2
|
Cui W, Wang T, Xu Z, Liu J, Simakov S, Liang F. A numerical study of the hemodynamic behavior and gas transport in cardiovascular systems with severe cardiac or cardiopulmonary failure supported by venoarterial extracorporeal membrane oxygenation. Front Bioeng Biotechnol 2023; 11:1177325. [PMID: 37229493 PMCID: PMC10203410 DOI: 10.3389/fbioe.2023.1177325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Venoarterial extracorporeal membrane oxygenation (VA-ECMO) has been extensively demonstrated as an effective means of bridge-to-destination in the treatment of patients with severe ventricular failure or cardiopulmonary failure. However, appropriate selection of candidates and management of patients during Extracorporeal membrane oxygenation (ECMO) support remain challenging in clinical practice, due partly to insufficient understanding of the complex influences of extracorporeal membrane oxygenation support on the native cardiovascular system. In addition, questions remain as to how central and peripheral venoarterial extracorporeal membrane oxygenation modalities differ with respect to their hemodynamic impact and effectiveness of compensatory oxygen supply to end-organs. In this work, we developed a computational model to quantitatively address the hemodynamic interaction between the extracorporeal membrane oxygenation and cardiovascular systems and associated gas transport. Model-based numerical simulations were performed for cardiovascular systems with severe cardiac or cardiopulmonary failure and supported by central or peripheral venoarterial extracorporeal membrane oxygenation. Obtained results revealed that: 1) central and peripheral venoarterial extracorporeal membrane oxygenation modalities had a comparable capacity for elevating arterial blood pressure and delivering oxygenated blood to important organs/tissues, but induced differential changes of blood flow waveforms in some arteries; 2) increasing the rotation speed of extracorporeal membrane oxygenation pump (ω) could effectively improve arterial blood oxygenation, with the efficiency being especially high when ω was low and cardiopulmonary failure was severe; 3) blood oxygen indices (i.e., oxygen saturation and partial pressure) monitored at the right radial artery could be taken as surrogates for diagnosing potential hypoxemia in other arteries irrespective of the modality of extracorporeal membrane oxygenation; and 4) Left ventricular (LV) overloading could occur when ω was high, but the threshold of ω for inducing clinically significant left ventricular overloading depended strongly on the residual cardiac function. In summary, the study demonstrated the differential hemodynamic influences while comparable oxygen delivery performance of the central and peripheral venoarterial extracorporeal membrane oxygenation modalities in the management of patients with severe cardiac or cardiopulmonary failure and elucidated how the status of arterial blood oxygenation and severity of left ventricular overloading change in response to variations in ω. These model-based findings may serve as theoretical references for guiding the application of venoarterial extracorporeal membrane oxygenation or interpreting in vivo measurements in clinical practice.
Collapse
Affiliation(s)
- Wenhao Cui
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlong Liu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sergey Simakov
- Department of Computational Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Rozencwajg S, Heinsar S, Wildi K, Jung JS, Colombo SM, Palmieri C, Sato K, Ainola C, Wang X, Abbate G, Sato N, Dyer WB, Livingstone S, Helms L, Bartnikowski N, Bouquet M, Passmore MR, Hyslop K, Vidal B, Reid JD, McGuire D, Wilson ES, Rätsep I, Lorusso R, Schmidt M, Suen JY, Bassi GL, Fraser JF. Effect of flow change on brain injury during an experimental model of differential hypoxaemia in cardiogenic shock supported by extracorporeal membrane oxygenation. Sci Rep 2023; 13:4002. [PMID: 36899029 PMCID: PMC10006234 DOI: 10.1038/s41598-023-30226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Differential hypoxaemia (DH) is common in patients supported by femoral veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and can cause cerebral hypoxaemia. To date, no models have studied the direct impact of flow on cerebral damage. We investigated the impact of V-A ECMO flow on brain injury in an ovine model of DH. After inducing severe cardiorespiratory failure and providing ECMO support, we randomised six sheep into two groups: low flow (LF) in which ECMO was set at 2.5 L min-1 ensuring that the brain was entirely perfused by the native heart and lungs, and high flow (HF) in which ECMO was set at 4.5 L min-1 ensuring that the brain was at least partially perfused by ECMO. We used invasive (oxygenation tension-PbTO2, and cerebral microdialysis) and non-invasive (near infrared spectroscopy-NIRS) neuromonitoring, and euthanised animals after five hours for histological analysis. Cerebral oxygenation was significantly improved in the HF group as shown by higher PbTO2 levels (+ 215% vs - 58%, p = 0.043) and NIRS (67 ± 5% vs 49 ± 4%, p = 0.003). The HF group showed significantly less severe brain injury than the LF group in terms of neuronal shrinkage, congestion and perivascular oedema (p < 0.0001). Cerebral microdialysis values in the LF group all reached the pathological thresholds, even though no statistical difference was found between the two groups. Differential hypoxaemia can lead to cerebral damage after only a few hours and mandates a thorough neuromonitoring of patients. An increase in ECMO flow was an effective strategy to reduce such damages.
