1
|
Fornieles G, Núñez MI, Expósito J. Matrix Metalloproteinases and Their Inhibitors as Potential Prognostic Biomarkers in Head and Neck Cancer after Radiotherapy. Int J Mol Sci 2023; 25:527. [PMID: 38203696 PMCID: PMC10778974 DOI: 10.3390/ijms25010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Head and neck cancer (HNC) is among the ten most frequent tumours, with 5-year survival rates varying from 30% to 70% depending on the stage and location of the tumour. HNC is traditionally known as head and neck squamous cell carcinoma (HNSCC), since 90% arises from epithelial cells. Metastasis remains a major cause of mortality in patients with HNSCC. HNSCC patients with metastatic disease have an extremely poor prognosis with a survival rate of less than a year. Matrix metalloproteinases (MMPs) have been described as biomarkers that promote cell migration and invasion. Radiotherapy is widely used to treat HNSCC, being a determining factor in the alteration of the tumour's biology and microenvironment. This review focuses on analysing the current state of the scientific literature on this topic. Although few studies have focused on the role of these proteinases in HNC, some authors have concluded that radiotherapy alters the behaviour of MMPs and tissue inhibitors of metalloproteinases (TIMPs). Therefore, more research is needed to understand the roles played by MMPs and their inhibitors (TIMPs) as prognostic biomarkers in patients with HNC and their involvement in the response to radiotherapy.
Collapse
Affiliation(s)
- Gabriel Fornieles
- Doctoral Programme in Clinical Medicine and Public Health, University of Granada, 18012 Granada, Spain;
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Expósito
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Radiation Oncology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
2
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
3
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
4
|
Daraban Bocaneti F, Altamura G, Corteggio A, Tanase OI, Dascalu MA, Pasca SA, Hritcu O, Mares M, Borzacchiello G. Expression of matrix metalloproteinases (MMPs)−2/-7/-9/-14 and tissue inhibitors of MMPs (TIMPs)−1/-2 in bovine cutaneous fibropapillomas associated with BPV-2 infection. Front Vet Sci 2022; 9:1063580. [DOI: 10.3389/fvets.2022.1063580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionBovine papillomaviruses −1/−2 (BPVs) are small non-enveloped double-stranded DNA viruses able to infect the skin of bovids and equids, causing development of neoplastic lesions such as bovine cutaneous fibropapillomas and equine sarcoid. Matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases that degrade basal membrane and extracellular matrix, whose function is essential in physiological processes such as tissue remodeling and wound healing. MMPs activity is finely regulated by a balancing with expression of tissue inhibitors of MMPs (TIMPs), a process that is impaired during tumour development. BPV infection is associated with upregulation of MMPs and /or their unbalancing with TIMPs, contributing to local invasion and impairment of extracellular matrix remodeling in equine sarcoid; however, studies regarding this topic in bovine fibropapillomas are lacking.MethodsThe aim of this study was to perform an immunohistochemical and biochemical analysis on a panel of MMPs and TIMPs in BPV-2 positive bovine cutaneous fibropapillomas vs. normal skin samples.ResultsImmunohistochemistry revealed a cytoplasmic expression of MMP-2 (15/19), a cytoplasmic and perinuclear immunoreactivity of MMP-7 (19/19) and MMP-9 (19/19), along with a cytoplasmic and nuclear pattern of MMP-14 (16/19), accompanied by a cytoplasmic expression of TIMP-1 (14/19) and TIMP-2 (18/19) in tumour samples; western blotting revealed an overexpression of MMP-2 (8/9), MMP-7 (9/9) and MMP-9 (9/9), and a decreased level of MMP-14 (9/9), TIMP-1 (9/9) and TIMP-2 (9/9) in tumour versus normal skin samples. Moreover, gelatine zymography confirmed the expression of pro-active MMP-2 (9/9) and MMP-9 (9/9) and, most importantly, indicated the presence and increased activity of their active forms (82 and 62 kDa, respectively) in tumour samples.DiscussionThis is the first study describing MMPs and TIMPs in bovine cutaneous fibropapillomas and our results suggest that their unbalanced expression in presence of BPV-2 may play a significant role in tumour development. A further analysis of supplementary MMPs and TIMPs could bring new important insights into the papillomavirus induced tumours.
