1
|
Wang P, Bi Y, Li M, Chen J, Wang Z, Wen H, Zhou M, Luo M, Zhang W. Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats. Neural Regen Res 2025; 20:1164-1177. [PMID: 38989954 PMCID: PMC11438323 DOI: 10.4103/nrr.nrr-d-23-01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
3
|
Ranaldi R, Timken P, Parasram D, Ali T, Zhang S, Moukha-Chafiq O, Augelli-Szafran C, Streicher JM. The D3 receptor antagonist SR 21502 reduces cue-induced reinstatement of methamphetamine-seeking in rats. Neurosci Lett 2023; 806:137237. [PMID: 37059218 PMCID: PMC10189795 DOI: 10.1016/j.neulet.2023.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
There is as of yet no FDA-approved medication for methamphetamine use disorder. Although dopamine D3 receptor antagonists have been shown to be useful in reducing methamphetamine seeking in animal models their translation to the clinic has been hindered because currently tested compounds can produce dangerously high blood pressure. Thus, it is important to continue to explore other classes of D3 antagonists. We report here the effects of SR 21502, a selective D3 receptor antagonist, on cue-induced reinstatement (i.e., relapse) of methamphetamine-seeking in rats. In Experiment 1, rats were trained to self-administer methamphetamine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with one of several doses of SR 21502 on cue-induced reinstatement of responding. SR 21502 significantly reduced cue-induced reinstatement of methamphetamine-seeking. In Experiment 2, animals were trained to lever press for food under a PR schedule and tested with the lowest dose of SR 21502 that caused a significant reduction in Experiment 1. These animals responded on average 8 times more than the vehicle-treated rats in Experiment 1, eliminating the possibility that SR 21502-treated rats in Experiment 1 responded less because they were incapacitated. In summary, these data suggest that SR 21502 may selectively inhibit methamphetamine-seeking and may constitute a promising pharmacotherapeutic agent for methamphetamine or other drug use disorders.
Collapse
Affiliation(s)
- Robert Ranaldi
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA.
| | - Patrick Timken
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Daleya Parasram
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Tasmia Ali
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Sixue Zhang
- Scientific Platforms, Southern Research Institute, Birmingham, AL, USA
| | | | | | - John M Streicher
- Department of Pharmacology, College of Medicine and the Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Bachtell RK, Larson TA, Winkler MC. Adenosine receptor stimulation inhibits methamphetamine-associated cue seeking. J Psychopharmacol 2023; 37:192-203. [PMID: 36629009 DOI: 10.1177/02698811221147157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a psychostimulant drug that remains a popular and threatening drug of abuse with high abuse liability. There is no established pharmacotherapy to treat METH dependence, but evidence suggests that stimulation of adenosine receptors reduces the reinforcing properties of METH and could be a potential pharmacological target. This study examines the effects of adenosine receptor subtype stimulation on METH seeking using both a cue-induced reinstatement and cue-craving model of relapse. METHODS Male and female rats were trained to self-administer METH during daily 2-h sessions. Cue-induced reinstatement of METH seeking was evaluated after extinction training. A systemic pretreatment of an adenosine A1 receptor (A1R) or A2A receptor (A2AR) agonist was administered prior to an extinction or cue session to evaluate the effects of adenosine receptor subtype stimulation on METH seeking. The effects of a systemic pretreatment of A1R or A2AR agonists were also evaluated in a cue-craving model where the cued-seeking test was conducted after 21 days of forced home-cage abstinence without extinction training. RESULTS Cue-induced reinstatement was reduced in both male and female rats that received A1R or A2AR agonist pretreatments. Similarly, an A1R or A2AR agonist pretreatment also inhibited cue craving in both male and female rats. CONCLUSION Stimulation of either adenosine A1R or A2AR subtypes inhibits METH-seeking behavior elicited by METH-associated cues. These effects may be attributed to the ability of A1R and A2AR stimulation to disrupt cue-induced dopamine and glutamate signaling throughout the brain.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tracey A Larson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Madeline C Winkler
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Gao K, Chen D, Robison AJ, Wei GW. Proteome-Informed Machine Learning Studies of Cocaine Addiction. J Phys Chem Lett 2021; 12:11122-11134. [PMID: 34752088 PMCID: PMC9357290 DOI: 10.1021/acs.jpclett.1c03133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
No anti-cocaine addiction drugs have been approved by the Food and Drug Administration despite decades of effort. The main challenge is the intricate molecular mechanisms of cocaine addiction, involving synergistic interactions among proteins upstream and downstream of the dopamine transporter. However, it is difficult to study so many proteins with traditional experiments, highlighting the need for innovative strategies in the field. We propose a proteome-informed machine learning (ML) platform for discovering nearly optimal anti-cocaine addiction lead compounds. We analyze proteomic protein-protein interaction networks for cocaine dependence to identify 141 involved drug targets and build 32 ML models for cross-target analysis of more than 60,000 drug candidates or experimental drugs for side effects and repurposing potentials. We further predict their ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Our platform reveals that essentially all of the existing drug candidates fail in our cross-target and ADMET screenings but identifies several nearly optimal leads for further optimization.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dong Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi ZX. New Drugs, Old Targets: Tweaking the Dopamine System to Treat Psychostimulant Use Disorders. Annu Rev Pharmacol Toxicol 2021; 61:609-628. [PMID: 33411583 PMCID: PMC9341034 DOI: 10.1146/annurev-pharmtox-030220-124205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D3 receptors are described as two promising targets for future drug development.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA;
| |
Collapse
|
7
|
Guerrero-Bautista R, Do Couto BR, Hidalgo JM, Cárceles-Moreno FJ, Molina G, Laorden ML, Núñez C, Milanés MV. Modulation of stress- and cocaine prime-induced reinstatement of conditioned place preference after memory extinction through dopamine D3 receptor. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:308-320. [PMID: 30707990 DOI: 10.1016/j.pnpbp.2019.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that dopamine (DA) D3 receptor (DAD3R) antagonists appear highly promising in attenuating cocaine reward and relapse in preclinical models of addiction. In the present study, we investigated the effects of the selective DAD3R antagonist SB-277011-A on the reinstatement of cocaine-induced conditioned place preference (CPP) produced by a priming dose of cocaine, by social defeat stress and by two kinds of physiological stressors (restraint and tail pinch) in male adult mice. We also explored reinstatement-related plasma corticosterone levels (as marker of stress response) and the effects of blocking DAD3R. Administration of SB-277011-A (24 or 48 mg/kg i.p.) did not modify conditioned reinstatement of cocaine seeking triggered by cocaine prime. By contrast, we found that the vulnerability to reinstatement of the CPP of defeated animals that have undergone CPP extinction was abolished by the DAD3R antagonist (24 mg/kg) given 30 min before the test session. Reactivation of the CPP response produced by physiological stress stimuli was also attenuated by SB-277011-A (48 mg/kg i.p.). On the other hand, the blockade of DAD3R significantly prevented the increased corticosterone release during reinstatement of cocaine-induced CPP that was seen in social defeated animals, in mice suffering physiological stress and after cocaine prime. Present results demonstrate a modulation by DAD3R of the reactivation of the incentive value of cocaine-associated cues induced by social and physiological stress stimuli, which was associated to a glucocorticoid-dependent mechanism. Our results also point to a possible potential therapeutic use of selective DAD3R antagonists for the prevention of stress-induced cocaine-seeking and relapse.
Collapse
Affiliation(s)
- Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Anatomy and Psychobiology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Francisco José Cárceles-Moreno
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | - M Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain.
