• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637602)   Today's Articles (1356)   Subscriber (50125)
For: Coote S, Murphy B, Harwin W, Stokes E. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil 2008;22:395-405. [PMID: 18441036 DOI: 10.1177/0269215507085060] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Number Cited by Other Article(s)
1
Falkowski P, Osiak T, Wilk J, Prokopiuk N, Leczkowski B, Pilat Z, Rzymkowski C. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2023;23:911. [PMID: 36679706 PMCID: PMC9864302 DOI: 10.3390/s23020911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
2
Chen B, Zhou Y, Chen C, Sayeed Z, Hu J, Qi J, Frush T, Goitz H, Hovorka J, Cheng M, Palacio C. Volitional control of upper-limb exoskeleton empowered by EMG sensors and machine learning computing. ARRAY 2023. [DOI: 10.1016/j.array.2023.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]  Open
3
Grosmaire AG, Pila O, Breuckmann P, Duret C. Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. NeuroRehabilitation 2022;51:577-593. [PMID: 36530096 DOI: 10.3233/nre-220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
4
Zuccon G, Lenzo B, Bottin M, Rosati G. Rehabilitation robotics after stroke: a bibliometric literature review. Expert Rev Med Devices 2022;19:405-421. [PMID: 35786139 DOI: 10.1080/17434440.2022.2096438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
5
Ye F, Yang B, Nam C, Xie Y, Chen F, Hu X. A Data-Driven Investigation on Surface Electromyography Based Clinical Assessment in Chronic Stroke. Front Neurorobot 2021;15:648855. [PMID: 34335219 PMCID: PMC8320436 DOI: 10.3389/fnbot.2021.648855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]  Open
6
Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol 2021:1-15. [PMID: 33861684 DOI: 10.1080/17483107.2021.1906960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
7
Chen Y, Poole MC, Olesovsky SV, Champagne AA, Harrison KA, Nashed JY, Coverdale NS, Scott SH, Cook DJ. Robotic Assessment of Upper Limb Function in a Nonhuman Primate Model of Chronic Stroke. Transl Stroke Res 2021;12:569-580. [PMID: 33393055 DOI: 10.1007/s12975-020-00859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
8
Perspectives and Challenges in Robotic Neurorehabilitation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153183] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
9
Xiong H, Diao X. A review of cable-driven rehabilitation devices. Disabil Rehabil Assist Technol 2019;15:885-897. [PMID: 31287340 DOI: 10.1080/17483107.2019.1629110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
10
Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
11
Cai S, Chen Y, Huang S, Wu Y, Zheng H, Li X, Xie L. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training. Front Neurorobot 2019;13:31. [PMID: 31214010 PMCID: PMC6558101 DOI: 10.3389/fnbot.2019.00031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 11/28/2022]  Open
12
Barak Ventura R, Nakayama S, Raghavan P, Nov O, Porfiri M. The Role of Social Interactions in Motor Performance: Feasibility Study Toward Enhanced Motivation in Telerehabilitation. J Med Internet Res 2019;21:e12708. [PMID: 31094338 PMCID: PMC6540723 DOI: 10.2196/12708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 11/13/2022]  Open
13
Assad-Uz-Zaman M, Rasedul Islam M, Miah S, Rahman MH. NAO robot for cooperative rehabilitation training. J Rehabil Assist Technol Eng 2019;6:2055668319862151. [PMID: 31413864 PMCID: PMC6676265 DOI: 10.1177/2055668319862151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]  Open
14
A Novel Generation of Ergonomic Upper-Limb Wearable Robots: Design Challenges and Solutions. ROBOTICA 2018. [DOI: 10.1017/s0263574718001340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
15
Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0064-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
16
Liu LY, Li Y, Lamontagne A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. J Neuroeng Rehabil 2018;15:65. [PMID: 29973250 PMCID: PMC6033222 DOI: 10.1186/s12984-018-0408-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/19/2018] [Indexed: 11/10/2022]  Open
17
A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. JOURNAL OF HEALTHCARE ENGINEERING 2018;2018:9758939. [PMID: 29707189 PMCID: PMC5901488 DOI: 10.1155/2018/9758939] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 11/17/2022]