Collapse
|
5
|
Zou M, Zhang C, Sun Y, Wu H, Xiao F, Gao W, Zhao F, Fan X, Wu G. Comprehensive analysis of matrix metalloproteinases and their inhibitors in head and neck squamous cell carcinoma. Acta Oncol 2022; 61:505-515. [PMID: 34879791 DOI: 10.1080/0284186x.2021.2009564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: This study aimed to explore the association of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) with cancer progression and prognosis in head and neck squamous cell carcinoma (HNSCC).Methods: Differentially expressed genes (DEGs) were identified by LIMMA package using R software. The correlation between the expression levels of MMPs and TIMPs in HNSCC cancer samples and adjacent normal tissue samples was performed using Pearson correlation analysis. The Kruskal-Wallis test (H-test) was used to determine the association between the expression level of MMPs/TIMPs and HNSCC clinical stage. The survival result was expressed as a KM curve, and the log-rank test was used for statistical analysis. Lasso regression and multivariate Cox regression analyses were used to examine whether the gene signature based on MMPs and TIMPs was an independent prognostic factor in patients with HNSCC.Results: Among the top 10 most up-regulated genes in HNSCC cancer tissues when compared with normal tissues, six genes belonged to the MMPs. Spearman correlation analysis revealed that only MMP11 and MMP23B were positively correlated with tumor stage. Survival analysis showed that patients with a high expression of MMP14, MMP20, TIMP1, and TIMP4 had a worse prognosis than low expression patients. Additionally, a novel five-gene (MMP3, MMP17, MMP19, MMP24, and TIMP1) signature was constructed and significantly associated with prognosis as an independent prognostic signature.Conclusions: Our data show that the accuracy of a single gene of MMP or TIMP as predictors of progression and prognosis of HNSCC is limited, although some studies have proposed that MMPs act as driving factors for cancer progression. The prediction performance of the five-gene signature prediction model was much better than that of the gene signatures based on every single gene in prognosis prediction.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
- Public Health School of Southeast University, Nanjing, People’s Republic of China
| | - Yan Sun
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Huina Wu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Feng Xiao
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Fengfeng Zhao
- Medical School of Southeast University, Nanjing, People’s Republic of China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Xiaobo Fan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
- Diagnostics Department, Medical School of Southeast University, Nanjing, People’s Republic of China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
7
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
8
|
Prasetyaningtyas N, Jatiatmaja NA, Radithia D, Hendarti HT, Parmadiati AE, Hadi P, Mahdani FY, Ernawati DS, Zain RB, Ayuningtyas NF. The Response of the Tongue Epithelial on Cigarette Smoke Exposure as a Risk Factor for Oral Cancer Development. Eur J Dent 2021; 15:320-324. [PMID: 33285573 PMCID: PMC8184307 DOI: 10.1055/s-0040-1721312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE The aim of this study is to analyze the tongue epithelial response to cigarette smoke exposure on a number of macrophages, lymphocytes, plasma cells, and matrix metalloproteinase 9 (MMP-9) expression to determine the risk factor of oral cancer development. MATERIALS AND METHODS Thirty Rattus norvegicus will be exposed to two kinds of cigarette smoke by a smoking pump for 4 and 8 weeks. The tongues were collected to analyze the number of macrophages, lymphocytes, and plasma cells with hematoxylin-eosin. The MMP-9 expression was similarly analyzed with immunohistochemical staining and then compared with the control group. RESULTS The number of macrophages, lymphocytes, and MMP-9 expression was higher in the 8-week cigarette smoke exposure compared to the 4-week cigarette smoke exposure and the control group (p < 0.000). The number of plasma cell did not differ in the 8-week cigarette smoke exposure from that of the control group (p > 0.05). The number of plasma cells in the tongue tissue during the 4-week cigarette smoke exposure was not determined. CONCLUSION Cigarette smoke exposure induces the risk of oral cancer development as a result of an increase in the number of macrophages, lymphocytes, and MMP-9 expression in the tongue epithelial.