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain.
| |
Collapse
|
8
|
Larson TA, Winkler MC, Stafford J, Levis SC, O’Neill CE, Bachtell RK. Role of dopamine D 2-like receptors and their modulation by adenosine receptor stimulation in the reinstatement of methamphetamine seeking. Psychopharmacology (Berl) 2019; 236:1207-1218. [PMID: 30470862 PMCID: PMC6533169 DOI: 10.1007/s00213-018-5126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Previous work has demonstrated that dopamine and adenosine receptors are involved in drug-seeking behaviors, yet the pharmacological interactions between these receptors in methamphetamine (MA) seeking are not well characterized. The present studies examined the role of the dopamine D2-like receptors in MA seeking and identified the interactive effects of adenosine receptor stimulation. METHODS Adult male Sprague-Dawley rats were trained to lever press for MA in daily 2-h self-administration sessions on a fixed-ratio 1 schedule for 10 consecutive days. After 1 day of abstinence, lever pressing was extinguished in six daily extinction sessions. Treatments were administered systemically prior to a 2-h reinstatement test session. RESULTS An increase in MA seeking was observed following the administration of the dopamine D2-like agonist, quinpirole, or the D3 receptor agonist, 7-OH-DPAT. Stimulation of D2 or D4 receptors was ineffective at inducing MA seeking. Quinpirole-induced MA seeking was inhibited by D3 receptor antagonism (SB-77011A or PG01037), an adenosine A1 agonist, CPA, and an adenosine A2A agonist, CGS 21680. MA seeking induced by a MA priming injection or D3 receptor stimulation was inhibited by a pretreatment with the adenosine A1 agonist, CPA, but not the adenosine A2A agonist, CGS 21680. CONCLUSIONS These results demonstrate the sufficiency of dopamine D3 receptors to reinstate MA seeking that is inhibited when combined with adenosine A1 receptor stimulation.
Collapse
|
9
|
Gadhiya S, Cordone P, Pal RK, Gallicchio E, Wickstrom L, Kurtzman T, Ramsey S, Harding WW. New Dopamine D3-Selective Receptor Ligands Containing a 6-Methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol Motif. ACS Med Chem Lett 2018; 9:990-995. [PMID: 30344905 DOI: 10.1021/acsmedchemlett.8b00229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
A series of analogues featuring a 6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol unit as the arylamine "head" group of a classical D3 antagonist core structure were synthesized and evaluated for affinity at dopamine D1, D2, and D3 receptors (D1R, D2R, D3R). The compounds generally displayed strong affinity for D3R with very good D3R selectivity. Docking studies at D2R and D3R crystal structures revealed that the molecules are oriented such that their arylamine units are positioned in the orthosteric binding pocket of D3R, with the arylamide "tail" units residing in the secondary binding pocket. Hydrogen bonding between Ser 182 and Tyr 365 at D3R stabilize extracellular loop 2 (ECL2), which in turn contributes to ligand binding by interacting with the "tail" units of the ligands in the secondary binding pocket. Similar interactions between ECL2 and the "tail" units were absent at D2R due to different positioning of the D2R loop region. The presence of multiple H-bonds with the phenol moiety of the headgroup of 7 and Ser192 accounts for its stronger D3R affinity as compared to the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-containing analogue 8.
Collapse
Affiliation(s)
- Satishkumar Gadhiya
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
| | - Pierpaolo Cordone
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
| | - Rajat K. Pal
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Emilio Gallicchio
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Lauren Wickstrom
- Department of Science, Borough of Manhattan Community College, 199 Chambers Street, New York, New York 10007, United States
| | - Tom Kurtzman
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Lehman College, The City University of New York, Bronx, New York 10468, United States
| | - Steven Ramsey
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Lehman College, The City University of New York, Bronx, New York 10468, United States
| | - Wayne W. Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Lehman College, The City University of New York, Bronx, New York 10468, United States
| |
Collapse
|
10
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
11
|
Choi JK, Lim G, Chen YCI, Jenkins BG. Abstinence to chronic methamphetamine switches connectivity between striatal, hippocampal and sensorimotor regions and increases cerebral blood volume response. Neuroimage 2018. [PMID: 29518566 DOI: 10.1016/j.neuroimage.2018.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methamphetamine (meth), and other psychostimulants such as cocaine, present a persistent problem for society with chronic users being highly prone to relapse. We show, in a chronic methamphetamine administration model, that discontinuation of drug for more than a week produces much larger changes in overall meth-induced brain connectivity and cerebral blood volume (CBV) response than changes that occur immediately following meth administration. Areas showing the largest changes were hippocampal, limbic striatum and sensorimotor cortical regions as well as brain stem areas including the pedunculopontine tegmentum (PPTg) and pontine nuclei - regions known to be important in mediating reinstatement of drug-taking after abstinence. These changes occur concomitantly with behavioral sensitization and appear to be mediated through increases in dopamine D1 and D3 and decreases in D2 receptor protein and mRNA expression. We further identify a novel region of dorsal caudate/putamen, with a low density of calbindin neurons, that has an opposite hemodynamic response to meth than the rest of the caudate/putamen and accumbens and shows very strong correlation with dorsal CA1 and CA3 hippocampus. This correlation switches following meth abstinence from CA1/CA3 to strong connections with ventral hippocampus (ventral subiculum) and nucleus accumbens. These data provide novel evidence for temporal alterations in brain connectivity where chronic meth can subvert hippocampal - striatal interactions from cognitive control regions to regions that mediate drug reinstatement. Our results also demonstrate that the signs and magnitudes of the induced CBV changes following challenge with meth or a D3-preferring agonist are a complementary read out of the relative changes that occur in D1, D2 and D3 receptors using protein or mRNA levels.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Grewo Lim
- Department of Anesthesiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Bruce G Jenkins
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
12
|
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making. J Neurosci 2017; 36:6732-41. [PMID: 27335404 DOI: 10.1523/jneurosci.3253-15.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. SIGNIFICANCE STATEMENT Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes.
Collapse
|
13
|
Banks ML. Utility of preclinical drug versus food choice procedures to evaluate candidate medications for methamphetamine use disorder. Ann N Y Acad Sci 2016; 1394:92-105. [PMID: 27936284 DOI: 10.1111/nyas.13276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023]
Abstract
Substance use disorders are diagnosed as a manifestation of inappropriate behavioral allocation toward abused drugs and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., money and social relationships). Substance use disorder treatment goals include not only decreasing drug-maintained behavior but also promoting behavioral reallocation toward these socially adaptive alternative reinforcers. Preclinical drug self-administration procedures that offer concurrent access to both drug and nondrug reinforcers provide a translationally relevant dependent measure of behavioral allocation that may be useful for candidate medication evaluation. In contrast to other abused drugs, such as heroin or cocaine, preclinical methamphetamine versus food choice procedures have been a more recent development. We hypothesize that preclinical to clinical translatability would be improved by the evaluation of repeated pharmacological treatment effects on methamphetamine self-administration under a methamphetamine versus food choice procedure. In support of this hypothesis, a literature review suggests strong concordance between preclinical pharmacological treatment effects on methamphetamine versus food choice in nonhuman primates and clinical medication treatment effects on methamphetamine self-administration in human laboratory studies or methamphetamine abuse metrics in clinical trials. In conclusion, this literature suggests preclinical methamphetamine versus food choice procedures may be useful in developing innovative pharmacotherapies for methamphetamine use disorder.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H, Brindisi M. Dopamine D3 Receptor Antagonists as Potential Therapeutics for the Treatment of Neurological Diseases. Front Neurosci 2016; 10:451. [PMID: 27761108 PMCID: PMC5050208 DOI: 10.3389/fnins.2016.00451] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
D3 receptors represent a major focus of current drug design and development of therapeutics for dopamine-related pathological states. Their close homology with the D2 receptor subtype makes the development of D3 selective antagonists a challenging task. In this review, we explore the relevance and therapeutic utility of D3 antagonists or partial agonists endowed with multireceptor affinity profile in the field of central nervous system disorders such as schizophrenia and drug abuse. In fact, the peculiar distribution and low brain abundance of D3 receptors make them a valuable target for the development of drugs devoid of motor side effects classically elicited by D2 antagonists. Recent research efforts were devoted to the conception of chemical templates possibly endowed with a multi-target profile, especially with regards to other G-protein-coupled receptors (GPCRs). A comprehensive overview of the recent literature in the field is herein provided. In particular, the evolution of the chemical templates has been tracked, according to the growing advancements in both the structural information and the refinement of the key pharmacophoric elements. The receptor/multireceptor affinity and functional profiles for the examined compounds have been covered, together with their most significant pharmacological applications.
