1
|
Liu W, Zhong X, Yi Y, Xie L, Zhou W, Cao W, Chen L. Prophylactic Effects of Betaine on Depression and Anxiety Behaviors in Mice with Dextran Sulfate Sodium-Induced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21041-21051. [PMID: 39276097 DOI: 10.1021/acs.jafc.4c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Ulcerative colitis (UC) is a typical type of inflammatory bowl disease, which is accompanied by an increased risk of depression and anxiety-related psychological symptoms. Betaine is a naturally derived compound that can function as an anti-inflammatory drug and a neuromodulator. In-depth exploration of the potential role of betaine in treating UC-related depression and anxiety is crucial. This study aimed to elucidate the effects of betaine on UC-related depression and anxiety and clarify the underlying mechanisms. A dextran sulfate sodium (DSS)-induced mice model was established by 4% DSS drinking ad libitum for 7 days. The colonic injury was measured using hematoxylin-eosin (HE) staining and Alcian blue-periodic acid Schiff (AB-PAS) staining. Depression and anxiety-like behaviors were separately evaluated using a forced swimming test (FST), a tail suspension test (TST), a light-dark box test (LDBT), and an open field test (OFT). Immunohistochemistry was used to detect DNA damage and neurogenesis in the hippocampus. Western blotting was applied to detect the protein levels of macrophage polarization in mice colons and the alteration of mitochondrial dysfunction and the cGAS-STING pathway in the hippocampus. Betaine strongly alleviated mucosal structural disorder and mucin secretion reduction and promoted M2-macrophage polarization in the colon of DSS-treated mice. In addition, betaine could mitigate depression- and anxiety-like behaviors in DSS-treated mice, reduce the DNA damage and mitochondrial dysfunction, and inhibit the cGAS-STING signaling pathway. Our study reveals the antidepression/anxiety effects of betaine and further demonstrates the potential mechanism by which betaine inhibits DNA damage and mitochondrial dysfunction to block the cGAS-STING pathway, thereby repairing neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Yi
- Institute Center of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lihua Xie
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyan Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Arat Çelik HE, Yılmaz S, Akşahin İC, Kök Kendirlioğlu B, Çörekli E, Dal Bekar NE, Çelik ÖF, Yorguner N, Targıtay Öztürk B, İşlekel H, Özerdem A, Akan P, Ceylan D, Tuna G. Oxidatively-induced DNA base damage and base excision repair abnormalities in siblings of individuals with bipolar disorder DNA damage and repair in bipolar disorder. Transl Psychiatry 2024; 14:207. [PMID: 38789433 PMCID: PMC11126633 DOI: 10.1038/s41398-024-02901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024] Open
Abstract
Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLβ). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLβ expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.
Collapse
Affiliation(s)
| | - Selda Yılmaz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - İzel Cemre Akşahin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey
| | | | - Esma Çörekli
- Department of Psychiatry, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nazlı Ecem Dal Bekar
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ömer Faruk Çelik
- Department of Medical Biochemistry, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Pınar Akan
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Ceylan
- Research Center for Translational Medicine (KUTTAM), School of Medicine, Koc University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koc University, Istanbul, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
- BioIzmir - Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
4
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
5
|
Choudhary D, Kumar B, Kaur R. Nitrogen-containing heterocyclic compounds: A ray of hope in depression? Chem Biol Drug Des 2024; 103:e14479. [PMID: 38361139 DOI: 10.1111/cbdd.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Depression is not similar to daily mood fluctuations and temporary emotional responses to day-to-day activities. Depression is not a passing problem; it is an ongoing problem. It deals with different episodes consisting of several symptoms that last for at least 2 weeks. It can be seen for several weeks, months, or years. At its final stage, or can say, in its worst condition, it can lead to suicide. Antidepressants are used to inhibit the reuptake of the neurotransmitters by some selective receptors, which increase the concentration of specific neurotransmitters around the nerves in the brain. Drugs that are currently being used for the management of various types of depression include selective serotonin reuptake inhibitors, tricyclic antidepressants, atypical antidepressants, serotonin, noradrenaline reuptake inhibitors, etc. In this review, we have outlined different symptoms, causes, and recent advancements in nitrogen-containing heterocyclic drug candidates for the management of depression. This article highlights the various structural features along with the structure-activity relationship (SAR) of nitrogen-containing heterocyclics that play a key role in binding at target sites for potential antidepressant action. The in silico studies were carried out to determine the binding interactions of the target ligands with the receptor site to determine the potential role of substitution patterns at core pharmacophoric features. This article will help medicinal chemists, biochemists, and other interested researchers in identifying the potential pharmacophores as lead compounds for further development of new potent antidepressants.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Uttarakhand, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
6
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
7
|
Yazdanpanah Ghadikolaei P, Ghaleno LR, Vesali S, Janzamin E, Gilani MAS, Sajadi H, Dizaj AVT, Shahverdi A, Drevet JR, Moghadam Masouleh AA. Epidemiology of sperm DNA fragmentation in a retrospective cohort of 1191 men. Andrology 2023; 11:1663-1672. [PMID: 37280171 DOI: 10.1111/andr.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The scientific and clinical communities now recognize that sperm DNA integrity is crucial for successful fertilization, good embryo development, and offspring quality of life. Despite the apparent unanimity, this criterion is rarely evaluated in clinical practice. We evaluated the sperm DNA fragmentation index of nearly 1200 sperm samples and its connections based on the patient's age, body mass index, the season of sperm collection, geographical location, medical history, and addictive behaviors. METHODS A cohort of 1503 patients who were referred to the Royan Institute between July 2018 and March 2020 was examined. Only 1191 patient records with demographic data, complete semen analysis, and DNA fragmentation index measurements were included in the final cohort. Documents were classified, incorporated into statistical models, and analyzed. RESULTS The results confirmed previous findings that the sperm DNA fragmentation index was significantly higher in aging men. The sperm DNA fragmentation index and high DNA stainability levels were significantly higher in spring and summer samples than in those of other seasons. No correlation was found between semen DNA fragmentation index and patient body mass index, although the study cohort was significantly overweight. Contrary to what might be expected, we observed that the sperm DNA fragmentation index was higher in rural than in urban patients. Intriguingly, epileptic patients exhibited significantly higher sperm DNA fragmentation index levels. DISCUSSION AND CONCLUSION Age is the factor that is most strongly associated with sperm DNA fragmentation index levels. Our analysis of 1191 samples indicates that between the ages of 19 and 59, the sperm DNA fragmentation index increases by an average of 2% each year. Intriguingly, from an epidemiological perspective, the warm season (spring/summer) is associated with a higher sperm DNA fragmentation index in the study population, possibly due to the deleterious effect of temperature on sperm quality. Some neurological diseases, such as epilepsy, are associated with decreased sperm DNA integrity. This observation could be related to the iatrogenic effects of associated therapies. In the study cohort, body mass index did not appear to be correlated with the DNA fragmentation index.