Collapse
Affiliation(s)
| | | | - Desiana Radithia
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hening Tuti Hendarti
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Priyo Hadi
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fatma Yasmin Mahdani
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rosnah binti Zain
- Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom Selangor, Malaysia
| | | |
Collapse
|
9
|
Kumar P, Sebastian A, Verma K, Dixit R, Kumari S, Singh J, Tiwary SK, Narayan G. mRNA Expression Analysis of E-Cadherin, VEGF, and MMPs in Gastric Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:85-92. [PMID: 33994733 DOI: 10.1007/s13193-020-01096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
Gastric cancer (GC) is a serious fatal cancer on a global scale because of its presentation at advanced stage. The expressions of vascular endothelial growth factor (VEGF), E-cadherin, and matrix metalloproteinases (MMPs) in other cancers have been reported. However, its expression and underlying mechanisms are little known in gastric cancer in Indian context. In this study, we detected mRNA expression of VEGF, E-cadherin, and MMPs (MMP-1, MMP-2, and MMP-9) in 73 gastric cancer tissues and 27 normal controls by reverse-transcriptase polymerase chain reaction (RT-PCR). Receiver operator characteristics analysis was done for determining the diagnostic utility of VEGF, MMPs and E-cadherin with respect to the sensitivity and specificity. The association of VEGF, MMPs, and E-cadherin expression with the clinicopathological characteristics and the prognosis was subsequently analyzed. The mRNA expression results showed that E-cadherin was significantly downregulated in 47.9% of GC in comparison to control. There was no change in VEGF expression observed in 90.4% GC cases. MMP-1, MMP-2, and MMP-9 were overexpressed in 13.7%, 28.8%, and 11% of GC, respectively, with significant change in MMP-2 (p ≤ 0.0001) and MMP-9 (p = 0.027) in comparison to control. Our results strengthen the necessity of more studies to elucidate the prophetic role of these genes in the development of gastric cancer.
Collapse
Affiliation(s)
- Puneet Kumar
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Arun Sebastian
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Khushi Verma
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ruhi Dixit
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Soni Kumari
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India.,Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Juhi Singh
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Satyendra Kumar Tiwary
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
10
|
Profiling the Stromal and Vascular Heterogeneity in Patient-derived Xenograft Models of Head and Neck Cancer: Impact on Therapeutic Response. Cancers (Basel) 2019; 11:cancers11070951. [PMID: 31284584 PMCID: PMC6679003 DOI: 10.3390/cancers11070951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) represent a group of epithelial neoplasms that exhibit considerable heterogeneity in clinical behavior. Here, we examined the stromal and vascular heterogeneity in a panel of patient-derived xenograft (PDX) models of HNSCC and the impact on therapeutic response. Tumor sections from established tumors were stained for p16 (surrogate for human papillomavirus (HPV) infection), stromal (Masson’s trichrome) and vascular (CD31) markers. All PDX models retained the HPV/p16 status of the original patient tumor. Immunohistochemical evaluation revealed the presence of multiple vessel phenotypes (tumor, stromal or mixed) in the PDX panel. Vascular phenotypes identified in the PDX models were validated in a tissue microarray of human HNSCC. Treatment with a microtubule targeted vascular disrupting agent (VDA) resulted in a heterogeneous antivascular and antitumor response in PDX models. The PDX with the tumor vessel phenotype that exhibited higher CD31+ vessel counts and leaky vasculature on magnetic resonance imaging (MRI) was sensitive to VDA treatment while the PDX with the stromal vessel phenotype was resistant to therapy. Collectively, our results demonstrate the phenotypic and functional vascular heterogeneity in HNSCC and highlight the impact of this heterogeneity on response to antivascular therapy in PDX models of HNSCC.