Collapse
Affiliation(s)
- Samuele Maramai
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Holger Stark
- Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development and Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| |
Collapse
|
15
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
16
|
Sebastianutto I, Maslava N, Hopkins CR, Cenci MA. Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiol Dis 2016; 96:156-170. [PMID: 27597526 DOI: 10.1016/j.nbd.2016.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022] Open
Abstract
Rodent models of l-DOPA-induced dyskinesia (LID) are essential to investigate pathophysiological mechanisms and treatment options. Ratings of abnormal involuntary movements (AIMs) are used to capture both qualitative and quantitative features of dyskinetic behaviors. Thus far, validated rating scales for the mouse have anchored the definition of severity to the time during which AIMs are present. Here we have asked whether the severity of axial, limb, and orolingual AIMs can be objectively assessed with scores based on movement amplitude. Mice sustained 6-OHDA lesions in the medial forebrain bundle and were treated with l-DOPA (3-6mg/kg/day) until they developed stable AIMs scores. Two independent investigators rated AIM severity using both the validated time-based scale and a novel amplitude scale, evaluating the degree of deviation of dyskinetic body parts relative to their resting position. The amplitude scale yielded a high degree of consistency both within- and between raters. Thus, time-based scores, amplitude scores, and a combination of the two ('global AIM scores') were applied to compare antidyskinetic effects produced by amantadine and by the following subtype-specific DA receptor antagonists: SCH23390 (D1/D5), Raclopride (D2/D3), PG01037 (D3), L-745,870 (D4), and VU6004461 (D4). SCH23390 and Raclopride produced similarly robust reductions in both time-based scores and amplitude scores, while PG01037 and L-745,870 had more partial effects. Interestingly, a novel and highly brain penetrable D4 receptor antagonist (VU6004461) markedly attenuated both time-based and amplitude scores without diminishing the general motor stimulant effect of l-DOPA. In summary, our results show that a dyskinesia scale combining a time dimension with an amplitude dimension ('global AIMs') is more sensitive than unidimensional scales. Moreover, the antidyskinetic effects produced by two chemically distinct D4 antagonists identify the D4 receptor as a potential future target for the treatment of LID.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Dept. Exp. Medical Science, Lund University, BMC, 221 84 Lund, Sweden.
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Dept. Exp. Medical Science, Lund University, BMC, 221 84 Lund, Sweden
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Dept. Exp. Medical Science, Lund University, BMC, 221 84 Lund, Sweden.
| |
Collapse
|
17
|
Cao DN, Song R, Zhang SZ, Wu N, Li J. Nucleus accumbens hyperpolarization-activated cyclic nucleotide-gated channels modulate methamphetamine self-administration in rats. Psychopharmacology (Berl) 2016; 233:3017-29. [PMID: 27329413 DOI: 10.1007/s00213-016-4349-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Methamphetamine addiction is believed to primarily result from increased dopamine release and the inhibition of dopamine uptake. Some evidence suggests that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in the functional modulation of dopaminergic neurons and the pathophysiology of related diseases. However, little is known about the effects of HCN channels on methamphetamine addiction. OBJECTIVES The present study investigated the role of brain HCN channels in methamphetamine addiction. RESULTS Acute intracerebroventricular (i.c.v.) injection or bilateral intra-accumbens microinjections of non-selective HCN channel blocker ZD7288 (0.3125 and 0.625 μg) significantly reduced both methamphetamine (0.0125 or 0.05 mg/kg/infusion)-induced self-administration under fixed ratio 2 reinforcement and the breakpoint of methamphetamine (0.05 mg/kg/infusion) under progressive ratio reinforcement in rats. Moreover, compared with i.c.v. injection, bilateral intra-accumbens microinjections of ZD7288 exerted stronger inhibitory effects, suggesting that blockade of HCN channels in the nucleus accumbens reduced the reinforcing effects of and motivation for methamphetamine. We also found that ZD7288 (0.625 and 1.25 μg, i.c.v.) significantly decreased methamphetamine (1 mg/kg, intraperitoneal (i.p.))-induced hyperactivity with no effect on the spontaneous activity in rats. Finally, in vivo microdialysis experiments showed that the HCN channel blockade using ZD7288 (0.625 and 1.25 μg, i.c.v.) decreased methamphetamine (1 mg/kg, i.p.)-induced elevation of extracellular dopamine levels in the nucleus accumbens. CONCLUSIONS These results indicate that HCN channels in the nucleus accumbens are involved in the reinforcing properties of methamphetamine and highlight the importance of HCN channels in the regulation of dopamine neurotransmission underlying methamphetamine addiction.
Collapse
Affiliation(s)
- Dan-Ni Cao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shu-Zhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
18
|
Lazenka MF, Legakis LP, Negus SS. Opposing effects of dopamine D1- and D2-like agonists on intracranial self-stimulation in male rats. Exp Clin Psychopharmacol 2016; 24:193-205. [PMID: 26987070 PMCID: PMC4891217 DOI: 10.1037/pha0000067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dopamine acts through dopamine Type I receptors (comprising D1 and D5 subtypes) and dopamine Type II receptors (comprising D2, D3, and D4 subtypes). Intracranial self-stimulation (ICSS) is 1 experimental procedure that can be used to evaluate abuse-related effects of drugs targeting dopamine receptors. This study evaluated effects of dopamine receptor ligands on ICSS in rats using experimental procedures that have been used previously to examine abused indirect dopamine agonists such as cocaine and amphetamine. Male Sprague-Dawley rats responded under a fixed-ratio 1 schedule for electrical stimulation of the medial forebrain bundle, and frequency of stimulation varied from 56-158 Hz in 0.05 log increments during each experimental session. Drug potency and time course were determined for the D1 ligands A77636, SKF82958, SKF38393, fenoldopam, and SCH39166 and the D2/3 ligands sumanirole, apomorphine, quinpirole, PD128907, pramipexole, aripiprazole, eticlopride, and PG01037. The high-efficacy D1 agonists A77636 and SKF82958 produced dose-dependent, time-dependent, and abuse-related facilitation of ICSS. Lower efficacy D1 ligands and all D2/3 ligands failed to facilitate ICSS at any dose or pretreatment time. A mixture of SKF82958 and quinpirole produced a mixture of effects produced by each drug alone. Quinpirole also failed to facilitate ICSS after regimens of repeated treatment with either quinpirole or cocaine. These studies provide more evidence for divergent effects of dopamine D1- and D2-family agonists on ICSS procedure in rats and suggest that ICSS may be a useful complement to other approaches for preclinical abuse potential assessment, in part because of the reproducibility of results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Matthew F. Lazenka
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
- Corresponding Author: Matthew F. Lazenka, Dept. of Pharmacology and Toxicology, PO Box 980613, 410 North 12 St., Virginia Commonwealth University School of Medicine Richmond, Virginia 23298-0613, Phone: 804-826-2491, FAX: 804-828-1532,
| | - Luke P. Legakis
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Liu F, Wang X, Li Z, Li J, Zhuang X, Zhang Z. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist. Chem Pharm Bull (Tokyo) 2016; 63:512-8. [PMID: 26133067 DOI: 10.1248/cpb.c15-00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
YQA-14 is a promising agent for treating addiction to cocaine and opioids. However, previous studies have showed there is marked contrast between the relatively small differences in pharmacological action in vivo and the large differences in their respective receptor binding properties in vitro. We hypothesized that the conflict between the in vivo and in vitro outcomes was attributable to poor brain exposure to YQA-14 caused by drug efflux transporters. To address this issue, we investigated the directional flux of YQA-14 across Caco-2 cells at 37°C or 4°C and the bidirectional transport in the presence and absence of transporter chemical inhibitors. These phenomena were further investigated by an in vivo determination of the brain and blood pharmacokinetics (PK) profile of YQA-14 following intraperitoneal administration with and without inhibitor. The efflux ratio of YQA-14 on Caco-2 cell monolayers was 2.39 and the efflux was temperature-dependent. When co-incubated with GF120918 or LY335979, the efflux of YQA-14 was markedly decreased. However, there was no significant difference in the permeability of YQA-14 when the cells were treated with Ko143. In vivo experiments showed that the brain-to-plasma ratio increased by more than 75-fold and 20-fold with co-administration of GF120918 and LY335979, respectively. Use of Ko143 did not change the brain-to-blood ratio of YQA-14. The results indicate that the brain distribution of YQA-14 was restricted because of active efflux transport at the blood brain barrier. In addition, P-glycoprotein (P-gp) played a dominant role in limiting the distribution of YQA-14 to the brain.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pharmacy, The First Affiliated Hospital of PLA
| | | | | | | | | | | |
Collapse
|
20
|
Zou MF, Keck TM, Kumar V, Donthamsetti P, Michino M, Burzynski C, Schweppe C, Bonifazi A, Free RB, Sibley DR, Janowsky A, Shi L, Javitch JA, Newman AH. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity. J Med Chem 2016; 59:2973-88. [PMID: 27035329 PMCID: PMC4915350 DOI: 10.1021/acs.jmedchem.5b01612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [(3)H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [(3)H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy.
