1
|
Bose A, Agarwal SM, Nawani H, Shivakumar V, Shenoy S, Sreeraj VS, Narayanaswamy JC, Kumar D, Venkatasubramanian G. Effect of add-on tDCS therapy for auditory hallucinations on frequency and duration deviant mismatch negativity in schizophrenia. Schizophr Res 2024; 269:93-95. [PMID: 38759355 DOI: 10.1016/j.schres.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Anushree Bose
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sonia Shenoy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
2
|
Guo X, Yu J, Quan C, Xiao J, Wang J, Zhang B, Hao X, Wu X, Liang J. The effect of N-methyl-D-aspartate receptor antagonists on the mismatch negativity of event-related potentials and its regulatory factors: A systematic review and meta-analysis. J Psychiatr Res 2024; 172:210-220. [PMID: 38402843 DOI: 10.1016/j.jpsychires.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
This study investigates the influence of N-methyl-D-aspartate receptor (NMDAR) antagonists on the mismatch negativity (MMN) components of event-related potentials (ERPs) in healthy subjects and explores whether NMDAR antagonists have different effects on MMN components under different types of antagonists, drug dosages, and deviant stimuli. We conducted a comprehensive literature search of PubMed, EMBASE, and the Cochrane Library from inception to August 1, 2023 for studies comparing the MMN components between the NMDAR antagonist intervention group and the control group (or baseline). All statistical analyses were performed using Stata version 12.0 software. Sixteen articles were included in the systematic review: 13 articles were included in the meta-analysis of MMN amplitudes, and seven articles were included in the meta-analysis of MMN latencies. The pooled analysis showed that NMDAR antagonists reduced MMN amplitudes [SMD (95% CI) = 0.32 (0.16, 0.47), P < 0.01, I2 = 47.3%, p < 0.01] and prolonged MMN latencies [SMD (95% CI) = 0.31 (0.13, 0.49), P = 0.16, I2 = 28.3%, p < 0.01]. The type of antagonist drug regulates the effect of NMDAR antagonists on MMN amplitudes. Different antagonists, doses of antagonists, and types of deviant stimuli can also have different effects on MMN. These findings indicate a correlation between NMDAR and MMN, which may provide a foundation for the application of ERP-MMN in the early identification of NMDAR encephalitis.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jieyang Yu
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Chunhua Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Juzi-St., No.1327, Yanji, 133000, China.
| | - Jinyu Xiao
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jiangtao Wang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Xiaosheng Hao
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Xuemei Wu
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| |
Collapse
|
3
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
4
|
Zhou L, Chen Y, Liu Z, You J, Chen S, Liu G, Yu Y, Wang J, Chen X. A predictive model for consciousness recovery of comatose patients after acute brain injury. Front Neurosci 2023; 17:1088666. [PMID: 36845443 PMCID: PMC9945265 DOI: 10.3389/fnins.2023.1088666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Background Predicting the consciousness recovery for comatose patients with acute brain injury is an important issue. Although some efforts have been made in the study of prognostic assessment methods, it is still unclear which factors can be used to establish model to directly predict the probability of consciousness recovery. Objectives We aimed to establish a model using clinical and neuroelectrophysiological indicators to predict consciousness recovery of comatose patients after acute brain injury. Methods The clinical data of patients with acute brain injury admitted to the neurosurgical intensive care unit of Xiangya Hospital of Central South University from May 2019 to May 2022, who underwent electroencephalogram (EEG) and auditory mismatch negativity (MMN) examinations within 28 days after coma onset, were collected. The prognosis was assessed by Glasgow Outcome Scale (GOS) at 3 months after coma onset. The least absolute shrinkage and selection operator (LASSO) regression analysis was applied to select the most relevant predictors. We combined Glasgow coma scale (GCS), EEG, and absolute amplitude of MMN at Fz to develop a predictive model using binary logistic regression and then presented by a nomogram. The predictive efficiency of the model was evaluated with AUC and verified by calibration curve. The decision curve analysis (DCA) was used to evaluate the clinical utility of the prediction model. Results A total of 116 patients were enrolled for