Collapse
Affiliation(s)
- Sacha Rozencwajg
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France.
- UPMC Université Paris 06, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Universités, Paris, France.
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Lombardia, Italy
| | - Chiara Palmieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Xiaomeng Wang
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Lombardia, Italy
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Wayne B Dyer
- Australian Red Cross Lifeblood, Sydney, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Leticia Helms
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Columbia University, College of Physicians and Surgeons, New York, USA
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Bruno Vidal
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Janice D Reid
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Daniel McGuire
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Indrek Rätsep
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Matthieu Schmidt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France
- UPMC Université Paris 06, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Universités, Paris, France
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Queensland University of Technology, Brisbane, Australia.
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia.
- Intensive Care Unit, The Wesley Hospital, Brisbane, Australia.
- Wesley Medical Research, The Wesley, Queensland, Auchenflower, Australia.
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, Australia
| |
Collapse
|
6
|
Winiszewski H, Guinot PG, Schmidt M, Besch G, Piton G, Perrotti A, Lorusso R, Kimmoun A, Capellier G. Optimizing PO 2 during peripheral veno-arterial ECMO: a narrative review. Crit Care 2022; 26:226. [PMID: 35883117 PMCID: PMC9316319 DOI: 10.1186/s13054-022-04102-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 01/01/2023] Open
Abstract
During refractory cardiogenic shock and cardiac arrest, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used to restore a circulatory output. However, it also impacts significantly arterial oxygenation. Recent guidelines of the Extracorporeal Life Support Organization (ELSO) recommend targeting postoxygenator partial pressure of oxygen (PPOSTO2) around 150 mmHg. In this narrative review, we intend to summarize the rationale and evidence for this PPOSTO2 target recommendation. Because this is the most used configuration, we focus on peripheral VA-ECMO. To date, clinicians do not know how to set the sweep gas oxygen fraction (FSO2). Because of the oxygenator's performance, arterial hyperoxemia is common during VA-ECMO support. Interpretation of oxygenation is complex in this setting because of the dual circulation phenomenon, depending on both the native cardiac output and the VA-ECMO blood flow. Such dual circulation results in dual oxygenation, with heterogeneous oxygen partial pressure (PO2) along the aorta, and heterogeneous oxygenation between organs, depending on the mixing zone location. Data regarding oxygenation during VA-ECMO are scarce, but several observational studies have reported an association between hyperoxemia and mortality, especially after refractory cardiac arrest. While hyperoxemia should be avoided, there are also more and more studies in non-ECMO patients suggesting the harm of a too restrictive oxygenation strategy. Finally, setting FSO2 to target strict normoxemia is challenging because continuous monitoring of postoxygenator oxygen saturation is not widely available. The threshold of PPOSTO2 around 150 mmHg is supported by limited evidence but aims at respecting a safe margin, avoiding both hypoxemia and severe hyperoxemia.
Collapse
Affiliation(s)
- Hadrien Winiszewski
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France. .,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France.
| | - Pierre-Grégoire Guinot
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Dijon, Dijon, France
| | - Matthieu Schmidt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, Paris, France
| | - Guillaume Besch
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Gael Piton
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Andrea Perrotti
- Service de Chirurgie Cardiaque, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Antoine Kimmoun
- Service de Médecine Intensive Réanimation, centre hospitalier universitaire de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Gilles Capellier
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| |
Collapse
|