Collapse
Affiliation(s)
| | | | | | - Prashant Donthamsetti
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | | | | | | | | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , 5625 Fishers Lane, Room 4S-04, Bethesda, Maryland 20892-9405, United States
| | - Aaron Janowsky
- Research & Development Service, Veterans Affairs Portland Health Care System , Portland, Oregon 97239, United States.,Department of Psychiatry and Behavioral Neuroscience, School of Medicine and Methamphetamine Abuse Research Center, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Lei Shi
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Medical College of Cornell University , New York, New York 10065, United States
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons , New York, New York 10027, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute , New York, New York 10032, United States
| | | |
Collapse
|
21
|
Sun L, Song R, Chen Y, Yang RF, Wu N, Su RB, Li J. A selective D3 receptor antagonist YQA14 attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Acta Pharmacol Sin 2016; 37:157-65. [PMID: 26687935 DOI: 10.1038/aps.2015.96] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022] Open
Abstract
AIM We have reported that a selective dopamine D3 receptor antagonist YQA14 attenuates cocaine reward and relapse to drug-seeking in mice. In the present study, we investigated whether YQA14 could inhibit methamphetamine (METH)-induced locomotor sensitization and conditioned place preference (CPP) in mice. METHODS Locomotor activity was monitored in mice treated with METH (1 mg/kg, ip) daily on d 4-13, followed by a challenge with METH (0.5 mg/kg) on d 21. CPP was examined in mice that were administered METH (1 mg/kg) or saline alternately on each other day for 8 days (METH conditioning). YQA14 was injected intraperitoneally 20 min prior to METH or saline. RESULTS Both repetitive (daily on d 4-13) and a single injection (on the day of challenge) of YQA14 (6.25, 12.5 and 25 mg/kg) dose-dependently inhibited the acquisition and expression of METH-induced locomotor sensitization. However, repetitive injection of YQA14 (daily during the METH conditioning) did not alter the acquisition of METH-induced CPP, whereas a single injection of YQA14 (prior to CPP test) dose-dependently attenuated the expression of METH-induced CPP. In addition, the repetitive injection of YQA14 dose-dependently facilitated the extinction and decreased the reinstatement of METH-induced CPP. CONCLUSION Brain D3 receptors are critically involved in the reward and psychomotor-stimulating effects of METH. Thus, YQA14 deserves further study as a potential medication for METH addiction.
Collapse
|
22
|
Sabioni P, Di Ciano P, Le Foll B. Effect of a D3 receptor antagonist on context-induced reinstatement of nicotine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:149-54. [PMID: 26279138 DOI: 10.1016/j.pnpbp.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 11/26/2022]
Abstract
Despite the existence of several treatment options for smoking cessation, the rate of relapse after treatment is very high. We and others have proposed that targeting the dopamine D3 receptor (DRD3) may be a good strategy for treatment of nicotine dependence. In human participants, reintroduction to an environment previously associated with drug-taking may induce relapse. In animals, such phenomenon can be studied using the context-induced reinstatement paradigm. As the role of DRD3 in context-induced reinstatement of nicotine-seeking has not yet been explored, we investigated the effects of different doses of the selective DRD3 antagonist SB-277011-A on this reinstatement. Sprague-Dawley adult rats were first trained to self-administer nicotine and subsequently underwent extinction in a second context for 5-7 days. We evaluated the effect of 1, 3 or 10mg/kg of SB-277011-A administered prior to the reintroduction to the training context. We used two different designs: 1) a between-subjects design with a unique reinstatement test; and 2) a counterbalanced within-subjects design, with 4 reinstatement tests. Our findings indicate that, in the within-subjects design, the magnitude of responding induced by the context-induced reinstatement of nicotine seeking was robust during the first reinstatement test, but significantly decreased with repeated testing. SB-277011-A (10mg/kg) blocked context-induced reinstatement of nicotine-seeking at first exposure to the context (between-subjects design), but not after repeated context exposure which produced weaker reinstatement over days. Our results support a role for DRD3 mediating context-induced reinstatement of nicotine seeking, but these effects may not be sustained over time. Further studies should explore this in human participants for validation.
Collapse
Affiliation(s)
- Pamela Sabioni
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. PROGRESS IN BRAIN RESEARCH 2016; 224:419-47. [DOI: 10.1016/bs.pbr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Galaj E, Manuszak M, Babic S, Ananthan S, Ranaldi R. The selective dopamine D3 receptor antagonist, SR 21502, reduces cue-induced reinstatement of heroin seeking and heroin conditioned place preference in rats. Drug Alcohol Depend 2015; 156:228-233. [PMID: 26429728 PMCID: PMC4633332 DOI: 10.1016/j.drugalcdep.2015.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Because the role of dopamine (DA) D3 receptors has been investigated primarily in relation to cocaine-related behaviors little is known of the role of these receptors in heroin seeking. PURPOSES To investigate the effect of the selective DA D3 receptor antagonist, SR 21502, on cue-induced reinstatement of heroin seeking and heroin conditioned place preference (CPP). METHODS In experiment 1, rats were trained to self-administer intravenous heroin for 15 days followed by extinction. Following extinction animals were treated with one of several SR 21502 doses (0, 7.5, 10 or 15mg/kg) and a cue-induced reinstatement test was conducted. In experiment 2, animals were conditioned to experience heroin in one compartment of a CPP apparatus and saline in the other. On the test day animals were treated with 0, 3.75, 7.5, 10 or 15mg/kg of SR 21502 and tested for their CPP. RESULTS The results from experiment 1 showed a significant dose-related reduction in cue-induced reinstatement of active lever pressing in the 7.5 and 10mg groups and an absence of the reinstatement effect in the 15mg group. In experiment 2, animals treated with vehicle or 3.75mg of SR 21502 showed significant heroin place preferences but those treated with the higher doses showed no CPP. CONCLUSIONS Our findings suggest that DA D3 receptors play a significant role in heroin approach behaviors driven by conditioned stimuli. As such, we propose that SR 21502 holds potential as an effective pharmacotherapeutic agent for relapse prevention and should be studied further.
Collapse
MESH Headings
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cues
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Female
- Heroin/administration & dosage
- Heroin Dependence/physiopathology
- Heroin Dependence/rehabilitation
- Imidazoles/pharmacology
- Male
- Pyridines/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/physiology
- Recurrence
- Self Administration
- Substance Abuse, Intravenous/physiopathology
- Substance Abuse, Intravenous/rehabilitation
Collapse
Affiliation(s)
- Ewa Galaj
- CUNY Graduate Center, New York, NY, United States
| | - Monica Manuszak
- Queens College of the City University of New York, Department of Psychology, Flushing, NY, United States
| | - Sandra Babic
- Queens College of the City University of New York, Department of Psychology, Flushing, NY, United States
| | - Subramaniam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL, United States
| | - Robert Ranaldi
- CUNY Graduate Center, New York, NY, United States; Queens College of the City University of New York, Department of Psychology, Flushing, NY, United States.
