Dayi Hu
- Cardiovascular Center of Beijing Army General Hospital, Beijing, 100069, China
| | - Lili Niu
- Cardiovascular Center of Beijing Army General Hospital, Beijing, 100069, China
| | - Suping Qu
- Cardiovascular Center of Beijing Army General Hospital, Beijing, 100069, China
| | - Shenghao Wang
- Pulmonary-heart Center of Beijing Anzhen Hospital, Capital Medical University, Beijing, 100023, China
| | - Shuang Liu
- Pulmonary-heart Center of Beijing Anzhen Hospital, Capital Medical University, Beijing, 100023, China.
| |
Collapse
|
17
|
Kuang T, Wang J, Zeifman A, Pang B, Huang X, Burg ED, Yuan JXJ, Wang C. Combination use of sildenafil and simvastatin increases BMPR-II signal transduction in rats with monocrotaline-mediated pulmonary hypertension. Pulm Circ 2011; 1:111-4. [PMID: 22034597 PMCID: PMC3198628 DOI: 10.4103/2045-8932.78102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tuguang Kuang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disruption of Golgi function and intracellular trafficking with trapping of diverse vesicle tethers, SNAREs and SNAPs in the Golgi membranes of enlarged pulmonary arterial endothelial cells (PAECs) and pulmonary arterial smooth muscle cells (PASMCs). Consequences included the loss of cell surface caveolin-1, hyperactivation of STAT3, mislocalization of eNOS with reduced cell surface/caveolar NO and hypo-S-nitrosylation of trafficking-relevant proteins. Similar Golgi tether, SNARE and SNAP dysfunctions were also observed in hypoxic PAECs in culture and in PAECs subjected to NO scavenging. Strikingly, a hypo-NO state promoted PAEC mitosis and cell proliferation. Golgi dysfunction was also observed in pulmonary vascular cells in idiopathic PAH (IPAH) in terms of a marked cytoplasmic dispersal and increased cellular content of the Golgi tethers, giantin and p115, in cells in the proliferative, obliterative and plexiform lesions in IPAH. The question of whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH was approached by genetic means using HIV-nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the non-chimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and increase in giantin and p115. Specifically, it was the HIV-nef–positive cells that showed increased giantin. Elucidating how each of these changes fits into the multifactorial context of hypoxia, reduced NO bioavailability, mutations in BMPR II, modulation of disease penetrance and gender effects in disease occurrence in the pathogenesis of PAH is part of the road ahead.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | | |
Collapse
|
19
|
Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, Erzurum SC, Aldred MA. Altered MicroRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am J Respir Crit Care Med 2011; 184:1400-8. [PMID: 21920918 DOI: 10.1164/rccm.201106-1130oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Heritable pulmonary arterial hypertension (HPAH) is primarily caused by mutations of the bone morphogenetic protein (BMP) type-II receptor (BMPR2). Recent identification of mutations in the downstream mediator Smad-8 (gene, SMAD9) was surprising, because loss of Smad-8 function in canonical BMP signaling is largely compensated by Smad-1 and -5. We therefore hypothesized that noncanonical pathways may play an important role in PAH. OBJECTIVES To determine whether HPAH mutations disrupt noncanonical Smad-mediated microRNA (miR) processing. METHODS Expression of miR-21, miR-27a, and miR-100 was studied in pulmonary artery endothelial (PAEC) and pulmonary artery smooth muscle cells (PASMC) from explant lungs of patients with PAH. MEASUREMENTS AND MAIN RESULTS SMAD9 mutation completely abrogated miR induction, whereas canonical signaling was only reduced by one-third. miR-21 levels actually decreased, suggesting that residual canonical signaling uses up or degrades existing miR-21. BMPR2 mutations also led to loss of miR induction in two of three cases. HPAH cells proliferated faster than other PAH or controls. miR-21 and miR-27a each showed antiproliferative effects in PAEC and PASMC, and PAEC growth rate after BMP treatment correlated strongly with miR-21 fold-change. Overexpression of SMAD9 corrected miR processing and reversed the hyperproliferative phenotype. CONCLUSIONS HPAH-associated mutations engender a primary defect in noncanonical miR processing, whereas canonical BMP signaling is partially maintained. Smad-8 is essential for this miR pathway and its loss was not complemented by Smad-1 and -5; this may represent the first nonredundant role for Smad-8. Induction of miR-21 and miR-27a may be a critical component of BMP-induced growth suppression, loss of which likely contributes to vascular cell proliferation in HPAH.