Collapse
|
11
|
McDonald PC, Swayampakula M, Dedhar S. Coordinated Regulation of Metabolic Transporters and Migration/Invasion by Carbonic Anhydrase IX. Metabolites 2018. [PMID: 29517989 PMCID: PMC5876009 DOI: 10.3390/metabo8010020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypoxia is a prominent feature of the tumor microenvironment (TME) and cancer cells must dynamically adapt their metabolism to survive in these conditions. A major consequence of metabolic rewiring by cancer cells in hypoxia is the accumulation of acidic metabolites, leading to the perturbation of intracellular pH (pHi) homeostasis and increased acidosis in the TME. To mitigate the potentially detrimental consequences of an increasingly hypoxic and acidic TME, cancer cells employ a network of enzymes and transporters to regulate pH, particularly the extracellular facing carbonic anhydrase IX (CAIX) and CAXII. In addition to the role that these CAs play in the regulation of pH, recent proteome-wide analyses have revealed the presence of a complex CAIX interactome in cancer cells with roles in metabolite transport, tumor cell migration and invasion. Here, we explore the potential contributions of these interactions to the metabolic landscape of tumor cells in hypoxia and discuss the role of CAIX as a hub for the coordinated regulation of metabolic, migratory and invasive processes by cancer cells. We also discuss recent work targeting CAIX activity using highly selective small molecule inhibitors and briefly discuss ongoing clinical trials involving SLC-0111, a lead candidate small molecule inhibitor of CAIX/CAXII.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Mridula Swayampakula
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
12
|
Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: The key elements for the creation of efficient nanotherapeutics. J Control Release 2018; 270:260-267. [DOI: 10.1016/j.jconrel.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023]
|
13
|
Schoen I, Koitzsch S. ATF3-Dependent Regulation of EGR1 in vitro and in vivo. ORL J Otorhinolaryngol Relat Spec 2017; 79:239-250. [PMID: 28803237 DOI: 10.1159/000478937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Activating transcription factor 3 (ATF3) and early growth response protein 1 (EGR1) are reported to interact, but their use as prognostic factors in cancer is discussed controversially. METHODS We measured ATF3 and EGR1 gene expression changes in human mini-organ cultures (MOCs) of healthy nasal epithelia, UM-SCC-22B, and FADUDD cells after acid reflux exposure. Next, ATF3 and EGR1 gene expression was analysed in tumour tissues and related to the median expression of autologous reference tissue samples. RESULTS ATF3 and EGR1 mRNA expression was significantly reduced after consecutive exposure of MOCs at pH <7.0 to artificial gastric juice (refluxate). In contrast, ATF3 mRNA was upregulated significantly within the first hour of incubation. EGR1 mRNA exhibited no significant changes. The analysed cell lines exhibited a cell line-specific alteration. In FADUDD cells, the upregulation of EGR1 was significant after refluxate exposure, but in HN-SCC 22B, no significant changes were detected. The analysis of the HNSCC samples confirmed the heterogeneous data of the literature. CONCLUSION The data maintain the hypothesis that ATF3 and EGR1 are involved in the beginning of inflammatory processes. Whether these two transcription factors act as tumour suppressors or promoters is context dependent and warrants analysis in further studies.
Collapse
Affiliation(s)
- Ilona Schoen
- Laboratory of Experimental Oncology, Department of Otolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
14
|
Miampamba M, Liu J, Harootunian A, Gale AJ, Baird S, Chen SL, Nguyen QT, Tsien RY, González JE. Sensitive in vivo Visualization of Breast Cancer Using Ratiometric Protease-activatable Fluorescent Imaging Agent, AVB-620. Am J Cancer Res 2017; 7:3369-3386. [PMID: 28900516 PMCID: PMC5595138 DOI: 10.7150/thno.20678] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
With the goal of improving intraoperative cancer visualization, we have developed AVB-620, a novel intravenously administered, in vivo fluorescent peptide dye conjugate that highlights malignant tissue and is optimized for human use. Matrix metalloproteinases (MMPs) hydrolyze AVB-620 triggering tissue retention and a ratiometric fluorescence color change which is visualized using camera systems capable of imaging fluorescence and white light simultaneously. AVB-620 imaging visualizes primary tumors and demonstrated high in vivo diagnostic sensitivity and specificity (both >95%) for identifying breast cancer metastases to lymph nodes in two immunocompetent syngeneic mouse models. It is well tolerated and single-dose toxicology studies in rats determined a no-observed-adverse-effect-level (NOAEL) at >110-fold above the imaging and estimated human dose. Protease specificity and hydrolysis kinetics were characterized and compared using recombinant MMPs. To understand the human translation potential, an in vitro diagnostic study was conducted to evaluate the ability of AVB-620 to differentiate human breast cancer tumor from healthy adjacent tissue. Patient tumor tissue and healthy adjacent breast tissue were homogenized, incubated with AVB-620, and fluorogenic responses were compared. Tumor tissue had 2-3 fold faster hydrolysis than matched healthy breast tissue; generating an assay sensitivity of 96% and specificity of 88%. AVB-620 has excellent sensitivity and specificity for identifying breast cancer in mouse and human tissue. Significant changes were made in the design of AVB-620 relative to previous ratiometric protease-activated agents. AVB-620 has pharmaceutical properties, fluorescence ratio dynamic range, usable diagnostic time window, a scalable synthesis, and a safety profile that have enabled it to advance into clinical evaluation in breast cancer patients.