| |
Collapse
|
25
|
Le Foll B, Di Ciano P. Neuronal circuitry underlying the impact of D3 receptor ligands in drug addiction. Eur Neuropsychopharmacol 2015; 25:1401-9. [PMID: 25266821 PMCID: PMC4362926 DOI: 10.1016/j.euroneuro.2014.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 01/31/2023]
Abstract
Since the cloning of the D3 receptor in the early 1990s, there has been a great deal of interest in this receptor as a possible therapeutic target for drug addiction. The development of a D3 ligand suitable for use in humans has remained elusive, so the study of the function of the D3 receptor and its possible therapeutic efficacy has largely been restricted to animals. Pre-clinical studies have established that systemic administration of D3 ligands, particularly antagonists and partial agonists, can alter drug-seeking in animals. Despite over a decade of research, few studies have investigated the effects of intra-cerebral infusion of D3 ligands on drug-seeking. In the present review, these studies are summarized, which have largely focused on stimulus-controlled behaviors. Converging evidence from studies of D3 receptor expression, Fos and pharmacological Magnetic Resonance Imaging (phMRI) is also provided to delineate some of the D3 brain systems involved in drug-seeking and taking. The data so far indicate that different brain systems may be involved in different types of stimulus control as well as drug taking.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, Canada M5S 2S1; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M6J 1H4; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, Canada M5S 2S1; Department of Family and Community Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, Canada M5S 2S1
| |
Collapse
|
26
|
Banks ML, Blough BE. Effects of Environmental Manipulations and Treatment with Bupropion and Risperidone on Choice between Methamphetamine and Food in Rhesus Monkeys. Neuropsychopharmacology 2015; 40:2198-206. [PMID: 25742872 PMCID: PMC4613609 DOI: 10.1038/npp.2015.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Preclinical and human laboratory choice procedures have been invaluable in improving our knowledge of the neurobiological mechanisms of drug reinforcement and in the drug development process for candidate medications to treat drug addiction. However, little is known about the neuropharmacological mechanisms of methamphetamine vs food choice. The aims of this study were to develop a methamphetamine vs food choice procedure and determine treatment effects with two clinically relevant compounds: the monoamine uptake inhibitor bupropion and the dopamine antagonist risperidone. Rhesus monkeys (n=6) responded under a concurrent schedule of food delivery (1-g pellets, fixed-ratio (FR) 100 schedule) and intravenous methamphetamine injections (0-0.32 mg/kg/injection, FR10 schedule) during 7-day bupropion (0.32-1.8 mg/kg/h) and risperidone (0.001-0.0056 mg/kg/h) treatment periods. For comparison, effects of removing food pellets or methamphetamine injections and FR response requirement manipulations were also examined. Under saline treatment conditions, food was preferred over no methamphetamine or small unit methamphetamine doses (0.01-0.032 mg/kg/injection). Larger methamphetamine doses resulted in greater methamphetamine preference and 0.32 mg/kg/injection methamphetamine maintained near exclusive preference. Removing food availability increased methamphetamine choice, whereas removing methamphetamine availability decreased methamphetamine choice. Methamphetamine choice was not significantly altered when the FR response requirements for food and drug were the same (FR100:FR100 or FR10:FR10). Risperidone treatment increased methamphetamine choice, whereas bupropion treatment did not alter methamphetamine choice up to doses that decreased rates of operant behavior. Overall, these negative results with bupropion and risperidone are concordant with previous human laboratory and clinical trials and support the potential validity of this preclinical methamphetamine vs food choice model.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA,Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980613, Richmond, VA 23298, USA, Tel: +1 804 828 8466, Fax: +1 804 828 2117, E-mail:
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
John WS, Newman AH, Nader MA. Differential effects of the dopamine D3 receptor antagonist PG01037 on cocaine and methamphetamine self-administration in rhesus monkeys. Neuropharmacology 2015; 92:34-43. [PMID: 25576373 PMCID: PMC4346463 DOI: 10.1016/j.neuropharm.2014.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
The dopamine D3 receptor (D3R) has been shown to mediate many of the behavioral effects of psychostimulants associated with high abuse potential. This study extended the assessment of the highly selective D3R antagonist PG01037 on cocaine and methamphetamine (MA) self-administration to include a food-drug choice procedure. Eight male rhesus monkeys (n=4/group) served as subjects in which complete cocaine and MA dose-response curves were determined daily in each session. When choice was stable, monkeys received acute and five-day treatment of PG01037 (1.0-5.6 mg/kg, i.v.). Acute administration of PG01037 was effective in reallocating choice from cocaine to food and decreasing cocaine intake, however, tolerance developed by day 5 of treatment. Up to doses that disrupted responding, MA choice and intake were not affected by PG01037 treatment. PG01037 decreased total reinforcers earned per session and the behavioral potency was significantly greater on MA-food choice compared to cocaine-food choice. Furthermore, the acute efficacy of PG01037 was correlated with the sensitivity of the D3/D2R agonist quinpirole to elicit yawning. These data suggest (1) that efficacy of D3R compounds in decreasing drug choice is greater in subjects with lower D3R, perhaps suggesting that it is percent occupancy that is the critical variable in determining efficacy and (2) differences in D3R activity in chronic cocaine vs. MA users. Although tolerance developed to the effects of PG01037 treatment on cocaine choice, tolerance did not develop to the disruptive effects on food-maintained responding. These findings suggest that combination treatments that decrease cocaine-induced elevations in DA may enhance the efficacy of D3R antagonists on cocaine self-administration.
Collapse
Affiliation(s)
- William S John
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
28
|
Czoty PW, Nader MA. Effects of oral and intravenous administration of buspirone on food-cocaine choice in socially housed male cynomolgus monkeys. Neuropsychopharmacology 2015; 40:1072-83. [PMID: 25393717 PMCID: PMC4367460 DOI: 10.1038/npp.2014.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023]
Abstract
Drugs acting at D3 dopamine receptors have been suggested as medications for cocaine dependence. These experiments examined the effects of intravenously and orally administered buspirone, a D2-like receptor antagonist with high affinity for D3 and D4 receptors, on the relative reinforcing strength of cocaine in group-housed male cynomolgus monkeys. Use of socially housed monkeys permitted the assessment of whether social status, known to influence D2-like receptor availability, modulates the behavioral effects of buspirone. Buspirone was administered acutely to monkeys self-administering cocaine under a food-drug choice procedure in which a cocaine self-administration dose-effect curve was determined daily. When administered by either route, buspirone significantly decreased cocaine choice in dominant-ranked monkeys. In subordinate monkeys, however, i.v. buspirone was ineffective on average, and oral buspirone increased choice of lower cocaine doses. The effects of buspirone only differed according to route of administration in subordinate monkeys. Moreover, it is noteworthy that the effects of buspirone were similar to those of the D3 receptor-selective antagonist PG01037 and qualitatively different than those of less selective drugs that act at D2-like or serotonin (5-HT)1A receptors, suggesting a D3 and possibly D4 receptor mechanism of action for buspirone. Taken together, the data support the utility of drugs targeting D3/D4 receptors as potential treatments for cocaine addiction, particularly in combination with enriching environmental manipulations.
Collapse
Affiliation(s)
- Paul W Czoty
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael A Nader
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA, Tel: +1 336 713 7172, Fax: +1 336 713 7180, E-mail:
| |
Collapse
|
29
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
30
|
The anti-(+)-methamphetamine monoclonal antibody mAb7F9 attenuates acute (+)-methamphetamine effects on intracranial self-stimulation in rats. PLoS One 2015; 10:e0118787. [PMID: 25742165 PMCID: PMC4350938 DOI: 10.1371/journal.pone.0118787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Passive immunization with monoclonal antibodies (mAbs) against (+)-methamphetamine (METH) is being evaluated for the treatment of METH addiction. A human/mouse chimeric form of the murine anti-METH mAb7F9 has entered clinical trials. This study examined the effects of murine mAb7F9 on certain addiction-related behavioral effects of METH in rats as measured using intracranial self-stimulation (ICSS). Initial studies indicated that acute METH (0.1-0.56 mg/kg, s.c.) lowered the minimal (threshold) stimulation intensity that maintained ICSS. METH (0.3 mg/kg, s.c.) also blocked elevations in ICSS thresholds (anhedonia-like behavior) during spontaneous withdrawal from a chronic METH infusion (10 mg/kg/day x 7 days). In studies examining effects of i.v. pretreatment with mAb7F9 (at 30, 100, or 200 mg/kg), 200 mg/kg blocked the ability of an initial injection of METH (0.3 mg/kg, s.c.) to reduce baseline ICSS thresholds, but was less capable of attenuating the effect of subsequent daily injections of METH. MAb7F9 (200 mg/kg) also produced a small but significant reduction in the ability of METH (0.3 mg/kg, s.c.) to reverse METH withdrawal-induced elevations in ICSS thresholds. These studies demonstrate that mAb7F9 can partially attenuate some addiction-related effects of acute METH in an ICSS model, and provide some support for the therapeutic potential of mAb7F9 for the treatment of METH addiction.