Collapse
Affiliation(s)
- Parisa Yazdanpanah Ghadikolaei
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ehsan Janzamin
- SABA Biomedical Science -Based Company, Tehran, Iran
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ahmad Vosough Taghi Dizaj
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Joël R Drevet
- Faculty of Medicine, GReD Institute, Clermont-Ferrand, France
| | - AliReza Alizadeh Moghadam Masouleh
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Almulla AF, Thipakorn Y, Algon AAA, Tunvirachaisakul C, Al-Hakeim HK, Maes M. Reverse cholesterol transport and lipid peroxidation biomarkers in major depression and bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun 2023; 113:374-388. [PMID: 37557967 DOI: 10.1016/j.bbi.2023.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Major depression (MDD) and bipolar disorder (BD) are linked to immune activation, increased oxidative stress, and lower antioxidant defenses. OBJECTIVES To systematically review and meta-analyze all data concerning biomarkers of reverse cholesterol transport (RCT), lipid-associated antioxidants, lipid peroxidation products, and autoimmune responses to oxidatively modified lipid epitopes in MDD and BD. METHODS Databases including PubMed, Google scholar and SciFinder were searched to identify eligible studies from inception to January 10th, 2023. Guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS The current meta-analysis included 176 studies (60 BD and 116 MDD) and examined 34,051 participants, namely 17,094 with affective disorders and 16,957 healthy controls. Patients with MDD and BD showed a) significantly decreased RCT (mainly lowered high-density lipoprotein cholesterol and paraoxonase 1); b) lowered lipid soluble vitamins (including vitamin A, D, and coenzyme Q10); c) increased lipid peroxidation and aldehyde formation, mainly increased malondialdehyde (MDA), 4-hydroxynonenal, peroxides, and 8-isoprostanes; and d) Immunoglobulin (Ig)G responses to oxidized low-density lipoprotein and IgM responses to MDA. The ratio of all lipid peroxidation biomarkers/all lipid-associated antioxidant defenses was significantly increased in MDD (standardized mean difference or SMD = 0.433; 95% confidence intervals (CI): 0.312; 0.554) and BD (SMD = 0.653; CI: 0.501-0.806). This ratio was significantly greater in BD than MDD (p = 0.027). CONCLUSION In MDD/BD, lowered RCT, a key antioxidant and anti-inflammatory pathway, may drive increased lipid peroxidation, aldehyde formation, and autoimmune responses to oxidative specific epitopes, which all together cause increased immune-inflammatory responses and neuro-affective toxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University in Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, Victoria, Australia; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
9
|
Oliveira AC, Fascineli ML, de Oliveira PM, Gelfuso GM, Villacis RAR, Grisolia CK. Multi-level toxicity assessment of the antidepressant venlafaxine in embryos/larvae and adults of zebrafish (Danio rerio). Genet Mol Biol 2023; 46:e20220377. [PMID: 37695571 PMCID: PMC10494572 DOI: 10.1590/1678-4685-gmb-2022-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/06/2023] [Indexed: 09/12/2023] Open
Abstract
The toxic effects of venlafaxine (VLX) on aquatic organisms have already been verified and therefore are a proven matter of concern. Herein, we evaluated zebrafish embryos/adults after acute exposure to VLX. Embryos/larvae were exposed to different concentrations of VLX (100-1000 mg/L; 1.33 as a dilution factor), to evaluate mortality/developmental changos and to analyze biomarkers (0.002-100 mg/L). For adults, mortality, genotoxicity, and biomarkers were assessed in five different concentrations of VLX (1-100 mg/L). The median lethal concentration (LC50-168h) was 274.1 mg/L for embryos/larvae, and >100 mg/L for adults (LC50-96h). VLX decreased the heart rate frequency and caused premature hatching and lack of equilibrium in embryos/larvae exposed to different concentrations ranging from 100 to 562.5 mg/L. The activity of acetylcholinesterase (AChE) was inhibited in larvae exposed to 1, 25 and 100 mg/L. Glutathione-S-transferase (GST) activity was reduced in both larvae and adults after exposure to different concentrations, mainly at 25 mg/L. For both larvae and adults, lactate dehydrogenase (LDH) activity increased after 100 mg/L of VLX exposure. No DNA damage was observed in peripheral erythrocytes. Exposure to VLX may cause adverse effects on zebrafish in their early and adult life stages, interfering with embryo-larval development, and can induce physiological disturbances in adults.