Collapse
|
15
|
Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A, Venkateswaran G, Shankar J, Gao G, Laurent EMN, Lou Y, Bennewith KL, Supuran CT, Nabi IR, Raught B, Dedhar S. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 2017; 36:6244-6261. [PMID: 28692057 PMCID: PMC5684442 DOI: 10.1038/onc.2017.219] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia inducible factor 1-induced, cell surface pH regulating enzyme with an established role in tumor progression and clinical outcome. However, the molecular basis of CAIX-mediated tumor progression remains unclear. Here, we have utilized proximity dependent biotinylation (BioID) to map the CAIX ‘interactome’ in breast cancer cells in order to identify physiologically relevant CAIX-associating proteins with potential roles in tumor progression. High confidence proteins identified include metabolic transporters, β1 integrins, integrin-associated protein CD98hc and matrix metalloprotease 14 (MMP14). Biochemical studies validate the association of CAIX with α2β1 integrin, CD98hc and MMP14, and immunofluorescence microscopy demonstrates colocalization of CAIX with α2β1 integrin and MMP14 in F-actin/cofilin-positive lamellipodia/pseudopodia, and with MMP14 to cortactin/Tks5-positive invadopodia. Modulation of CAIX expression and activity results in significant changes in cell migration, collagen degradation and invasion. Mechanistically, we demonstrate that CAIX associates with MMP14 through potential phosphorylation residues within its intracellular domain, and that CAIX enhances MMP14-mediated collagen degradation by directly contributing hydrogen ions required for MMP14 catalytic activity. These findings establish hypoxia-induced CAIX as a novel metabolic component of cellular migration and invasion structures, and provide new mechanistic insights into its role in tumor cell biology.
Collapse
Affiliation(s)
- M Swayampakula
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - P C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - M Vallejo
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - E Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - A Westerback
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - G Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - J Shankar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Gao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Y Lou
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - K L Bennewith
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - C T Supuran
- Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - I R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Srivastava K, Pickard A, McDade S, McCance DJ. p63 drives invasion in keratinocytes expressing HPV16 E6/E7 genes through regulation of Src-FAK signalling. Oncotarget 2017; 8:16202-16219. [PMID: 26001294 PMCID: PMC5369957 DOI: 10.18632/oncotarget.3892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023] Open
Abstract
Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Simon McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK.,Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
17
|
Early detection of squamous cell carcinoma in carcinogen induced oral cancer rodent model by ratiometric activatable cell penetrating peptides. Oral Oncol 2017; 71:156-162. [PMID: 28688684 DOI: 10.1016/j.oraloncology.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Ratiometric cell-penetrating-peptides (RACPP) are hairpin-shaped molecules that undergo cleavage by tumor-associated proteases resulting in measurable Cy5:Cy7 fluorescence ratiometric change to label cancer in vivo. We evaluated an MMP cleavable RACPP for use in the early detection of malignant lesions in a carcinogen-induced rodent tumor model. METHODS Wild-type immune-competent mice were given 4-nitroquinoline-oxide (4NQO) for 16weeks. Oral cavities from live mice that had been intravenously administered MMP cleavable PLGC(Me)AG-RACPP were serially imaged from week 11 through week 21 using white-light reflectance and Cy5:Cy7 ratiometric fluorescence. RESULTS In an initial study we found that at week 21 nearly all mice (13/14) had oral cavity lesions, of which 90% were high-grade dysplasia or invasive carcinoma. These high-grade lesions were identifiable with white light reflectance and RACPP Cy5:Cy7 ratiometric fluorescence with similar detectability, Area Under Curve (AUC) for RACPP detection was 0.97 (95% Confidence interval (CI)=0.92-1.02, p<0.001), sensitivity=89%, specificity=100%. In a follow up study, oral cavity lesions generated by 4NQO were imaged and histologically analyzed at weeks 16, 18 and 21. In this study we showed that RACPP-fluorescence detection positively identified 15 squamous cell carcinomas (in 6 separate mice) that were poorly visible or undetectable by white light reflectance. CONCLUSIONS RACPP ratiometric fluorescence can be used to accurately detect carcinogen-induced carcinoma in immunocompetent mice that are poorly visible or undetectable by white light reflectance.