Collapse
|
31
|
Paterson NE, Vocci F, Sevak RJ, Wagreich E, London ED. Dopamine D3 receptors as a therapeutic target for methamphetamine dependence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 40:1-9. [PMID: 24359505 DOI: 10.3109/00952990.2013.858723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Methamphetamine (MA) use disorders are major public health problems nationally and worldwide and treatment remains an unmet need. OBJECTIVES (1) To review preclinical and clinical studies identifying the dopamine D3 receptor as a therapeutic target for substance use disorders (SUDs), including MA dependence, (2) to consider buspirone (Buspar®) as a potential medication based on its dopamine D3 receptor antagonist properties, and (3) to evaluate the safety and initial efficacy of buspirone in a pilot study of MA-dependent individuals. METHODS Literature on the dopamine D3 receptor as a therapeutic target and on the potential of buspirone as a novel therapy for MA dependence was reviewed. The cardiovascular and subjective effects of intravenous MA challenge were assessed in five non-treatment seeking individuals. Participants met DSM-IV criteria for MA dependence and were treated subacutely (9 days) with buspirone (60 mg daily). RESULTS The literature identified the dopamine D3 receptor as a therapeutic target for MA dependence, a safe and approved medication, and a valuable opportunity to re-purpose buspirone for treating MA dependence and perhaps other SUDs. Pilot data (n = 5) indicated that buspirone is safe in MA-using individuals and comparison against historical placebo data from this laboratory suggested that at least some aspects of the subjective properties of MA may be diminished during buspirone treatment. CONCLUSION Future studies should include a small-scale, placebo-controlled Phase IIa trial of buspirone in MA dependence.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry and Biobehavioral Sciences, University of California , Los Angeles, CA , USA
| | | | | | | | | |
Collapse
|
32
|
Zhang G, Zhang Z, Liu L, Yang J, Huang J, Xiong N, Wang T. Impulsive and compulsive behaviors in Parkinson's disease. Front Aging Neurosci 2014; 6:318. [PMID: 25452726 PMCID: PMC4231987 DOI: 10.3389/fnagi.2014.00318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Impulsive and compulsive behaviors (ICBs) are a heterogeneous group of conditions that may be caused by long-term dopaminergic replacement therapy (DRT) of Parkinson's disease (PD). The spectrum of ICBs includes dopamine dysregulation syndrome (DDS), punding, and impulse control disorders (ICDs). CONTENTS We made a detailed review regarding the epidemiology, pathology, clinical characteristics, risk factors, diagnosis as well as treatment of ICBs. RESULTS The prevalence of ICBs in PD patients is approximately 3-4% for DDS, 0.34-4.2% for punding, and 6-14% for ICDs, with higher prevalence in Western populations than in Asian. Those who take high dose of levodopa are more prone to have DDS, whereas, ICDs are markedly associated with dopamine agonists. Different subtypes of ICBs share many risk factors such as male gender, higher levodopa equivalent daily dose, younger age at PD onset, history of alcoholism, impulsive, or novelty-seeking personality. The Questionnaire for Impulsive-Compulsive Disorder in Parkinson's Disease-Rating Scale seems to be a rather efficacious instrument to obtain relevant information from patients and caregivers. Treatment of ICBs is still a great challenge for clinicians. Readjustment of DRT remains the primary method. Atypical antipsychotics, antidepressants, amantadine, and psychosocial interventions are also prescribed in controlling episodes of psychosis caused by compulsive DRT, but attention should be drawn to balance ICBs symptoms and motor disorders. Moreover, deep brain stimulation of the subthalamic nucleus might be a potential method in controlling ICBs. CONCLUSION The exact pathophysiological mechanisms of ICBs in PD remains poorly understood. Further researches are needed not only to study the pathogenesis, prevalence, features, and risk factors of ICBs, but to find efficacious therapy for patients with these devastating consequences.
Collapse
Affiliation(s)
- Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University , Wuhan , China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jiaolong Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
33
|
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. ADVANCES IN PHARMACOLOGY 2014; 69:267-300. [PMID: 24484980 DOI: 10.1016/b978-0-12-420118-7.00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small-molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This chapter will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small-molecule SAR to improve the selectivity and directed efficacy profiles are examined.
Collapse
Affiliation(s)
- Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Caitlin Burzynski
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA.
| |
Collapse
|
34
|
Chen Y, Song R, Yang RF, Wu N, Li J. A novel dopamine D3 receptor antagonist YQA14 inhibits methamphetamine self-administration and relapse to drug-seeking behaviour in rats. Eur J Pharmacol 2014; 743:126-32. [DOI: 10.1016/j.ejphar.2014.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023]
|
35
|
Yan Y, Newman AH, Xu M. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 2014; 278:154-64. [PMID: 25149631 PMCID: PMC4172503 DOI: 10.1016/j.neuroscience.2014.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - A H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Ananthan S, Saini SK, Zhou G, Hobrath JV, Padmalayam I, Zhai L, Bostwick JR, Antonio T, Reith MEA, McDowell S, Cho E, McAleer L, Taylor M, Luedtke RR. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J Med Chem 2014; 57:7042-60. [PMID: 25126833 PMCID: PMC4148173 DOI: 10.1021/jm500801r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Antagonist and partial agonist modulators
of the dopamine D3 receptor
(D3R) have emerged as promising therapeutics for the treatment of
substance abuse and neuropsychiatric disorders. However, development
of druglike lead compounds with selectivity for the D3 receptor has
been challenging because of the high sequence homology between the
D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized
a series of acylaminobutylpiperazines incorporating aza-aromatic units
and evaluated their binding and functional activities at the D3 and
D2 receptors. Docking studies and results from evaluations against
a set of chimeric and mutant receptors suggest that interactions at
the extracellular end of TM7 contribute to the D3R versus D2R selectivity
of these ligands. Molecular insights from this study could potentially
enable rational design of potent and selective D3R ligands.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute , Birmingham, Alabama 35205, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 2014; 5:161. [PMID: 25071579 PMCID: PMC4090596 DOI: 10.3389/fphar.2014.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in developing highly selective dopamine (DA) D3 receptor ligands for a variety of mental health disorders. DA D3 receptors have been implicated in Parkinson's disease, schizophrenia, anxiety, depression, and substance use disorders. The most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors. D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these two receptors has been difficult to differentiate. Over the past 10-15 years a number of compounds selective for D3 over D2 receptors have been developed. However, translating these findings into clinical research has been difficult as many of these compounds cannot be used in humans. Therefore, the functional data involving the D3 receptor in drug addiction mostly comes from pre-clinical studies. Recently, with the advent of [(11)C]-(+)-PHNO, it has become possible to image D3 receptors in the human brain with increased selectivity and sensitivity. This is a significant innovation over traditional methods such as [(11)C]-raclopride that cannot differentiate between D2 and D3 receptors. The use of [(11)C]-(+)-PHNO will allow for further delineation of the role of D3 receptors. Here, we review recent evidence that the role of the D3 receptor has functional importance and is distinct from the role of the D2 receptor. We then introduce the utility of analyzing [(11)C]-(+)-PHNO binding by region of interest. This novel methodology can be used in pre-clinical and clinical approaches for the measurement of occupancy of both D3 and D2 receptors. Evidence that [(11)C]-(+)-PHNO can provide insights into the function of D3 receptors in addiction is also presented.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Family and Community Medicine, University of Toronto Toronto, ON, Canada ; Department of Pharmacology, University of Toronto Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada
| | - Alan A Wilson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Ariel Graff
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Isabelle Boileau
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Addiction Imaging Research Group, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
38
|
Abstract
Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence L Miller
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
39
|
Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia. Eur J Pharmacol 2014; 732:105-10. [PMID: 24685638 DOI: 10.1016/j.ejphar.2014.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia.