18
Improving Upper Extremity Function and Quality of Life with a Tongue Driven Exoskeleton: A Pilot Study Quantifying Stroke Rehabilitation. Stroke Res Treat 2018;2017:3603860. [PMID: 29403672 PMCID: PMC5748322 DOI: 10.1155/2017/3603860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/29/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]  Open
19
Bernocchi P, Mulè C, Vanoglio F, Taveggia G, Luisa A, Scalvini S. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study. Top Stroke Rehabil 2017;25:114-119. [PMID: 29037114 DOI: 10.1080/10749357.2017.1389021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
20
Control design for a lower-limb paediatric therapy device using linear motor technology. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
21
Bae SJ, Jang SH, Seo JP, Chang PH. The Optimal Speed for Cortical Activation of Passive Wrist Movements Performed by a Rehabilitation Robot: A Functional NIRS Study. Front Hum Neurosci 2017;11:194. [PMID: 28473763 PMCID: PMC5398011 DOI: 10.3389/fnhum.2017.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/03/2017] [Indexed: 11/13/2022]  Open
22
Simonsen D, Popovic MB, Spaich EG, Andersen OK. Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement. Med Biol Eng Comput 2017;55:1927-1935. [PMID: 28343334 DOI: 10.1007/s11517-017-1640-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
23
Young EM, Withrow TJ, Sarkar N. Design of intention-based assistive robot for upper limb. Adv Robot 2017. [DOI: 10.1080/01691864.2017.1295883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
24
Liu L, Xie L, Shi YY, An BC. Generation of a Movement Scheme for Positive Training. Front Neurosci 2017;11:96. [PMID: 28298882 PMCID: PMC5331047 DOI: 10.3389/fnins.2017.00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/14/2017] [Indexed: 11/20/2022]  Open
25
Palermo E, Laut J, Nov O, Cappa P, Porfiri M. A natural user interface to integrate citizen science and physical exercise. PLoS One 2017;12:e0172587. [PMID: 28231261 PMCID: PMC5322974 DOI: 10.1371/journal.pone.0172587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022]  Open
26
Huang X, Naghdy F, Naghdy G, Du H, Todd C. Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/ijdhd-2016-0035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
27
Laut J, Porfiri M, Raghavan P. The Present and Future of Robotic Technology in Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016;4:312-319. [PMID: 28603663 PMCID: PMC5461931 DOI: 10.1007/s40141-016-0139-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
LIU LIN, SHI YUNYONG, XIE LE. A NOVEL MULTI-DOF EXOSKELETON ROBOT FOR UPPER LIMB REHABILITATION. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416400236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
29
Chen CC. Multimedia virtualized environment for shoulder pain rehabilitation. J Phys Ther Sci 2016;28:1349-54. [PMID: 27190481 PMCID: PMC4868241 DOI: 10.1589/jpts.28.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/16/2016] [Indexed: 11/24/2022]  Open
30
Cho KH, Song WK. Feedback training using a non-motorized device for long-term upper extremity impairment after stroke: a single group study. J Phys Ther Sci 2016;28:495-9. [PMID: 27064768 PMCID: PMC4792998 DOI: 10.1589/jpts.28.495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/31/2015] [Indexed: 11/24/2022]  Open
31
Chen SH, Lien WM, Wang WW, Lee GD, Hsu LC, Lee KW, Lin SY, Lin CH, Fu LC, Lai JS, Luh JJ, Chen WS. Assistive Control System for Upper Limb Rehabilitation Robot. IEEE Trans Neural Syst Rehabil Eng 2016;24:1199-1209. [PMID: 26929055 DOI: 10.1109/tnsre.2016.2532478] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Feys P, Coninx K, Kerkhofs L, De Weyer T, Truyens V, Maris A, Lamers I. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil 2015. [PMID: 26202325 PMCID: PMC4511982 DOI: 10.1186/s12984-015-0043-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]  Open
33
Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol 2015;11:263-80. [PMID: 25600057 DOI: 10.3109/17483107.2014.1002539] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
34
Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O'Connor RJ, Levesley M. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil 2014;11:163. [PMID: 25495889 PMCID: PMC4280043 DOI: 10.1186/1743-0003-11-163] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]  Open