Collapse
|
18
|
Ahmedah HT, Patterson LH, Shnyder SD, Sheldrake HM. RGD-Binding Integrins in Head and Neck Cancers. Cancers (Basel) 2017; 9:cancers9060056. [PMID: 28587135 PMCID: PMC5483875 DOI: 10.3390/cancers9060056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alterations in integrin expression and function promote tumour growth, invasion, metastasis and neoangiogenesis. Head and neck cancers are highly vascular tumours with a tendency to metastasise. They express a wide range of integrin receptors. Expression of the αv and β1 subunits has been explored relatively extensively and linked to tumour progression and metastasis. Individual receptors αvβ3 and αvβ5 have proved popular targets for diagnostic and therapeutic agents but lesser studied receptors, such as αvβ6, αvβ8, and β1 subfamily members, also show promise. This review presents the current knowledge of integrin expression and function in squamous cell carcinoma of the head and neck (HNSCC), with a particular focus on the arginine-glycine-aspartate (RGD)-binding integrins, in order to highlight the potential of integrins as targets for personalised tumour-specific identification and therapy.
Collapse
Affiliation(s)
- Hanadi Talal Ahmedah
- Radiological Sciences Department, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia.
| | | | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
19
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
20
|
Baik FM, Hansen S, Knoblaugh SE, Sahetya D, Mitchell RM, Xu C, Olson JM, Parrish-Novak J, Méndez E. Fluorescence Identification of Head and Neck Squamous Cell Carcinoma and High-Risk Oral Dysplasia With BLZ-100, a Chlorotoxin-Indocyanine Green Conjugate. JAMA Otolaryngol Head Neck Surg 2016; 142:330-8. [PMID: 26892902 DOI: 10.1001/jamaoto.2015.3617] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE Surgical cure of head and neck squamous cell carcinoma (HNSCC) remains hampered by inadequately resected tumors and poor recognition of lesions with malignant potential. BLZ-100 is a chlorotoxin-based, tumor-targeting agent that has not yet been studied in HNSCC. OBJECTIVE To evaluate BLZ-100 uptake in models of HNSCC and oral dysplasia. DESIGN, SETTING, AND PARTICIPANTS This was an observational study (including sensitivity and specificity analysis) of BLZ-100 uptake in an orthotopic xenograft mouse model of HNSCC and a carcinogen-induced dysplasia model of hamster cheek pouches. INTERVENTIONS Various HNSCC xenografts were established in the tongues of NOD-scid IL2Rgammanull (NSG) mice. BLZ-100 was intravenously injected and fluorescence uptake was measured. To induce dysplasia, the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) was applied to the cheek pouch of Golden Syrian hamsters for 9 to16 weeks. BLZ-100 was subcutaneously injected, and fluorescence uptake was measured. MAIN OUTCOMES AND MEASURES The signal-to-background ratio (SBR) of BLZ-100 was measured in tumor xenografts. To calculate the sensitivity and specificity of BLZ-100 uptake, a digital grid was placed over tissue sections and correlative histologic sections to discretely measure fluorescence intensity and presence of tumor; a receiver operating characteristic (ROC) curve was then plotted. In the hamster dysplasia model, cheeks were graded according to dysplasia severity. The SBR of BLZ-100 was compared among dysplasia grades. RESULTS In HNSCC xenografts, BLZ-100 demonstrated a mean (SD) SBR of 2.51 (0.47). The ROC curve demonstrated an area under the curve (AUC) of 0.89; an SBR of 2.50 corresponded to 92% sensitivity and 74% specificity. When this analysis was focused on the tumor and nontumor interface, the AUC increased to 0.97; an SBR of 2.50 corresponded to 95% sensitivity and 91% specificity. DMBA treatment of hamster cheek pouches generated lesions representing all grades of dysplasia. The SBR of high-grade dysplasia was significantly greater than that of mild-to-moderate dysplasia (2.31 [0.71] vs 1.51 [0.34], P = .006). CONCLUSIONS AND RELEVANCE BLZ-100 is a sensitive and specific marker of HNSCC and can distinguish high-risk from low-risk dysplasia. BLZ-100 has the potential to serve as an intraoperative guide for tumor margin excision and identification of premalignant lesions.
Collapse
Affiliation(s)
- Fred M Baik
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle
| | | | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus
| | | | - Ryan M Mitchell
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle
| | - Chang Xu
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James M Olson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Eduardo Méndez
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle4Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
21
|
Zhang R, Yang J, Radford DC, Fang Y, Kopeček J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromol Biosci 2016; 17. [PMID: 27198936 DOI: 10.1002/mabi.201600125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is applied to investigate the enzyme-responsive payload release from a macromolecular therapeutic. The donor Cy5 is attached to the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone and the acceptor Cy7 is bound to the termini of enzyme-sensitive peptide side chains. Upon exposure to an enzyme, the bond between the peptide and Cy7 is cleaved, thereby leading to the loss of FRET signal. This enzyme response is visualized at the cell, tissue and whole-body levels. The in vitro results demonstrate that high expression of cathepsin B in tumor cells induces effective release of the drug model from conjugates resulting in a high concentration of payload inside tumor cells. The in vivo and ex vivo images show that the conjugate releases drug model faster in the ovarian tumor than in the normal tissues. The information will enhance the understanding of enzyme-responsive polymer carriers and help to shape their design.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
22
|
Hussain T, Savariar EN, Diaz-Perez JA, Messer K, Pu M, Tsien RY, Nguyen QT. Surgical molecular navigation with ratiometric activatable cell penetrating peptide for intraoperative identification and resection of small salivary gland cancers. Head Neck 2016; 38:715-23. [PMID: 25521629 PMCID: PMC4472578 DOI: 10.1002/hed.23946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We evaluated the use of intraoperative fluorescence guidance by enzymatically cleavable ratiometric activatable cell-penetrating peptide (RACPPPLGC(Me)AG) containing Cy5 as a fluorescent donor and Cy7 as a fluorescent acceptor for salivary gland cancer surgery in a mouse model. METHODS Surgical resection of small parotid gland cancers in mice was performed with fluorescence guidance or white light (WL) imaging alone. Tumor identification accuracy, operating time, and tumor-free survival were compared. RESULTS RACPP guidance aided tumor detection (positive histology in 90% [27/30] vs 48% [15/31] for WL; p < .001). An approximate 25% ratiometric signal increase as the threshold to distinguish between tumor and adjacent tissue, yielded >90% detection sensitivity and specificity. Operating time was reduced by 54% (p < .001), and tumor-free survival was increased with RACPP guidance (p = .025). CONCLUSION RACPP provides real-time intraoperative guidance leading to improved survival. Ratiometric signal thresholds can be set according to desired detection accuracy levels for future RACPP applications.
Collapse
Affiliation(s)
- Timon Hussain
- Division of Head and Neck Surgery, University of California San Diego
| | | | | | - Karen Messer
- Division of Biostatistics, Moores Cancer Center, University of California San Diego
| | - Minya Pu
- Division of Biostatistics, Moores Cancer Center, University of California San Diego
| | - Roger Y. Tsien
- Department of Pharmacology, University of California San Diego
- Howard Hughes Medical Institute, University of California San Diego
| | - Quyen T. Nguyen
- Division of Head and Neck Surgery, University of California San Diego
| |
Collapse
|
23
|
Zaro JL, Shen WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1538-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Yang J, Zhang R, Radford DC, Kopeček J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. J Control Release 2015; 218:36-44. [PMID: 26410808 DOI: 10.1016/j.jconrel.2015.09.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