Collapse
Affiliation(s)
- Ana Clara Oliveira
- Universidade de Brasília (UnB), Instituto de Ciências Biológicas,
Departamento de Genética e Morfologia, Laboratório de Genética Toxicológica (GTOX),
Brasília, DF, Brazil
| | - Maria Luiza Fascineli
- Universidade de Brasília (UnB), Instituto de Ciências Biológicas,
Departamento de Genética e Morfologia, Laboratório de Genética Toxicológica (GTOX),
Brasília, DF, Brazil
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde,
Departamento de Morfologia (DMORF), João Pessoa, PB, Brazil
| | - Paula Martins de Oliveira
- Universidade de Brasília (UnB), Faculdade de Ciências da Saúde,
Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos (LTMAC), Brasília,
DF, Brazil
| | - Guilherme Martins Gelfuso
- Universidade de Brasília (UnB), Faculdade de Ciências da Saúde,
Laboratório de Tecnologia de Medicamentos, Alimentos e Cosméticos (LTMAC), Brasília,
DF, Brazil
| | - Rolando André Rios Villacis
- Universidade de Brasília (UnB), Instituto de Ciências Biológicas,
Departamento de Genética e Morfologia, Laboratório de Genética Toxicológica (GTOX),
Brasília, DF, Brazil
| | - Cesar Koppe Grisolia
- Universidade de Brasília (UnB), Instituto de Ciências Biológicas,
Departamento de Genética e Morfologia, Laboratório de Genética Toxicológica (GTOX),
Brasília, DF, Brazil
| |
Collapse
|
10
|
Ait Tayeb AEK, Poinsignon V, Chappell K, Bouligand J, Becquemont L, Verstuyft C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants (Basel) 2023; 12:antiox12040942. [PMID: 37107318 PMCID: PMC10135827 DOI: 10.3390/antiox12040942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder (MDD) is currently the main cause of disability worldwide, but its pathophysiology remains largely unknown, especially given its high heterogeneity in terms of clinical phenotypes and biological characteristics. Accordingly, its management is still poor. Increasing evidence suggests that oxidative stress, measured on various matrices such as serum, plasma or erythrocytes, has a critical role in MDD. The aim of this narrative review is to identify serum, plasma and erythrocyte biomarkers of oxidative stress in MDD patients according to disease stage and clinical features. Sixty-three articles referenced on PubMed and Embase between 1 January 1991, and 31 December 2022, were included. Modifications to antioxidant enzymes (mainly glutathione peroxidase and superoxide dismutase) in MDD were highlighted. Non-enzymatic antioxidants (mainly uric acid) were decreased in depressed patients compared to healthy controls. These changes were associated with an increase in reactive oxygen species. Therefore, increased oxidative damage products (principally malondialdehyde, protein carbonyl content and 8-hydroxy-2'-deoxyguanosine) were present in MDD patients. Specific modifications could be identified according to disease stages and clinical features. Interestingly, antidepressant treatment corrected these changes. Accordingly, in patients in remission from depression, oxidative stress markers were globally normalized. This narrative review suggests the particular interest of oxidative stress biomarkers for MDD care that may contribute to the heterogeneity of the disease and provide the opportunity to find new therapeutic targets.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Vianney Poinsignon
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- INSERM UMR-S U1185, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
- Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Universitaires Paris-Saclay, F-94275 Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Çeli K HEA, Tuna G, Ceylan D, Küçükgöncü S. A comparative meta-analysis of peripheral 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) levels across mood episodes in bipolar disorder. Psychoneuroendocrinology 2023; 151:106078. [PMID: 36931055 DOI: 10.1016/j.psyneuen.2023.106078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Oxidative DNA damage has been associated with the pathophysiology of bipolar disorder (BD) as one of the common pathways between increased medical comorbidity and premature aging in BD. Previous evidence shows increased levels of oxidatively induced DNA damage markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), in patients with BD in comparison to healthy individuals. With the current research, we aim to analyze data on peripheral (blood or urine) 8-OHdG/8-oxo-dG levels across mood states of BD using a meta-analytical approach. METHOD A literature search was conducted using the databases PubMed, Scopus, and Web of Science to identify eligible studies (January 1989 to July 2022). Relevant studies were systematically reviewed; a random-effects meta-analysis and a meta-regression analysis were conducted. RESULTS The current meta-analysis included 12 studies consisting of 808 BD patients (390 in euthymia, 156 in mania, 137 in depression, 16 in mixed episode, 109 not specified) and 563 healthy controls. BD patients that were currently depressed had significantly higher levels of 8-OHdG/8-oxo-dG than healthy controls, while euthymic or manic patients did not differ from healthy controls. A meta-regression analysis showed sex distribution (being female) and older age to be significantly related to increased 8-OHdG/8-oxo-dG levels. CONCLUSION Our findings suggest that 8-OHdG/8-oxo-dG may be a state-related marker of depression in BD and may be affected by older age and female gender.
Collapse
Affiliation(s)
- Hidayet Ece Arat Çeli K
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Dokuz Eylül University, Institute of Health Sciences, Department of Neuroscience, İzmir, Turkey
| | - Gamze Tuna
- Dokuz Eylül University, Institute of Health Sciences, Department of Molecular Medicine, İzmir, Turkey
| | - Deniz Ceylan
- Koç University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey; Koç University, Research Center for Translational Medicine, İstanbul, Turkey.
| | - Suat Küçükgöncü
- Maltepe University, Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey
| |
Collapse
|
12
|
Ryan KM, McLoughlin DM. PARP1 and OGG1 in Medicated Patients With Depression and the Response to ECT. Int J Neuropsychopharmacol 2022; 26:107-115. [PMID: 36472850 PMCID: PMC9926051 DOI: 10.1093/ijnp/pyac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress and oxidation-induced DNA damage may contribute to the pathophysiology of depression. Two key mediators of base excision repair (BER) in response to oxidative damage of DNA are OGG1 and PARP1. Few studies have examined changes in OGG1 or PARP1 mRNA in patients with depression or following antidepressant treatment. We examined PARP1 and OGG1 mRNA levels in patients with depression at baseline/pre-electroconvulsive therapy (baseline/pre-ECT) vs in healthy controls and in patients following a course of ECT. METHODS PARP1 and OGG1 were examined in whole blood samples from medicated patients with depression and controls using quantitative real-time polymerase chain reaction. Exploratory subgroup correlational analyses were performed to determine associations between PARP1 and OGG1 and mood (Hamilton Depression Rating Scale 24-item version) scores as well as with vitamin B3, SIRT1, PGC1α, and tumor necrosis factor alpha levels, as previously reported on in this cohort. RESULTS PARP1 levels were reduced in samples from patients with depression vs controls (P = .03), though no difference was noted in OGG1. ECT had no effect on PARP1 or OGG1. Higher baseline PARP1 weakly correlated with greater mood improvement post ECT (P = .008). Moreover, PARP1 positively correlated with SIRT1 at baseline and post ECT, and positive correlations were noted between change in PARP1 and change in OGG1 with change in tumor necrosis factor alpha post ECT. CONCLUSIONS To our knowledge, this is the first study to examine the effect of ECT on BER enzymes. A better understanding of BER enzymes and DNA repair in depression could unearth new mechanisms relevant to the pathophysiology of this condition and novel antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick’s University Hospital, Dublin, Ireland
| | - Declan M McLoughlin
- Correspondence: Declan M. McLoughlin, PhD, Department of Psychiatry, Trinity College Dublin, St. Patrick’s University Hospital, James Street, Dublin 8, Ireland ()
| |
Collapse
|
13
|
Mohammadi S, Beh-Pajooh A, Ahmadimanesh M, Amini M, Ghazi-Khansari M, Moallem SA, Hosseini R, Nourian YH, Ghahremani MH. Evaluation of DNA methylation in BDNF, SLC6A4, NR3C1 and FKBP5 before and after treatment with selective serotonin-reuptake inhibitor in major depressive disorder. Epigenomics 2022; 14:1269-1280. [DOI: 10.2217/epi-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the DNA methylation status of related genes in major depressive disorder following selective serotonin-reuptake inhibitor treatment. Materials & methods: 45 patients with major depressive disorder and 45 healthy volunteers were considered experimental and control groups, respectively. High-resolution melting real-time PCR was implemented to evaluate DNA methylation. Results: After 100 days of selective serotonin-reuptake inhibitor treatment, methylation of promoter CpG sites of BDNF, NR3C1, FKBP5 and SLC6A4 was significantly reduced. Compared with before treatment, patients' Hamilton Depression Rating Scale scores were significantly reduced after selective serotonin-reuptake inhibitor treatment (p ≤ 0.0001). Conclusion: Based on the proven effect of antidepressants on DNA methylation and gene expression, these medications can improve the treatment process and reduce depression scores after treatment.
Collapse
Affiliation(s)
- Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Beh-Pajooh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Rohollah Hosseini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Hasani Nourian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jorgensen A, Baago IB, Rygner Z, Jorgensen MB, Andersen PK, Kessing LV, Poulsen HE. Association of Oxidative Stress-Induced Nucleic Acid Damage With Psychiatric Disorders in Adults: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:920-931. [PMID: 35921094 PMCID: PMC9350850 DOI: 10.1001/jamapsychiatry.2022.2066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Nucleic acid damage from oxidative stress (NA-OXS) may be a molecular mechanism driving the severely increased morbidity and mortality from somatic causes in adults with psychiatric disorders. OBJECTIVE To systematically retrieve and analyze data on NA-OXS across the psychiatric disorder diagnostic spectrum. DATA SOURCES The PubMed, Embase, and PsycINFO databases were searched from inception to November 16, 2021. A hand search of reference lists of relevant articles was also performed. STUDY SELECTION Key study inclusion criteria in this meta-analysis were as follows: adult human study population, measurement of any marker of DNA or RNA damage from oxidative stress, and either a (1) cross-sectional design comparing patients with psychiatric disorders (any diagnosis) with a control group or (2) prospective intervention. Two authors screened the studies, and 2 senior authors read the relevant articles in full and assessed them for eligibility. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. Two authors performed data extraction independently, and a senior coauthor was consulted in cases of disagreement. Data were synthesized with random-effects and multilevel meta-analyses. MAIN OUTCOMES AND MEASURES The predefined hypothesis was that individuals with psychiatric disorders have increased NA-OXS levels. The main outcome was the standardized mean differences (SMDs) among patients and controls in nucleic acid oxidation markers compared across diagnostic groups. Analyses were divided into combinations of biological matrices and nucleic acids. RESULTS Eighty-two studies fulfilled the inclusion criteria, comprising 205 patient vs control group comparisons and a total of 10 151 patient and 10 532 control observations. Overall, the data showed that patients with psychiatric disorders had higher NA-OXS levels vs controls across matrices and molecules. Pooled effect sizes ranged from moderate for urinary DNA markers (SMD = 0.44 [95% CI, 0.20-0.68]; P < .001) to very large for blood cell DNA markers (SMD = 1.12 [95% CI, 0.69-1.55; P < .001). Higher NA-OXS levels were observed among patients with dementias followed by psychotic and bipolar disorders. Sensitivity analyses excluding low-quality studies did not materially alter the results. Intervention studies were few and too heterogenous for meaningful meta-analysis. CONCLUSIONS AND RELEVANCE The results of this meta-analysis suggest that there is an association with increased NA-OXS levels in individuals across the psychiatric disorder diagnostic spectrum. NA-OXS may play a role in the somatic morbidity and mortality observed among individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ida Bendixen Baago
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Zerlina Rygner
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| |
Collapse
|
15
|
Kucuker MU, Ozerdem A, Ceylan D, Cabello-Arreola A, Ho AMC, Joseph B, Webb LM, Croarkin PE, Frye MA, Veldic M. The role of base excision repair in major depressive disorder and bipolar disorder. J Affect Disord 2022; 306:288-300. [PMID: 35306122 DOI: 10.1016/j.jad.2022.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND In vivo and in vitro studies suggest that inflammation and oxidative damage may contribute to the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). Imbalance between DNA damage and repair is an emerging research area examining pathophysiological mechanisms of these major mood disorders. This systematic review sought to review DNA repair enzymes, with emphasis on the base excision repair (BER), in mood disorders. METHODS We conducted a comprehensive literature search of Ovid MEDLINE® Epub Ahead of Print, Ovid MEDLINE® In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily, EMBASE (1947), and PsycINFO for studies investigating the alterations in base excision repair in patients with MDD or BD. RESULTS A total of 1364 records were identified. 1352 records remained after duplicates were removed. 24 records were selected for full-text screening and a remaining 12 articles were included in the qualitative synthesis. SNPs (single nucleotide polymorphisms) of several BER genes have been shown to be associated with MDD and BD. However, it was difficult to draw conclusions from BER gene expression studies due to conflicting findings and the small number of studies. LIMITATIONS All studies were correlational so it was not possible to draw conclusions regarding causality. CONCLUSION Future studies comparing DNA repair during the manic or depressive episode to remission will give us a better insight regarding the role of DNA repair in mood disorders. These alterations might be utilized as diagnostic and prognostic biomarkers as well as measuring treatment response.