Collapse
Affiliation(s)
- Kylie M Drake
- Genomic Medicine Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2601-10. [PMID: 21550015 DOI: 10.1016/j.ajpath.2011.02.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/04/2011] [Accepted: 02/24/2011] [Indexed: 11/22/2022]
Abstract
Bronchopulmonary dysplasia is a chronic lung disease observed in premature infants requiring oxygen supplementation and ventilation. Although the use of exogenous surfactant and protective ventilation strategies has improved survival, the long-term pulmonary consequences of neonatal hyperoxia are unknown. Here, we investigate whether neonatal hyperoxia alters pulmonary function in aging mice. By 67 weeks of age, mice exposed to 100% oxygen between postnatal days 1 to 4 showed significantly a shortened life span (56.6% survival, n = 53) compared to siblings exposed to room air as neonates (100% survival, n = 47). Survivors had increased lung compliance and decreased elastance. There was also right ventricular hypertrophy and pathological evidence for pulmonary hypertension, defined by reduction of the distal microvasculature and the presence of numerous dilated arterioles expressing von Willebrand factor and α-smooth muscle actin. Consistent with recent literature implicating bone morphogenetic protein (BMP) signaling in pulmonary vascular disease, BMP receptors and downstream phospho-Smad1/5/8 were reduced in lungs of aging mice exposed to neonatal oxygen. BMP signaling alterations were not observed in 8-week-old mice. These data suggest that loss of BMP signaling in aged mice exposed to neonatal oxygen is associated with a shortened life span, pulmonary vascular disease, and associated cardiac failure. People exposed to hyperoxia as neonates may be at increased risk for pulmonary hypertension.
Collapse
|
21
|
Aspirin Attenuates Pulmonary Arterial Hypertension in Rats by Reducing Plasma 5-Hydroxytryptamine Levels. Cell Biochem Biophys 2011; 61:23-31. [DOI: 10.1007/s12013-011-9156-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Mokhlesi B. Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care 2010; 23:456-64. [PMID: 20875161 DOI: 10.1016/j.pupt.2010.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 02/06/2023]
Abstract
Obesity hyoventilation syndrome (OHS) is defined as the triad of obesity, daytime hypoventilation, and sleep-disordered breathing in the absence of an alternative neuromuscular, mechanical or metabolic explanation for hypoventilation. During the last 3 decades the prevalence of extreme obesity has markedly increased in the United States and other countries. With such a global epidemic of obesity, the prevalence of OHS is bound to increase. Patients with OHS have a lower quality of life, with increased healthcare expenses, and are at higher risk of developing pulmonary hypertension and early mortality, compared to eucapnic patients with sleep-disordered breathing. OHS often remains undiagnosed until late in the course of the disease. Early recognition is important, as these patients have significant morbidity and mortality. Effective treatment can lead to significant improvement in patient outcomes, underscoring the importance of early diagnosis. This review will include disease definition and epidemiology, clinical characteristics of the syndrome, pathophysiology, and morbidity and mortality associated with it. Lastly, treatment modalities will be discussed in detail.
Collapse
Affiliation(s)
- Babak Mokhlesi
- Section of Pulmonary and Critical Care Medicine, University of Chicago Pritzker School of Medicine, Chicago IL 60637, USA.
| |
Collapse
|
23
|
The amiloride derivative phenamil attenuates pulmonary vascular remodeling by activating NFAT and the bone morphogenetic protein signaling pathway. Mol Cell Biol 2010; 31:517-30. [PMID: 21135135 DOI: 10.1128/mcb.00884-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH.