analysis, of which 60 had favorable prognosis (GOS ≥ 3). Five predictors, including GCS (OR = 13.400, P < 0.001), absolute amplitude of MMN at Fz site (FzMMNA, OR = 1.855, P = 0.038), EEG background activity (OR = 4.309, P = 0.023), EEG reactivity (OR = 4.154, P = 0.030), and sleep spindles (OR = 4.316, P = 0.031), were selected in the model by LASSO and binary logistic regression analysis. This model showed favorable predictive power, with an AUC of 0.939 (95% CI: 0.899-0.979), and calibration. The threshold probability of net benefit was between 5% and 92% in the DCA. Conclusion This predictive model for consciousness recovery in patients with acute brain injury is based on a nomogram incorporating GCS, EEG background activity, EEG reactivity, sleep spindles, and FzMMNA, which can be conveniently obtained during hospitalization. It provides a basis for care givers to make subsequent medical decisions.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yuanyi Chen
- Central of Stomatology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jia You
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Ganzhi Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yang Yu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Jian Wang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,*Correspondence: Jian Wang,
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,Xin Chen,
| |
Collapse
|
5
|
Zhou L, Wang J, Wu Y, Liu ZY, Yu Y, Liu JF, Chen X. Clinical significance of mismatch negativity in predicting the awakening of comatose patients after severe brain injury. J Neurophysiol 2021; 126:140-147. [PMID: 34038175 DOI: 10.1152/jn.00658.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the clinical significance of mismatch negativity (MMN) in predicting the awakening of comatose patients with severe brain injury. The clinical data of patients with severe brain injury, admitted to the neurosurgical intensive care unit of Xiangya Hospital of Central South University from July 2018 to March 2020, who underwent auditory MMN examinations within 28 days after coma onset, were reviewed. Correlations between clinical factors and prognosis [Glasgow Outcome Scale (GCS) for 3 mo] were analyzed. Fifty-three patients were included; 37 (69.8%) had favorable outcomes. A univariate analysis revealed the Glasgow Coma Scale (GCS) and absolute MMN amplitudes at electrodes Fz and Cz were significantly correlated with prognosis. Only GCS scores and MMN amplitude at Fz were independent predictors in multivariate logistic regression analysis (area under the curve 0.744 vs. 0.753, respectively); both combined, improved accuracy to 84.6%. MMN amplitudes at Fz were dichotomized at a value of 1.08 μV with a sensitivity and specificity of 81.1% and 68.7%, respectively, for predicting comatose patients' awakening. In conclusion, MMN amplitude at Fz is a reliable prognostic indicator for comatose patients with severe brain injury; the prediction value improved when combined with GCS. Thus, an event-related potential component with a clear site and cutoff value may support prognostication in severe brain injury.NEW & NOTEWORTHY Mismatch negativity (MMN) can assess the prognosis of comatose patients after severe brain injury, especially for MMN amplitude. In addition, MMN analysis at electrode Fz best predicts recovery of consciousness in patients with severe brain injury. Importantly, a quantitative approach (cutoff value of 1.08 μV) may improve the use of MMN for prognostication.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Jian Wang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Yun Wu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Zi-Yuan Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Yang Yu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan Province, China
| | - Jin-Fang Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
7
|
Wang X, Guo Y, Zhang Y, Li J, Gao Z, Li Y, Zhou T, Zhang H, He J, Cong F. Combined Behavioral and Mismatch Negativity Evidence for the Effects of Long-Lasting High-Definition tDCS in Disorders of Consciousness: A Pilot Study. Front Neurosci 2020; 14:381. [PMID: 32410950 PMCID: PMC7198816 DOI: 10.3389/fnins.2020.00381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the effects of long-term High-definition transcranial direct current stimulation (HD-tDCS) over precuneus on the level of consciousness (LOC) and the relationship between Mismatch negativity (MMN) and the LOC over the therapy period in patients with Disorders of consciousness (DOCs). Methods We employed a with-in group repeated measures design with an anode HD-tDCS protocol (2 mA, 20 min, the precuneus) on 11 (2 vegetative state and nine minimally