Collapse
Affiliation(s)
- Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Deniz Ceylan
- Department of Psychiatry and Psychology, Koc University, Istanbul, Turkey
| | - Alejandra Cabello-Arreola
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Ada M C Ho
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Boney Joseph
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Lauren M Webb
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Kurhan F, Alp HH, Işık M, Atan YS. The Evaluation of Thiol/Disulfide Homeostasis and Oxidative DNA Damage in Patients with Obsessive Compulsive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:240-247. [PMID: 35466095 PMCID: PMC9048000 DOI: 10.9758/cpn.2022.20.2.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Objective In this study, we aimed to examine thiol/disulfide homeostasis and oxidative DNA damage in patients with OCD and compare them with healthy controls. Methods Thirty-five patients previously diagnosed with OCD in Van Yuzuncu Yil University Department of Psychiatry and thirty-three healthy volunteers were included in the study. The severity of the symptoms was measured using the Yale-Brown Obsessive-Compulsive Scale. Five μL of blood samples were taken from the patient and control groups. The samples were stored at appropriate conditions until use. Leukocyte DNA was isolated and the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and deoxyguanosine were detected to assess the oxidative DNA damage. The level of oxidative DNA damage was expressed as 8-OHdG/106dG. Total thiol/native thiol levels were measured for thiol/disulfide homeostasis. The level of disulfide was determined by subtracting the native thiol value from the total thiol value and the result was divided by two. Results were given as percentages. Results The total and native thiol levels in patients with OCD were significantly lower, and the disulfide levels were significantly higher in patients with OCD than healthy control subjects. In addition, 8-OHdG, an indicator of DNA damage, was significantly lower in the control group compared to the patient group. Conclusion Increased levels of disulfide/native thiol and disulfide/total thiol in patients with OCD show that levels of oxidative stress were elevated and therefore, higher 8-OHdG levels in patients with OCD is a marker of oxidative DNA damage.
Collapse
Affiliation(s)
- Faruk Kurhan
- Department of Psychiatry Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Mesut Işık
- Department of Psychiatry Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Yavuz Selim Atan
- Department of Psychiatry Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
17
|
Jorgensen A, Köhler-Forsberg K, Henriksen T, Weimann A, Brandslund I, Ellervik C, Poulsen HE, Knudsen GM, Frokjaer VG, Jorgensen MB. Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression. Transl Psychiatry 2022; 12:204. [PMID: 35577781 PMCID: PMC9110351 DOI: 10.1038/s41398-022-01969-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated that antidepressants that inhibit the serotonin transporter reduces oxidative stress. DNA and RNA damage from oxidation is involved in aging and a range of age-related pathophysiological processes. Here, we studied the urinary excretion of markers of DNA and RNA damage from oxidation, 8-oxodG and 8-oxoGuo, respectively, in the NeuroPharm cohort of 100 drug-free patients with unipolar depression and in 856 non-psychiatric community controls. Patients were subsequently treated for 8 weeks with escitalopram in flexible doses of 5-20 mg; seven of these switched to duloxetine by week 4, as allowed by the protocol. At week 8, 82 patients were followed up clinically and with measurements of 8-oxodG/8-oxoGuo. Contextual data were collected in patients, including markers of cortisol excretion and low-grade inflammation. The intervention was associated with a substantial reduction in both 8-oxodG/8-oxoGuo excretion (25% and 10%, respectively). The change was not significantly correlated to measures of clinical improvement. Both markers were strongly and negatively correlated to cortisol, as measured by the area under the curve for the full-day salivary cortisol excretion. Surprisingly, patients had similar levels of 8-oxodG excretion and lower levels of 8-oxoGuo excretion at baseline compared to the controls. We conclude that intervention with serotonin reuptake inhibitors in unipolar depression is associated with a reduction in systemic DNA and RNA damage from oxidation. To our knowledge, this to date the largest intervention study to characterize this phenomenon, and the first to include a marker of RNA oxidation.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristin Köhler-Forsberg
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Trine Henriksen
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Allan Weimann
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Ivan Brandslund
- grid.459623.f0000 0004 0587 0347Department of Clinical Immunology and Biochemistry, Lillebælt Hospital, Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| | - Henrik E. Poulsen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark ,grid.4973.90000 0004 0646 7373Department of Cardiology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Endocrinology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B. Jorgensen
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Circulating Human Serum Metabolites Derived from the Intake of a Saffron Extract (Safr'Inside TM) Protect Neurons from Oxidative Stress: Consideration for Depressive Disorders. Nutrients 2022; 14:nu14071511. [PMID: 35406124 PMCID: PMC9002571 DOI: 10.3390/nu14071511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022] Open
Abstract
Increases in oxidative stress have been reported to play a central role in the vulnerability to depression, and antidepressant drugs may reduce increased oxidative stress in patients. Among the plants exerting anti-inflammatory and anti-oxidant properties, saffron, a spice derived from the flower of Crocus sativus, is also known for its positive effects on depression, potentially through its SSRI-like properties. However, the molecular mechanisms underlying these effects and their health benefits for humans are currently unclear. Using an original ex vivo clinical approach, we demonstrated for the first time that the circulating human metabolites produced following saffron intake (Safr’InsideTM) protect human neurons from oxidative-stress-induced neurotoxicity by preserving cell viability and increasing BNDF production. In particular, the metabolites significantly stimulated both dopamine and serotonin release. In addition, the saffron’s metabolites were also able to protect serotonergic tone by inhibiting the expression of the serotonin transporter SERT and down-regulating serotonin metabolism. Altogether, these data provide new biochemical insights into the mechanisms underlying the beneficial impact of saffron on neuronal viability and activity in humans, in the context of oxidative stress related to depression.
Collapse
|
19
|
Durnev AD, Eremina NV, Zhanataev AK, Kolik LG. [Genotoxicity of psychotropic drugs in experimental and clinical studies]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:7-16. [PMID: 36279223 DOI: 10.17116/jnevro20221221017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The analysis of experimental data on the study of the genotoxic activity of psychotropic drugs published over the past 25 years has been carried out. It has been shown that the information describing the genotoxicity of psychotropic drugs is characterized by fragmentation, contradictions, and the conditions for their experimental production often do not meet modern requirements. Conclusions about the presence or absence of genotoxic properties can be made only for 9.6% 94 examined drugs. The need for a large-scale systematic reassessment of the genotoxicity of psychotropic drugs, especially drugs of the first generation, on the basis of modern methodology, including studies of mutagen-modifying activity, has been proven. The expediency of monitoring the genotoxic status of patients receiving psychotropic drugs is emphasized, which should contribute to an adequate assessment of the genotoxic risk of their use and objectification of approaches when choosing a drug for the safe therapy. The urgency of conducting research to determine the role of primary DNA damage in the pathogenesis of mental illnesses has been substantiated.
Collapse
Affiliation(s)
- A D Durnev
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - N V Eremina
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - A K Zhanataev
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - L G Kolik
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
20
|
Khorashadizadeh N, Neamati A, Moshiri M, Etemad L. Verbascoside inhibits paraquate-induced pulmonary toxicity via modulating oxidative stress, inflammation, apoptosis and DNA damage in A549 cell. Drug Chem Toxicol 2021; 45:2212-2220. [PMID: 34607471 DOI: 10.1080/01480545.2021.1917467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Paraquat (PQ), one of the most frequently used herbicides, can cause serious health problems in an exposed individual. In the present study, we investigated the protective effect of verbascoside (VB), a phenylpropanoid glycoside from lemon verbena, against PQ-induced A549 cell injury with a particular focus on the possible molecular pathways involved. A549 cells were exposed to PQ (300 µM) and different concentrations of VB (12.5, 25, and 50 µM). Cell viability, ROS content, the level of antioxidant enzymes (SOD, CAT and GPx) and inflammatory markers (IL-6 and TNF-α), as well as 8-OHdG, were detected using MTT assay and an ELISA kit. Western blotting and qRT-PCR were performed to measure the levels of caspase3 and NF-κB mRNA and protein expression. Exposure of cells to PQ caused viability loss and ROS increase. PQ also increased the levels of IL-6, TNF-α and 8-OHdG and decreased the antioxidant enzymes content. PQ treatment resulted in cell death by increasing the gene and protein expression level of caspase 3 and NF-κB. Treatment with VB notably increased cell survival, antioxidant enzymes activity, which concomitantly attenuated ROS, NF-κB and inflammatory mediator production. VB also inhibited apoptosis expression markers. These results indicated that VB could protect A549 cells against PQ induced cell injury by attenuation of ROS and inflammatory marker production and modulation of antioxidant enzymes. VB efficiently suppressed increased NF-κB and caspase-3 activity and formation of 8-OHdG and ultimately improved cell viability. Therefore, VB may be useful in the development of a new therapy for PQ-induced pulmonary toxicity.
Collapse
Affiliation(s)
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Kim HK, Zai G, Hennings JM, Müller DJ, Kloiber S. Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm (Vienna) 2021; 128:1461-1477. [PMID: 34415438 DOI: 10.1007/s00702-021-02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
More than a third of patients treated with antidepressants experience treatment resistance. Furthermore, molecular pathways involved in antidepressant effect have yet to be fully understood. Therefore, we performed a systematic review of clinical studies that examined changes in RNA expression levels produced by antidepressant treatment. Literature search was performed through April 2021 for peer-reviewed studies measuring changes in mRNA or non-coding RNA levels before and after antidepressant treatment in human participants following PRISMA guidelines. Thirty-one studies were included in qualitative synthesis. We identified a large amount of heterogeneity between the studies for genes/RNAs measured, antidepressants used, and treatment duration. Of the six RNAs examined by more than one study, expression of the brain-derived neurotrophic factor (BDNF) gene and genes in the inflammation pathway, particularly IL-1β, were consistently reported to be altered by antidepressant treatment. Limitations of this review include heterogeneity of the studies, possibility of positive publication bias, and risk of false-negative findings secondary to small sample sizes. In conclusion, our systematic review provides an updated synthesis of RNA expression changes produced by antidepressant treatment in human participants, where genes in the BDNF and inflammatory pathways were identified as potential targets of antidepressant effect. Importantly, these findings also highlight the need for replication of the included studies in multiple strong, placebo-controlled studies for the identification of evidence-based markers that can be targeted to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Vieira EL, Mendes-Silva AP, Ferreira JD, Bertola L, Barroso L, Vieira M, Teixeira AL, Diniz BS. Oxidative DNA damage is increased in older adults with a major depressive episode: A preliminary study. J Affect Disord 2021; 279:106-110. [PMID: 33045551 DOI: 10.1016/j.jad.2020.09.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND DNA oxidative damage is a marker of increased oxidative stress activity. Elevated DNA oxidative damage has been associated with major depressive disorder in young adults, but there is no information about DNA oxidative damage in late-life depression. This study aims to evaluate whether older adults with late-life depression (LLD) has increased DNA oxidative damage compared to healthy older adults. METHODS We included 92 participants (57 with LLD [73.2 ± 7.7 years-old] and 35 non-depressed subjects (Controls) [70.5 ± 7.4 years-old]). We analyzed the plasma 8‑hydroxy-2'-deoxyguanosine (8-oxo-dG), a marker of DNA oxidation, using a commercially-available ELISA assay. RESULTS LLD participants had significantly higher 8-oxo-DG levels compared to controls (P<0.001). 8-oxo-dG levels were significantly correlated with depressive symptoms as assessed by the Hamilton Depression Rating Scale (rho=0.34, p<0.001). The plasma levels of 8-OHdG were not significantly correlated with other clinical, neurocognitive, and demographic variables. LIMITATIONS Our current results are limited by the relatively small sample size, cross-sectional design, and the recruitment of participants in tertiary center for assessment and treatment of LLD. CONCLUSIONS Older adults with LLD have increased DNA oxidative damage. Our findings provide additional evidence for elevated oxidative stress activity in LLD and the possible activation of age-related biological pathways and enhanced biological aging changes in LLD.
Collapse
Affiliation(s)
- Erica L Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jessica D Ferreira
- Geriatric Psychiatry Service, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laiss Bertola
- Geriatric Psychiatry Service, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucelia Barroso
- Molecular Medicine Graduate Program, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monica Vieira
- Molecular Medicine Graduate Program, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Breno S Diniz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Ahmadimanesh M, Abbaszadegan MR, Hedayati N, Yazdian-Robati R, Jamialahmadi T, Sahebkar A. A Systematic Review on the Genotoxic Effects of Selective Serotonin Reuptake Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:115-124. [PMID: 33725349 DOI: 10.1007/978-3-030-55035-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Depression is a mental disorder and a major public health concern affecting millions of people worldwide. It is a common disorder that has been associated with several medical comorbidities often linked with aging, such as dementia, type II diabetes, cardiovascular and cerebrovascular diseases, as well as metabolic syndrome. There are a variety of medications available for depression treatment. Selective serotonin reuptake inhibitors (SSRIs) are one of the antidepressant drug classes that are most widely used to treat depressive disorders and depressive symptoms in other diseases. Due to many contradictory findings on the adverse effects and toxicities of SSRIs (especially genotoxicities), we reviewed the genotoxic effects of these drugs. Based on the guidelines proposed in the PRISMA statement, we performed a systematic review by searching international electronic databases including PubMed, Scopus, Embase, and Web of Science to find the published documents on SSRIs and their genotoxic effects from January 1990 to November 2019. After the removal of 203 duplicate articles, 385 articles were screened and 167 articles met the inclusion criteria and qualified for evaluation of their full texts. After this, 26 articles were appropriate for final review. This revealed that the proportion of genotoxicities was highest for citalopram and fluoxetine, with a smaller proportion for sertraline. Limited documentations showed genotoxic and partial genotoxic effects for paroxetine and escitalopram, respectively. Although a number of studies have found genotoxic effects of SSRIs, there are also some factors including doses, duration of exposure, model of experiments, and the type of technique assay that may affect the results.
Collapse
Affiliation(s)
- Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mothers Memorial Hospital Research Institute (PMMHRI), Mashhad, Iran.
| |
Collapse
|
24
|
Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, Szemraj J, Gruca P, Papp M, Śliwiński T. The Effect of Chronic Mild Stress and Escitalopram on the Expression and Methylation Levels of Genes Involved in the Oxidative and Nitrosative Stresses as Well as Tryptophan Catabolites Pathway in the Blood and Brain Structures. Int J Mol Sci 2020; 22:ijms22010010. [PMID: 33374959 PMCID: PMC7792593 DOI: 10.3390/ijms22010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies suggest that depression may be associated with reactive oxygen species overproduction and disorders of the tryptophan catabolites pathway. Moreover, one-third of patients do not respond to conventional pharmacotherapy. Therefore, the study investigates the molecular effect of escitalopram on the expression of Cat, Gpx1/4, Nos1/2, Tph1/2, Ido1, Kmo, and Kynu and promoter methylation in the hippocampus, amygdala, cerebral cortex, and blood of rats exposed to CMS (chronic mild stress). The animals were exposed to CMS for two or seven weeks followed by escitalopram treatment for five weeks. The mRNA and protein expression of the genes were analysed using the TaqMan Gene Expression Assay and Western blotting, while the methylation was determined using methylation-sensitive high-resolution melting. The CMS caused an increase of Gpx1 and Nos1 mRNA expression in the hippocampus, which was normalised by escitalopram administration. Moreover, Tph1 and Tph2 mRNA expression in the cerebral cortex was increased in stressed rats after escitalopram therapy. The methylation status of the Cat promoter was decreased in the hippocampus and cerebral cortex of the rats after escitalopram therapy. The Gpx4 protein levels were decreased following escitalopram compared to the stressed/saline group. It appears that CMS and escitalopram influence the expression and methylation of the studied genes.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland; (P.C.); (J.S.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Katarzyna Białek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland; (P.C.); (J.S.)