Collapse
|
40
|
Song R, Bi GH, Zhang HY, Yang RF, Gardner EL, Li J, Xi ZX. Blockade of D3 receptors by YQA14 inhibits cocaine's rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology 2013; 77:398-405. [PMID: 24176392 DOI: 10.1016/j.neuropharm.2013.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Preclinical studies suggest that dopamine D3 receptor (D3R) antagonists are promising for the treatment of drug abuse and addiction. However, few D3R antagonists have potential to be tested in humans due to short half-life, toxicity or limited preclinical research into pharmacotherapeutic efficacy. Here, we report on a novel D3R antagonist YQA14, which has improved half-life and pharmacokinetic profile and which displays potent pharmacotherapeutic efficacy in attenuating cocaine reward and relapse to drug-seeking behavior. Electrical brain-stimulation reward (BSR) in laboratory animals is a highly sensitive experimental approach to evaluate a drug's rewarding effects. We found that cocaine (2 mg/kg) significantly enhanced electrical BSR in rats (i.e., decreased stimulation threshold for BSR), while YQA14 alone had no effect on BSR. Pretreatment with YQA14 significantly and dose-dependently attenuated cocaine-enhanced BSR. YQA14 also facilitated extinction from drug-seeking behavior in rats during early behavioral extinction, and attenuated cocaine- or contextual cue-induced relapse to drug-seeking behavior. YQA14 alone did not maintain self-administration in either naïve rats or in rats experienced at cocaine self-administration. YQA14 also inhibited expression of repeated cocaine-induced behavioral sensitization. These findings suggest that YQA14 may have pharmacotherapeutic potential in attenuating cocaine-taking and cocaine-seeking behavior. Thus, YQA14 deserves further investigation as a promising agent for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Rui Song
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Guo-Hua Bi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Ri-Fang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Eliot L Gardner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jin Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
41
|
Cheung THC, Loriaux AL, Weber SM, Chandler KN, Lenz JD, Schaan RF, Mach RH, Luedtke RR, Neisewander JL. Reduction of cocaine self-administration and D3 receptor-mediated behavior by two novel dopamine D3 receptor-selective partial agonists, OS-3-106 and WW-III-55. J Pharmacol Exp Ther 2013; 347:410-23. [PMID: 24018640 DOI: 10.1124/jpet.112.202911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0-5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine.
Collapse
Affiliation(s)
- Timothy H C Cheung
- School of Life Sciences (T.H.C.C., A.L.L., S.M.W., K.N.C., R.F.S., J.L.N.) and Department of Psychology (T.H.C.C., S.M.W., K.N.C., J.D.L., J.L.N.), Arizona State University, Tempe, Arizona; Washington University School of Medicine, St. Louis, Missouri (R.H.M.); and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (R.R.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Neisewander JL, Cheung THC, Pentkowski NS. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development. Neuropharmacology 2013; 76 Pt B:301-19. [PMID: 23973315 DOI: 10.1016/j.neuropharm.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Janet L Neisewander
- School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
43
|
Efficacy of buspirone for attenuating cocaine and methamphetamine reinstatement in rats. Drug Alcohol Depend 2013; 129:210-6. [PMID: 23374566 PMCID: PMC3628295 DOI: 10.1016/j.drugalcdep.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND There are no approved pharmacotherapies for preventing psychomotor stimulant relapse. The operant reinstatement model has been suggested as a screen for identifying candidate medications. The present study examined if the anxiolytic buspirone could attenuate reinstatement of extinguished responding in Long-Evans rats that previously self-administered intravenous cocaine or methamphetamine. METHODS Rats were trained in 2-h daily sessions to self-administer 0.5mg/kg cocaine or 0.1mg/kg methamphetamine infusions followed by 12 days of instrumental extinction. Reinstatement was evoked by 17mg/kg i.p. cocaine primes or response-contingent cocaine-paired cues in cocaine-reinforced rats, and by 1mg/kg i.p. methamphetamine primes or response-contingent methamphetamine-paired cues in methamphetamine-reinforced rats. RESULTS Buspirone (1 and 3mg/kg) significantly (p<0.05) attenuated cocaine cue but not cocaine prime reinstatement. Buspirone (1 and 3mg/kg) also significantly attenuated methamphetamine cue reinstatement. Buspirone (3mg/kg) significantly attenuated methamphetamine prime reinstatement. During all reinstatement tests, 3mg/kg buspirone reduced levels of inactive lever pressing relative to those of vehicle, significantly so during the cocaine cue-induced reinstatement tests. CONCLUSIONS Given the complexity of buspirone's neuropharmacology consisting of serotonin 5-HT1A receptor partial agonist activity, and dopamine D2, D3 and D4 receptor antagonist effects, it is uncertain which of these activities or their combination is responsible for the present results. Overall, these results suggest that buspirone may reduce the likelihood of relapse to cocaine and methamphetamine use under some conditions, although this speculation must be interpreted with caution given buspirone's similar potency to attenuate inactive-lever responding.
Collapse
|
44
|
Rice OV, Heidbreder CA, Gardner EL, Schonhar CD, Ashby CR. The selective D₃ receptor antagonist SB-277011A attenuates morphine-triggered reactivation of expression of cocaine-induced conditioned place preference. Synapse 2013; 67:469-75. [PMID: 23404528 DOI: 10.1002/syn.21653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/20/2023]
Abstract
We examined the effect of acute administration of the selective D3 receptor antagonist SB-277011A on morphine-triggered reactivation of cocaine-induced conditioned place preference (CPP) in adult male Sprague-Dawley rats. Repeated pairing of animals with 15 mg/kg i.p. of cocaine HCl or vehicle to cue-specific CPP chambers produced a significant CPP response compared to animals paired only with vehicle in both chambers. Expression of the CPP response to cocaine was then extinguished by repeatedly giving the animals vehicle injections in the cocaine-paired chambers. The magnitude of the CPP response after extinction was not significantly different from that of animals paired only with vehicle. Expression of the extinguished CPP response was reactivated by acute administration of 5 mg/kg i.p. of morphine but not by vehicle. Acute administration of 6 or 12 mg/kg i.p. (but not 3 mg/kg) of SB-277011A significantly attenuated morphine-triggered reactivation of the cocaine-induced CPP. SB-277011A itself (12 mg/kg i.p.) did not reactivate the extinguished CPP response. Overall, SB-277011A decreases the incentive motivational actions of morphine. The present findings suggest that central D₃ dopamine receptors are involved in relapse to cocaine-seeking behavior, that a final common neural mechanism exists to mediate the incentive motivational effects of psychostimulants and opiates, and that selective dopamine D₃ receptor antagonists constitute promising compounds for treating addiction.
Collapse
Affiliation(s)
- Onarae V Rice
- Psychology Department, Furman University, Greenville, South Carolina 29613, USA
| | | | | | | | | |
Collapse
|
45
|
Yan Y, Kong H, Wu EJ, Newman AH, Xu M. Dopamine D3 receptors regulate reconsolidation of cocaine memory. Neuroscience 2013; 241:32-40. [PMID: 23506736 DOI: 10.1016/j.neuroscience.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 12/12/2022]
Abstract
Memories of learned associations between the rewarding properties of drugs of abuse and environmental cues contribute to craving and relapse in humans. Disruption of reconsolidation dampens or even erases previous memories. Dopamine (DA) mediates the acquisition of reward memory and drugs of abuse can pathologically change related neuronal circuits in the mesolimbic DA system. Previous studies showed that DA D3 receptors are involved in cocaine-conditioned place preference (CPP) and reinstatement of cocaine-seeking behavior. However, the role of D3 receptors in reconsolidation of cocaine-induced reward memory remains unclear. In the present study, we combined genetic and pharmacological approaches to investigate the role of D3 receptors in reconsolidation of cocaine-induced CPP. We found that the mutation of the D3 receptor gene weakened reconsolidation of cocaine-induced CPP in mice triggered by a 3-min (min) retrieval. Furthermore, treatment of a selective D3 receptor antagonist PG01037 immediately following the 3-min retrieval disrupted reconsolidation of cocaine-induced CPP in wild-type mice and such disruption remained at least 1 week after the 3-min retrieval. These results suggest that D3 receptors play a key role in reconsolidation of cocaine-induced CPP in mice, and that pharmacological blockade of these receptors may be therapeutic for the treatment of cocaine craving and relapse in clinical settings.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
46
|
Micheli F, Heidbreder C. Dopamine D3 receptor antagonists: a patent review (2007 - 2012). Expert Opin Ther Pat 2013; 23:363-81. [PMID: 23282131 DOI: 10.1517/13543776.2013.757593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The synthesis and characterization of new highly potent and selective dopamine (DA) D3 receptor antagonists has permitted to characterize the role of the DA D3 receptor in the control of drug-seeking behavior and in the pathophysiology of impulse control disorders and schizophrenia. AREAS COVERED In the present review, the authors will first describe most recent classes of DA D3 receptor antagonists by reviewing about 43 patent applications during the 2007 - 2012 period; they will then outline the biological rationale in support of the use of selective DA D3 receptor antagonists in the treatment of drug addiction, impulse control disorders and schizophrenia. EXPERT OPINION The strongest clinical application and potential for selective DA D3 receptor antagonists lies in the reduction of drug-induced incentive motivation, the attenuation of drug's rewarding efficacy and the reduction in reinstatement of drug-seeking behavior triggered either by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior or stress. The selectivity of these antagonists together with reduced lipophilicity (minimizing unspecific binding), increased brain penetration and improved physico-chemical profile are all key factors for clinical efficacy and safety.
Collapse
Affiliation(s)
- Fabrizio Micheli
- Drug Design & Discovery, Aptuit Verona srl, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
47
|
Heidbreder C. Rationale in support of the use of selective dopamine D₃ receptor antagonists for the pharmacotherapeutic management of substance use disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:167-76. [PMID: 23104235 DOI: 10.1007/s00210-012-0803-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Growing evidence indicates that dopamine (DA) D(3) receptors are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders. First, DA D(3) receptors are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse has been shown to produce neuroadaptations in the DA D(3) system. Third, the synthesis and characterization of highly potent and selective DA D(3) receptor antagonists has permitted to further define the role of the DA D(3) receptor in drug addiction. Provided that the available preclinical and preliminary clinical evidence can be translated into clinical proof of concept in human, selective DA D(3) receptor antagonists show promise for the treatment of substance use disorders as reflected by their potential to (1) regulate the motivation to self-administered drugs under schedules of reinforcement that require an increase in work demand and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in the reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior, or stress.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals-Global Research and Development, 10710 Midlothian Turnpike Suite 430, Richmond, VA 23235, USA.
| |
Collapse
|
48
|
Caine SB, Thomsen M, Barrett AC, Collins GT, Grundt P, Newman AH, Butler P, Xu M. Cocaine self-administration in dopamine D₃ receptor knockout mice. Exp Clin Psychopharmacol 2012; 20:352-63. [PMID: 22867038 PMCID: PMC3587777 DOI: 10.1037/a0029135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dopamine D₃ receptor has received attention over the last two decades as a target for medications development for substance abuse disorders. Results have remained mixed. Despite emergence of more D₃-selective ligands, possible attribution of observed effects to D₂ receptors remains a concern. Knockout mice may help shed light on mechanisms. Here we evaluated the effect of constitutive D₃ receptor inactivation ("knockout") on the reinforcing effects of cocaine. We tested D₃ wild-type (WT), heterozygous (D₃⁺/⁻), and knockout (D₃⁻/⁻), mice in acquisition and maintenance of intravenous self-administration across a broad range of cocaine doses, using a fixed ratio (FR) 1 and a progressive ratio (PR) schedule of reinforcement, along with parallel food-reinforced studies. Generally, D₃⁻/⁻ mice showed cocaine self-administration comparable to WT controls across assays. Moderate and nonsignificant trends toward lesser reinforcing effects of a low cocaine dose (0.32 mg/kg) were apparent in acquisition and PR studies, consistent with the idea that the D₃ receptor may play a subtle role in the reinforcing effects of low cocaine doses under low FR conditions. However, those effects with cocaine self-administration were more subtle than the lower responding of D₃ knockout mice observed with food-maintained behavior. In addition, the D₃ antagonist PG01037 failed to affect cocaine self-administration under an FR 1 schedule in WT mice. The present data do not support a necessary role for the D₃ receptor in the direct reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Phenylpiperazine derivatives with selectivity for dopamine D3 receptors modulate cocaine self-administration in rats. Neuropharmacology 2012; 63:1346-59. [PMID: 22960444 DOI: 10.1016/j.neuropharm.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022]
Abstract
This study examined cocaine self-administration after pretreatments with three structurally related compounds that bind selectively to dopamine D3 receptors (D3Rs) relative to the D2 receptor subtype (D2Rs) and exhibit varying intrinsic activities in the forskolin-stimulated adenylyl cyclase assay. The compounds are: a) WC10, a D3R weak partial agonist/antagonist with 42-fold D3R:D2R selectivity, b) WC26, a 51-fold selective D3R partial agonist, c) WC44, a 23-fold selective D3R agonist. Rats were stabilized on a multiple variable-interval 60-s (VI60) schedule with alternating components of sucrose (45 mg pellets) or cocaine reinforcement (0.375 mg/kg, IV) and then tested for effects of the WC compounds (0.0, 1.0, 3.0, 5.6, or 10.0 mg/kg, IP). Another cohort was trained to self-administer cocaine (0.75 mg/kg, IV) on a VI60 schedule then tested with various doses of cocaine available (0.0-1.5 mg/kg, IV) following pretreatment with WC10 (5.6 or 10.0 mg/kg) or WC44 (10.0 mg/kg). WC10 and WC26 decreased both cocaine and sucrose reinforcement rates at the 10.0 mg/kg dose, whereas WC44 decreased only cocaine reinforcement rate at this dose. Furthermore, WC26 and WC44 increased response latency for cocaine but not sucrose. In the cocaine dose-response experiment, WC10 and WC44 flattened the dose-effect function of cocaine reinforcement rate. All compounds decreased spontaneous locomotion. WC10 and WC26 also reduced cocaine-induced locomotion. These results support the targeting of D3Rs for treatments for cocaine dependence. WC26 and WC44, in particular, show promise as they increased the latency to respond for cocaine but not sucrose, suggesting selective reduction of the motivation for cocaine.
Collapse
|
50
|
Song R, Yang RF, Wu N, Su RB, Li J, Peng XQ, Li X, Gaál J, Xi ZX, Gardner EL. YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 2012; 17:259-73. [PMID: 21507153 DOI: 10.1111/j.1369-1600.2011.00317.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dopamine (DA) D3 receptor is posited to be importantly involved in drug reward and addiction, and D3 receptor antagonists have shown extraordinary promise as potential anti-addiction pharmacotherapeutic agents in animal models of drug addiction. SB-277011A is the best characterized D3 receptor antagonist in such models. However, the potential use of SB-277011A in humans is precluded by pharmacokinetic and toxicity problems. We here report a novel D3 receptor antagonist YQA14 that shows similar pharmacological properties as SB-277011A. In vitro receptor binding assays suggest that YQA14 has two binding sites on human cloned D3 receptors with K(i-High) (0.68 × 10(-4) nM) and K(i-Low) (2.11 nM), and displays > 150-fold selectivity for D3 over D2 receptors and > 1000-fold selectivity for D3 over other DA receptors. Systemic administration of YQA14 (6.25-25 mg/kg) or SB-277011A (12.5-25 mg/kg) significantly and dose-dependently reduced intravenous cocaine self-administration under both low fixed-ratio and progressive-ratio reinforcement conditions in rats, while failing to alter oral sucrose self-administration and locomotor activity, suggesting a selective inhibition of drug reward. However, when the drug dose was increased to 50 mg/kg, YQA14 and SB-277011A significantly inhibited basal and cocaine-enhanced locomotion in rats. Finally, both D3 antagonists dose-dependently inhibited intravenous cocaine self-administration in wild-type mice, but not in D3 receptor-knockout mice, suggesting that their action is mediated by D3 receptor blockade. These findings suggest that YQA14 has a similar anti-addiction profile as SB-277011A, and deserves further study and development.
Collapse
Affiliation(s)
- Rui Song
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|