conscious state) patients with DOCs. MMN and Coma Recovery Scale-Revised (CRS-R) scores were measured at four time points: before the treatment of HD-tDCS (T0), after a single session of HD-tDCS (T1), after the treatment of 7 days (T2) and 14 days (T3). A frequency-deviant oddball paradigm with two deviation magnitudes (standard stimulus: 1000 Hz, small deviant stimuli: 1050 Hz, large deviant stimuli: 1200 Hz) was adopted to elicit MMN. Results Significant improvements of CRS-R score were found after 7-day (T2) and 14-day (T3) treatment compared with baseline (T0). Regarding the MMN, significant improvements of MMN amplitudes were observed after a single session of stimulation (T1), 7-day (T2) and 14-day treatment (T3) compared with baseline (T0). Additionally, there were significant negative correlations between CRS-R scores and MMN amplitudes elicited by both large and small deviant stimuli. Conclusion Long-term HD-tDCS over precuneus might improve signs of consciousness in patients with DOCs as measured by CRS-R total scores, and MMN could be an assistant assessment in the course of tDCS treatment.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Yongkun Guo
- Department of Neurosurgery, Zhengzhou Central Hospital, Zhengzhou, China.,Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunge Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Jinju Li
- Department of Neurosurgery, Zhengzhou Central Hospital, Zhengzhou, China
| | - Zhongqi Gao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Yingxin Li
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Tianlin Zhou
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Hui Zhang
- Department of Neurosurgery, Zhengzhou Central Hospital, Zhengzhou, China
| | - Jianghong He
- Department of Neurosurgery, People's Liberation Army General Hospital, Beijing, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Rohan JG, Miklasevich MK, McInturf SM, Bechmann NA, Moore RJ, Hatcher-Solis C, Jankord R. Polarity and subfield specific effects of transcranial direct current stimulation on hippocampal plasticity. Neurobiol Learn Mem 2020; 167:107126. [DOI: 10.1016/j.nlm.2019.107126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/12/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
|
9
|
Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep 2018; 8:10957. [PMID: 30026496 PMCID: PMC6053382 DOI: 10.1038/s41598-018-29069-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional electrical stimulation (FES) is rapidly gaining traction as a therapeutic tool for mediating the repair and recovery of the injured central nervous system (CNS). However, the underlying mechanisms and impact of these stimulation paradigms at a molecular, cellular and network level remain largely unknown. In this study, we used embryonic stem cell (ESC)-derived neuron and glial co-cultures to investigate network maturation following acute administration of L-glutamate, which is a known mediator of excitotoxicity following CNS injury. We then modulated network maturation using chronic low frequency stimulation (LFS) and direct current stimulation (DCS) protocols. We demonstrated that L-glutamate impaired the rate of maturation of ESC-derived neurons and glia immediately and over a week following acute treatment. The administration of chronic LFS and DCS protocols individually following L-glutamate infusion significantly promoted the excitability of neurons as well as network synchrony, while the combination of LFS/DCS did not. qRT-PCR analysis revealed that LFS and DCS alone significantly up-regulated the expression of excitability and plasticity-related transcripts encoding N-methyl-D-aspartate (NMDA) receptor subunit (NR2A), brain-derived neurotrophic factor (BDNF) and Ras-related protein (RAB3A). In contrast, the simultaneous administration of LFS/DCS down-regulated BDNF and RAB3A expression. Our results demonstrate that LFS and DCS stimulation can modulate network maturation excitability and synchrony following the acute administration of an inhibitory dose of L-glutamate, and upregulate NR2A, BDNF and RAB3A gene expression. Our study also provides a novel framework for investigating the effects of electrical stimulation on neuronal responses and network formation and repair after traumatic brain injury.
Collapse
|
10
|
Effects of transcranial direct current stimulation on the auditory mismatch negativity response and working memory performance in schizophrenia: a pilot study. J Neural Transm (Vienna) 2017; 124:1489-1501. [PMID: 28864916 DOI: 10.1007/s00702-017-1783-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving 'sham' stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.
Collapse
|