To develop a biodegradable polymeric drug delivery system for the treatment of ovarian cancer with the capacity for non-invasive fate monitoring, we designed and synthesized N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-epirubicin (EPI) conjugates. The polymer backbone was labeled with acceptor fluorophore Cy5, while donor fluorophores (Cy3 or EPI) were attached to HPMA copolymer side chains via an enzyme-cleavable GFLG linker. This design allows elucidating separately the fate of the drug and of the polymer backbone using fluorescence resonance energy transfer (FRET). The degradable diblock conjugate (2P-EPI) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using a bifunctional chain transfer agent (Peptide2CTA). The pharmacokinetics (PK) and therapeutic effect of 2P-EPI (Mw ~100 kDa) were determined in mice bearing human ovarian carcinoma A2780 xenografts. Compared to 1st generation conjugate (P-EPI, Mw <50 kDa), 2P-EPI demonstrated remarkably improved PK such as fourfold terminal half-life (33.22 ± 3.18 h for 2P-EPI vs. 7.55 ± 3.18 h for P-EPI), which is primarily attributed to the increased molecular weight of the polymer carrier. Notably, complete tumor remission and long-term inhibition of tumorigenesis (100 days) were achieved in mice (n=5) treated with 2P-EPI. Moreover, in vitro cell uptake and intracellular drug release were determined via FRET intensity changes. The results establish a solid foundation for future in vivo tracking of drug delivery and chain scission of polymeric conjugates by FRET imaging.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Raju SC, Hauff SJ, Lemieux AJ, Orosco RK, Gross AM, Nguyen LT, Savariar E, Moss W, Whitney M, Cohen EE, Lippman SM, Tsien RY, Ideker T, Advani SJ, Nguyen QT. Combined TP53 mutation/3p loss correlates with decreased radiosensitivity and increased matrix-metalloproteinase activity in head and neck carcinoma. Oral Oncol 2015; 51:470-5. [PMID: 25735654 PMCID: PMC4427339 DOI: 10.1016/j.oraloncology.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with head and neck squamous cell carcinoma (HNSCC) containing TP53 mutation and 3p deletion ("double-hit") have poorer prognosis compared to patients with either event alone ("single-hit"). The etiology for worse clinical outcomes in patients with "double-hit" cancers is unclear. We compared radiosensitivity of cell lines containing both TP53 mutations and deletion of Fragile Histidine Triad (FHIT, the gene most commonly associated with 3p deletion) to "single-hit" lines with only TP53 mutation. We compared radiosensitivity in a "single-hit" cell line with TP53 mutation converted to "double-hit" using RNA interference targeting FHIT. Finally, we compared matrixmetalloproteinase-2/9 (MMP-2/9) activity, a previously-established biomarker for tumor aggressiveness, in xenograft tumors derived from these cell lines. MATERIALS/METHODS TP53 mutation and FHIT deletion profiles of HNSCC lines were established using Cancer Cell Line Encyclopedia (CCLE). We used RNA-interference to convert a "single-hit" cell line (SCC4) to "double-hit". Cultured cells were examined for radiosensitivity and cisplatin sensitivity. MMP-2/9 activity was evaluated in "double-hit" versus "single-hit" tumors using ratiometric activatable cell-penetrating peptide (RACPP) in tongue (n=17) and flank xenografts (n=4). RESULTS Radiotherapy caused greater double-stranded DNA breaks in "single-hit" vs naturally occurring and engineered "double-hit" cells. In-vivo, "double-hit" xenografts demonstrated higher MMP-2/9 activity compared to "single-hit" xenografts (p<0.01). There was no difference in cisplatin sensitivity between the cell lines. CONCLUSIONS TP53 mutation combined with FHIT deletion correlates with decreased radiosensitivity in HNC cell lines. Xenograft from "double-hit" cells exhibit increased MMP-2/9 activity. These findings may in part account for the worse clinical outcome seen in patients with HNSCC "double-hit" tumors.
Collapse
Affiliation(s)
- Sharat C Raju
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | - Samantha J Hauff
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | - Aaron J Lemieux
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | - Ryan K Orosco
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | - Andrew M Gross
- Bioinfomatics and Systems Biology, University of California, San Diego, CA, USA
| | - Linda T Nguyen
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | | | - William Moss
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA
| | - Michael Whitney
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | | | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, CA, USA; Howard Hughes Medical Institute, San Diego, CA, USA
| | - Trey Ideker
- Bioinfomatics and Systems Biology, University of California, San Diego, CA, USA; Division of Medical Genetics, University of California, San Diego, CA, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - Quyen T Nguyen
- Division of Head and Neck Surgery, University of California, San Diego, CA, USA; Department of Pharmacology, University of California, San Diego, CA, USA; Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
26
|
Wong PT, Choi SK. Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chem Rev 2015; 115:3388-432. [DOI: 10.1021/cr5004634] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|