35
Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G. The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 2014;11:187-98. [PMID: 24479445 DOI: 10.1586/17434440.2014.882766] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
36
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014;11:3. [PMID: 24401110 PMCID: PMC4029785 DOI: 10.1186/1743-0003-11-3] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2014] [Indexed: 11/10/2022]  Open
37
Can force feedback and science learning enhance the effectiveness of neuro-rehabilitation? An experimental study on using a low-cost 3D joystick and a virtual visit to a zoo. PLoS One 2013;8:e83945. [PMID: 24349562 PMCID: PMC3862801 DOI: 10.1371/journal.pone.0083945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]  Open
38
Brokaw EB, Nichols D, Holley RJ, Lum PS. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil Neural Repair 2013;28:367-76. [PMID: 24297763 DOI: 10.1177/1545968313510974] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
39
Parker J, Mawson S, Mountain G, Nasr N, Davies R, Zheng H. The provision of feedback through computer-based technology to promote self-managed post-stroke rehabilitation in the home. Disabil Rehabil Assist Technol 2013;9:529-38. [PMID: 24131369 DOI: 10.3109/17483107.2013.845611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
40
Nef T, Riener R, Müri R, Mosimann UP. Comfort of two shoulder actuation mechanisms for arm therapy exoskeletons: a comparative study in healthy subjects. Med Biol Eng Comput 2013;51:781-9. [DOI: 10.1007/s11517-013-1047-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
41
van den Hoogen W, Feys P, Lamers I, Coninx K, Notelaers S, Kerkhofs L, Ijsselsteijn W. Visualizing the third dimension in virtual training environments for neurologically impaired persons: beneficial or disruptive? J Neuroeng Rehabil 2012;9:73. [PMID: 23036010 PMCID: PMC3548715 DOI: 10.1186/1743-0003-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022]  Open
42
Perez-Marcos D, Solazzi M, Steptoe W, Oyekoya O, Frisoli A, Weyrich T, Steed A, Tecchia F, Slater M, Sanchez-Vives MV. A fully immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Front Neurol 2012;3:110. [PMID: 22787454 PMCID: PMC3392697 DOI: 10.3389/fneur.2012.00110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/19/2012] [Indexed: 11/13/2022]  Open
43
Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med Eng Phys 2012;34:261-8. [PMID: 22051085 DOI: 10.1016/j.medengphy.2011.10.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
44
Abdullah HA, Tarry C, Lambert C, Barreca S, Allen BO. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. J Neuroeng Rehabil 2011;8:50. [PMID: 21871095 PMCID: PMC3182973 DOI: 10.1186/1743-0003-8-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/26/2011] [Indexed: 11/21/2022]  Open
45
Molier BI, Van Asseldonk EHF, Hermens HJ, Jannink MJA. Nature, timing, frequency and type of augmented feedback; does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disabil Rehabil 2011;32:1799-809. [PMID: 20345249 DOI: 10.3109/09638281003734359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
46
Lu EC, Wang RH, Hebert D, Boger J, Galea MP, Mihailidis A. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists. Disabil Rehabil Assist Technol 2010;6:420-31. [PMID: 21184626 DOI: 10.3109/17483107.2010.544370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
47
Potential for new technologies in clinical practice. Curr Opin Neurol 2010;23:671-7. [DOI: 10.1097/wco.0b013e3283402af5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
48
Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke. IEEE Trans Neural Syst Rehabil Eng 2010;18:551-9. [DOI: 10.1109/tnsre.2010.2047588] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
49
Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil 2009;6:46. [PMID: 20017939 PMCID: PMC2807864 DOI: 10.1186/1743-0003-6-46] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 12/17/2009] [Indexed: 01/19/2023]  Open
50
Qiu Q, Ramirez DA, Saleh S, Fluet GG, Parikh HD, Kelly D, Adamovich SV. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J Neuroeng Rehabil 2009;6:40. [PMID: 19917124 PMCID: PMC2781812 DOI: 10.1186/1743-0003-6-40] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA