1
|
Rabiner EA, Gunn RN. Estimation of target occupancy in repeated dosing design studies using positron emission tomography: Biases due to target upregulation. J Cereb Blood Flow Metab 2024; 44:573-579. [PMID: 37944261 PMCID: PMC10981403 DOI: 10.1177/0271678x231214443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
Positron emission tomography (PET) has become indispensable in the quantification of target engagement by brain targeting medications. The relationship between the drug plasma concentration (or drug dose administered) and target occupancy determined during a PET occupancy study has provided valuable information for the assessment of novel pharmaceuticals in the early phases of drug development. Such information is also critical for the understanding of the mechanisms of action and side-effect profile of approved medication commonly used in the clinic. Occupancy studies conducted following repeated drug dosing (RD) can produce systematic differences from those conducted following single drug dose (SD), differences that have not been adequately explored. We have hypothesised that when differences are observed between RD and SD studies, they are related to changes in target density induced by repeated drug accumulation. We have developed a modified occupancy model to account for potential changes in target density and tested it on a sample dataset. We found that target upregulation can parsimoniously explain the differences in drug affinity estimated in SD and RD studies. Our findings have implications for the interpretation of RD occupancy data in the literature and the relationship between specific target occupancy levels and drug efficacy and tolerability.
Collapse
Affiliation(s)
| | - Roger N Gunn
- Invicro, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
2
|
Lopes Alves I, Willemsen AT, Dierckx RA, da Silva AMM, Koole M. Dual time-point imaging for post-dose binding potential estimation applied to a [ 11C]raclopride PET dose occupancy study. J Cereb Blood Flow Metab 2017; 37:866-876. [PMID: 27073203 PMCID: PMC5363466 DOI: 10.1177/0271678x16644463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Receptor occupancy studies performed with PET often require time-consuming dynamic imaging for baseline and post-dose scans. Shorter protocol approximations based on standard uptake value ratios have been proposed. However, such methods depend on the time-point chosen for the quantification and often lead to overestimation and bias. The aim of this study was to develop a shorter protocol for the quantification of post-dose scans using a dual time-point approximation, which employs kinetic parameters from the baseline scan. Dual time-point was evaluated for a [11C]raclopride PET dose occupancy study with the D2 antagonist JNJ-37822681, obtaining estimates for binding potential and receptor occupancy. Results were compared to standard simplified reference tissue model and standard uptake value ratios-based estimates. Linear regression and Bland-Altman analysis demonstrated excellent correlation and agreement between dual time-point and the standard simplified reference tissue model approach. Moreover, the stability of dual time-point-based estimates is shown to be independent of the time-point chosen for quantification. Therefore, a dual time-point imaging protocol can be applied to post-dose [11C]raclopride PET scans, resulting in a significant reduction in total acquisition time while maintaining accuracy in the quantification of both the binding potential and the receptor occupancy.
Collapse
Affiliation(s)
- Isadora Lopes Alves
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon Tm Willemsen
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A Dierckx
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ana Maria M da Silva
- 2 Laboratory of Medical Imaging, School of Physics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michel Koole
- 1 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,3 Department of Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Guo D, Heitman LH, IJzerman AP. The Role of Target Binding Kinetics in Drug Discovery. ChemMedChem 2015; 10:1793-6. [DOI: 10.1002/cmdc.201500310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry; Leiden Academic Centre for Drug Research (LACDR); P.O. Box 9502 2300 RA Leiden the Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry; Leiden Academic Centre for Drug Research (LACDR); P.O. Box 9502 2300 RA Leiden the Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry; Leiden Academic Centre for Drug Research (LACDR); P.O. Box 9502 2300 RA Leiden the Netherlands
| |
Collapse
|
4
|
The dopamine stabilizer (-)-OSU6162 occupies a subpopulation of striatal dopamine D2/D3 receptors: an [(11)C]raclopride PET study in healthy human subjects. Neuropsychopharmacology 2015; 40:472-9. [PMID: 25248987 PMCID: PMC4443962 DOI: 10.1038/npp.2014.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/08/2022]
Abstract
(-)-OSU6162 is a dopamine stabilizer that can counteract both hyperdopaminergic and hypodopaminergic states. In this study, D2/D3 receptor occupancy of (-)-OSU6162 in the human brain was investigated using positron emission tomography (PET). Twelve male healthy volunteers underwent [(11)C]raclopride PET scanning before and 1 h after a single oral dose of (-)-OSU6162 (15-90 mg). Blood samples for determination of (-)-OSU6162 and prolactin plasma levels were collected at Tmax. Parametric images of [(11)C]raclopride binding potential relative to nondisplaceable tissue (cerebellar grey matter) uptake (BPND) at baseline and after (-)-OSU6162 administration were generated using the simplified reference tissue model. MRI-based regions of interest were defined for the striatum, composed of caudate nucleus and putamen, and projected onto the co-registered parametric [(11)C]raclopride BPND image. Furthermore, three striatal subregions, ie, anterior dorsal caudate, anterior dorsal putamen, and ventral striatum, were defined manually and additionally analyzed. Plasma concentrations of (-)-OSU6162, ranging from 0.01 to 0.9 μM, showed a linear relationship with prolactin levels, reflecting blockade of pituitary D2 receptors. A concentration-dependent increase in striatal D2/D3 receptor occupancy was observed, reaching a value of about 20% at an (-)-OSU6162 plasma level of 0.2 μM, and which for higher concentrations leveled off to a maximal occupancy of about 40%. Findings were similar in the striatal subregions. The present data corroborate the notion that (-)-OSU6162 binds preferentially to a subpopulation of D2/D3 receptors, possibly predominantly extrasynaptic, and this may form the basis for the dopamine-stabilizing properties of (-)-OSU6162.
Collapse
|
5
|
Abstract
Imaging has played an important part in the diagnosis of disease and development of the understanding of the underlying disease mechanisms and is now poised to make an impact in the development of new pharmaceuticals. This chapter discusses the underlying technologies that make the field ready for this challenge. In particular, the potentials of magnetic resonance imaging and functional magnetic resonance imaging are outlined, including the new methods developed to provide additional information from the scans carried out. The field of nuclear medicine has seen a rapid increase in interest as advances in radiochemistry have enabled a wide range of new radiotracers to be synthesised.
Collapse
Affiliation(s)
- James Nairne
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | - Peter B Iveson
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | | |
Collapse
|
6
|
Abstract
Ever since clozapine was first synthesized and tested, it showed the unique property of having antipsychotic action but no Parkinson-like motor side effects. The antipsychotic basis of clozapine is to transiently occupy dopamine D2 receptors in the human striatum, in contrast to haloperidol and chlorpromazine, which have a prolonged occupation of D2 receptors. The chemical structure of clozapine facilitates a relatively rapid dissociation from D2 receptors. After short-term occupation of D2 receptors, peak neural activity raises synaptic dopamine, which then displaces clozapine. While clozapine also occupies other types of receptors, they may not have a significant role in preventing parkinsonism. Clozapine's transient occupation of D2 receptors permits patients to move easily and comfortably.
Collapse
Affiliation(s)
- Philip Seeman
- Departments of Pharmacology and Psychiatry, University of Toronto, 260 Heath Street West, Unit 605, Toronto, Ontario, Canada M5P 3L6
| |
Collapse
|
7
|
de Waal EJ, Desmidt M, Korte S, Niehoff M, Chase K, Arrowsmith W, Lampo A. Differential responses to JNJ-37822681, a specific and fast dissociating dopamine D2 receptor antagonist, in cynomolgus monkey and Sprague-Dawley rat general toxicology studies: clinical observations, prolactin levels, mammary histopathology findings and toxicokinetics. J Appl Toxicol 2013; 34:974-92. [PMID: 24105799 DOI: 10.1002/jat.2916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 12/20/2022]
Abstract
JNJ-37822681 is a potent, specific and fast dissociating dopamine D2 receptor antagonist intended for the treatment of schizophrenia. Its nonclinical toxicological profile was investigated in a series of general repeat dose toxicity studies in cynomolgus monkeys and Sprague-Dawley rats. The maximum duration of treatment was 9 and 6 months, respectively. Interspecies differences were noted in the response to JNJ-37822681 in terms of extrapyramidal (EPS)-like clinical signs and prolactin-mediated tissue changes in the mammary gland. Monkeys showed severe EPS-like clinical signs such as abnormal posture, abnormal eye movements and hallucination-like behavior at relatively low exposures compared to those associated with EPS in patients with schizophrenia. The high sensitivity of the monkey to JNJ-37822681-induced EPS-like signs was unexpected based on the fast dissociating properties of the compound. Rats, however, were not prone to EPS. Elevated serum prolactin levels were found in rats and monkeys. While rats showed slight to moderate prolactin-related tissue changes upon histopathological examination in all studies, which among others affected the mammary gland, only minor mammary gland tissue changes were noted in monkeys. Prolactin levels were only slightly increased in patients with schizophrenia receiving relatively high dose levels of JNJ-37822681. The monkey toxicology studies did not provide an exposure-based safety margin, while in rats adverse effects were only noted at exposures considerably higher than those achieved at efficacious plasma concentrations in the clinic. Overall, the available data suggest that the cynomolgus monkey showed better predictivity towards the nature of JNJ-37822681-associated adverse events in humans than the Sprague-Dawley rat.
Collapse
Affiliation(s)
- Eric J de Waal
- Janssen Research and Development, a division of Janssen Pharmaceutica NV, Drug Safety Sciences, Department of Preclinical Project Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
9
|
Hoeben E, Neyens M, Mannaert E, Schmidt M, Vermeulen A. Population Pharmacokinetics of JNJ-37822681, a Selective Fast-Dissociating Dopamine D2-Receptor Antagonist, in Healthy Subjects and Subjects with Schizophrenia and Dose Selection Based on Simulated D2-Receptor Occupancy. Clin Pharmacokinet 2013; 52:1005-15. [DOI: 10.1007/s40262-013-0084-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Schmidt ME, de Boer P, Andrews R, Neyens M, Rossenu S, William Falteos D, Mannaert E. D₂-receptor occupancy measurement of JNJ-37822681, a novel fast off-rate D₂-receptor antagonist, in healthy subjects using positron emission tomography: single dose versus steady state and dose selection. Psychopharmacology (Berl) 2012; 224:549-57. [PMID: 22773165 DOI: 10.1007/s00213-012-2782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE JNJ-37822681 is a highly selective, fast dissociating dopamine D₂-receptor antagonist being developed for the treatment of schizophrenia. A single dose [¹¹C]raclopride positron emission tomography (PET) imaging study had yielded an estimated clinical dose range. Receptor occupancy at steady state was explored to test the validity of the single-dose estimates during chronic treatment. OBJECTIVES The aims of this study are to characterize single and multiple dose pharmacokinetics and obtain striatal D₂-receptor occupancies to predict doses for efficacy studies and assess the safety and tolerability of JNJ-37822681. METHODS An open-label single- and multiple-dose study with 10 mg JNJ-37822681 (twice daily for 13 doses) was performed in 12 healthy men. Twenty [¹¹C]raclopride PET scans (up to 60 h after the last dose) from 11 subjects were used to estimate D₂-receptor occupancy. A direct effect O (max) model was applied to explore the relationship between JNJ-37822681 plasma concentration and striatal D₂-receptor occupancy. RESULTS Steady state was reached after 4-5 days of twice daily dosing. JNJ-37822681 plasma concentrations of 3.17 to 63.0 ng/mL resulted in D₂ occupancies of 0 % to 62 %. The concentration leading to 50 % occupancy was 18.5 ng/mL (coefficient of variation 3.9 %) after single dose and 26.0 ng/mL (8.2 %) at steady state. JNJ-37822681 was well tolerated. CONCLUSIONS Receptor occupancy after single dose and at steady state differed for JNJ-37822681 and the robustness of the estimates at steady state will be tested in phase 2 studies. Dose predictions indicated that 10, 20, and 30 mg JNJ-37822681 twice daily could be suitable for these studies.
Collapse
Affiliation(s)
- Mark E Schmidt
- Experimental Medicine, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One 2012; 7:e49483. [PMID: 23185343 PMCID: PMC3504049 DOI: 10.1371/journal.pone.0049483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The dopamine D(1), D(2), D(3) receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years) by quantitative autoradiography. The density of D(1) receptors, VMAT2, and DAT was measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The density of D(2) and D(3) receptors was calculated using the D(3)-preferring radioligand, [(3)H]WC-10 and the D(2)-preferring radioligand [(3)H]raclopride using a mathematical model developed previously by our group. Dopamine D(1), D(2), and D(3) receptors are extensively distributed throughout striatum; the highest density of D(3) receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3) receptor density exceeded D(2) receptor densities in extrastriatal regions, and thalamus contained a high level of D(3) receptors with negligible D(2) receptors. The density of dopamine D(1) linearly correlated with D(3) receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3) receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1) and D(2) receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3) and D(2) receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2) or D(3) receptors.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology amd Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
12
|
A double-blind, randomized, placebo-controlled study with JNJ-37822681, a novel, highly selective, fast dissociating D₂ receptor antagonist in the treatment of acute exacerbation of schizophrenia. Eur Neuropsychopharmacol 2012; 22:721-33. [PMID: 22464973 DOI: 10.1016/j.euroneuro.2012.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/20/2022]
Abstract
JNJ-37822681 is a novel, highly selective dopamine D₂ receptor antagonist characterized by a rapid dissociation rate from the dopamine D₂ receptor. This profile was hypothesized to confer antipsychotic efficacy and improved tolerability. In this 12-week study, the efficacy and safety of JNJ-37822681 were evaluated in patients with an acute exacerbation of schizophrenia, randomly assigned (1:1:1:1:1) to JNJ-37822681 (10-, 20- or 30-mg bid), olanzapine (15 mg once-daily), or placebo (for 6 weeks followed by olanzapine for 6 weeks). Of 498 randomized patients, 298 (60%) completed the study. All JNJ-37822681 dose groups and the olanzapine group showed significantly greater reduction in PANSS total score from baseline to week 6 versus placebo (all p-values < 0.001). Least-squares adjusted mean changes from baseline to week 6 in PANSS total score were: -6.4 (placebo); -18.4 (10 mg JNJ-37822681), -17.7 (20 mg JNJ-37822681), -20.0 (30 mg JNJ-37822681) and -22.9 (olanzapine). All JNJ-37822681 groups showed significant improvement versus placebo from baseline to week 6 in the PANSS subscales, Marder factors, Clinical Global Impression of Severity, and in the Subjective Well-Being on Neuroleptics scale (all p-values < 0.05). The most common treatment-emergent adverse events with JNJ-37822681 were insomnia (17%) and akathisia (13%). Incidences of extrapyramidal symptoms were dose-related and were comparable for JNJ-37822681 10 mg bid and olanzapine groups. All JNJ-37822681 dose groups showed lesser weight gain compared with olanzapine. The efficacy and tolerability profile of the JNJ-37822681 10 mg bid was consistent with the study hypothesis.
Collapse
|
13
|
Pharmacokinetic-pharmacodynamic modeling of severity levels of extrapyramidal side effects with markov elements. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2012; 1:e1. [PMID: 23835881 PMCID: PMC3603470 DOI: 10.1038/psp.2012.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A major problem in the treatment of schizophrenic patients with current antipsychotic drugs, mainly acting as dopamine-2 receptor antagonists, is the occurrence of side effects such as extrapyramidal symptoms (EPS). Meta-analyses of summary data of EPS occurrence, and receptor occupancies inferred from mean plasma concentrations, have shown the incidence of EPS to rise when receptor occupancy is above ~80%. In this analysis, individual longitudinal EPS data from 2,630 patients participating in one of seven different trials and treated with haloperidol, paliperidone, ziprasidone, olanzapine, JNJ-37822681, or placebo were analyzed using a continuous time probability model with Markov elements. The developed pharmacokinetic–pharmacodynamic model describes the longitudinal changes of spontaneously reported EPS-related adverse events and their severity levels rated by clinicians. Individual steady-state concentrations and occupancy levels were found to be predictors for EPS. The results confirm 80% occupancy as a level of increased EPS occurrence rates, also at the individual level.
Collapse
|
14
|
te Beek ET, Moerland M, de Boer P, van Nueten L, de Kam ML, Burggraaf J, Cohen AF, van Gerven JMA. Pharmacokinetics and central nervous system effects of the novel dopamine D2 receptor antagonist JNJ-37822681. J Psychopharmacol 2012; 26:1119-27. [PMID: 21890591 DOI: 10.1177/0269881111415733] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using the rate of dissociation from the D(2) receptor as a means to screen novel compounds for antipsychotic drug candidates, the centrally acting and fast-dissociating selective dopamine D(2) receptor antagonist JNJ-37822681 was developed. In a blinded, placebo-controlled, randomized first-in-human study, JNJ-37822681 was administered orally to 27 healthy male volunteers at doses of 0.5, 2, 5, 10, 15 and 20 mg. Safety, pharmacokinetics and central nervous system effects were evaluated by measuring prolactin levels, eye movements, adaptive tracking, visual analogue scales, body sway, finger tapping and electroencephalography. JNJ-37822681 was well tolerated and somnolence was the most frequently reported adverse effect. Peak plasma concentrations increased more than proportional to dose, but increases in the area under curve (AUC) were dose-proportional. Prolactin elevations started at doses of 5 mg, whereas small decreases in adaptive tracking were demonstrated at 10 mg doses. At higher doses, JNJ-37822681 caused a small decrease in saccadic peak velocity, smooth pursuit, alertness, finger tapping and electroencephalography activity, and an increase in body sway. This effect profile is likely to be the result of the selectivity of JNJ-37822681 for the D(2) receptor, leading to strong D(2) receptor-mediated elevations in serum prolactin, but fewer effects on more complex central nervous system functions, which are likely to involve multiple neurotransmitters.
Collapse
Affiliation(s)
- Erik T te Beek
- Centre for Human Drug Research, Zernikedreef 10, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|