Collapse
|
24
|
Lowery JW, Frump AL, Anderson L, DiCarlo GE, Jones MT, de Caestecker MP. ID family protein expression and regulation in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1463-77. [PMID: 20881097 DOI: 10.1152/ajpregu.00866.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic protein (BMP) signaling has been linked to the development of pulmonary hypertension (PH). Inhibitors of differentiation (ID) proteins (ID1-4) are a family of basic helix-loop-helix transcription factors that are downstream targets of the BMP signaling pathway, but the role that ID proteins play in the development of PH is unknown. To address this, we evaluated pulmonary expression of ID proteins in a mouse model of hypoxia-induced PH. There is selective induction of ID1 and ID3 expression in hypoxic pulmonary vascular smooth muscle cells (VSMCs) in vivo, and ID1 and ID3 expression are increased by hypoxia in cultured pulmonary VSMCs in a BMP-dependent fashion. ID4 protein is barely detectable in the mouse lung, and while ID2 is induced in hypoxic peripheral VSMCs in vivo, it is not increased by hypoxia or BMP signaling in cultured pulmonary VSMCs. In addition, the PH response to chronic hypoxia is indistinguishable between wild type and Id1 null mice. This is associated with a compensatory increase in ID3 but not ID2 expression in pulmonary VSMCs of Id1 null mice. These findings indicate that ID1 is dispensable for mounting a normal pulmonary vascular response to hypoxia, but suggest that ID3 may compensate for loss of ID1 expression in pulmonary VSMCs. Taken together, these findings indicate that ID1 and ID3 expression are regulated in a BMP-dependent fashion in hypoxic pulmonary VSMCs, and that ID1 and ID3 may play a cooperative role in regulating BMP-dependent VSMC responses to chronic hypoxia.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Vanderbilt Univ. Medical Center, Department of Cell and Developmental Biology, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
25
|
Effects and mechanism of irbesartan on tubulointerstitial fibrosis in 5/6 nephrectomized rats. ACTA ACUST UNITED AC 2010; 30:48-54. [DOI: 10.1007/s11596-010-0109-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Indexed: 12/30/2022]
|
26
|
Cui B, Cheng YS, Dai DZ, Li N, Zhang TT, Dai Y. CPU0213, a non-selective ETA/ETB receptor antagonist, improves pulmonary arteriolar remodeling of monocrotaline-induced pulmonary hypertension in rats. Clin Exp Pharmacol Physiol 2008; 36:169-75. [PMID: 18986320 DOI: 10.1111/j.1440-1681.2008.05044.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of the present study was to explore the effects of CPU0213, a dual endothelin ET(A)/ET(B) receptor antagonist, and nifedipine, a calcium antagonist, in relieving pulmonary hypertension (PH). Both endothelin receptor and calcium antagonists have been reported to be effective in alleviating the remodelling of pulmonary arteries induced by monocrotaline (MCT) in rats. 2. After an initial single dose of 60 mg/kg, s.c., MCT, CPU0213 was administered to rats at doses of 25, 50 or 100 mg/kg, p.o., for 28 days. In addition, nifedipine was administered to another group of rats at a dose of 10 mg/kg, p.o., for 28 days. The haemodynamics of the right ventricle, pulmonary vascular activity, remodelling of the pulmonary arterioles (< 150 microm) and biochemical changes were evaluated. 3. Right ventricular systolic pressure (RVSP), central venous pressure (CVP), the maximum rate of uprising pressure (dP/dT(max)) and the weight index of the right ventricle were significantly elevated in MCT-treated rats. In addition, increases in pulmonary endothelin-1, malonyldialdehyde (MDA) and hydroxyproline content and a reduction in superoxide dismutase activity was found after MCT treatment. The thickness and area of the pulmonary arterial wall were significantly increased in MCT-treated rats compared with control rats. At all three doses tested, CPU0213 ameliorated these changes in a dose-dependent manner and the effects were associated with a greater reduction in the remodelling of pulmonary arterioles. However, nifedipine was only partially effective in amelerioating biochemical and haemodynamic changes induced by MCT, significantly reducing RVSP, CVP, +dp/dt(max), tissue MDA, inducible nitric oxide synthase and hydroxyproline content, increasing -dp/dt(min) and having no effect on the other parameters investigated. In addition, nifedipine had no effect on remodelling of the arterial wall. 4. In conclusion, CPU0213 is more effective than nifedipine in suppressing the remodelling of pulmonary arterioles in PH induced by MCT treatment of rats. Furthermore, CPU0213 may have promise in treating PH secondary to connective tissue disease.
Collapse
Affiliation(s)
- Bing Cui
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|