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (P.G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (P.G.); (M.P.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (P.W.); (E.S.); (K.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
25
|
A systematic review on the genotoxic effect of serotonin and norepinephrine reuptake inhibitors (SNRIs) antidepressants. Psychopharmacology (Berl) 2020; 237:1909-1915. [PMID: 32529266 DOI: 10.1007/s00213-020-05550-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Depression is a major mental disorder affecting millions of people worldwide. Serotonin and norepinephrine reuptake inhibitors (SNRIs) are one of the antidepressant drugs prescribed for depression treatment. OBJECTIVE AND METHOD There are many contradiction studies about the adverse effect and genotoxicity of SNRIs. So here, based on the guidelines proposed at the PRISMA statement, we performed a quantitative systematic review by searching international electronic databases (PubMed, Scopus, Embase, and Web of Science) for published documents on SSNRIs and their genotoxicity effects. RESULTS The database searches retrieved 336 records, 18 of which met the inclusion criteria. Evaluation of the selected articles showed that a total of 9 articles were appropriate for final review. Most of these studies (78%) reported positive results for the genotoxicity of SNRIs CONCLUSION: Finally, we can conclude that these drugs have the potential to damage DNA.
Collapse
|
26
|
Nirwan M, Halder K, Saha M, Pathak A, Balakrishnan R, Ganju L. Improvement in resilience and stress-related blood markers following ten months yoga practice in Antarctica. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:201-207. [PMID: 32554833 DOI: 10.1515/jcim-2019-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Wintering is associated with distress to humans who work in the isolated and confined environment of Antarctica and yoga has been proved helpful for coping with stress. Therefore, a study was conducted on 14 winter expedition members of Indian Scientific Antarctic Expedition (2016) to find out the effects of yoga on stress-related markers. METHODS Participants were divided into yoga, and control (non-yoga) groups. The yoga group practiced yoga for 10 months (from January to October 2016) daily in the morning for an hour. The Resilience test questionnaire was administrated at baseline and endpoint of the study. Blood samples were collected during the study at different intervals for the estimation of 8-hydroxydeoxyguanosine (8-OHdG), brain-derived neurotrophic factor (BDNF), serotonin and cortisol using ELISA. RESULTS A trend of improvement was observed in the resilience test score in the yoga group. From January to October, 8-OHdG serum values in the yoga group declined by 55.9% from 1010.0 ± 67.8 pg/mL to 445.6 ± 60.5 pg/mL (Mean ± SD); in the control group, the decline was 49.9% from 1060.4 ± 54.6 pg/mL to 531.1 ± 81.8 pg/mL. In serotonin serum levels in the yoga group, there was a 3.1% increase from 6.4 ± 1.6 ng/mL to 6.6 ± 0.4 ng/mL while no increase was noticed in the control group. Cortisol values in the yoga group decreased by 19.9% from 321.0 ± 189.6 ng/mL to 257.1 ± 133.8 ng/mL; in the control group it increased by 2.8% from 241.2 ± 51.8 ng/mL to 247.8 ± 90.9 ng/mL. CONCLUSIONS It could be concluded from the present study that following 10 months yoga practice may be useful for better resilience and management of stress-related blood markers for the polar sojourners.
Collapse
Affiliation(s)
- Mohit Nirwan
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Kaushik Halder
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Mantu Saha
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi-110054, India
| | - Anjana Pathak
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | | | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| |
Collapse
|
27
|
Jewett BE, Miller MN, Ligon LA, Carter Z, Mohammad I, Ordway GA. Rapid and temporary improvement of depression and anxiety observed following niraparib administration: a case report. BMC Psychiatry 2020; 20:171. [PMID: 32295563 PMCID: PMC7161116 DOI: 10.1186/s12888-020-02590-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer patients are disproportionately affected by generalized anxiety and major depression. For many, current treatments for these conditions are ineffective. In this case report, we present a serendipitous case of anxiety and depression improvement following administration of the poly (ADP-ribose) polymerase (PARP) inhibitor niraparib. CASE PRESENTATION A 61-year old woman with a 20-year history of mild depression developed recurrent ovarian carcinoma and was placed on niraparib for maintenance chemotherapy. With the original onset of ovarian cancer, she experienced an episode of major depression that was resolved with sertraline. After recurrence of ovarian cancer, she experienced a recurrence of major depression and a new onset of generalized anxiety that failed to completely respond to multiple medications. After beginning niraparib therapy the patient noticed a rapid resolution of the symptoms of her anxiety and depression, an effect that was limited to 10-14 days. Due to bone marrow suppression, the patient was taken off and restarted on niraparib several times. Each discontinuation of niraparib resulted in return of her depression and anxiety, while each recontinuation of niraparib resulted in an improvement in her mood and anxiety. CONCLUSIONS This case demonstrates rapid and temporary improvement of anxiety and depression following niraparib administration. There is ample preclinical data that PARP signaling may play a role in psychiatric illness. A small amount of indirect data from clinical trials also shows that niraparib may have psychiatric benefits. Further research on PARP inhibition and its potential psychoactive effects is sorely needed.
Collapse
Affiliation(s)
- Benjamin E. Jewett
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Merry N. Miller
- grid.255381.80000 0001 2180 1673Department of Psychiatry and Behavioral Sciences, East Tennessee State University, 187 Maple Avenue, Johnson City, TN 37684 USA
| | - Libby A. Ligon
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Zachary Carter
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Ibrahim Mohammad
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Gregory A. Ordway
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA ,grid.255381.80000 0001 2180 1673Department of Psychiatry and Behavioral Sciences, East Tennessee State University, 187 Maple Avenue, Johnson City, TN 37684 USA
| |
Collapse
|
28
|
Ceylan D, Yılmaz S, Tuna G, Kant M, Er A, Ildız A, Verim B, Akış M, Akan P, İşlekel H, Veldic M, Frye M, Özerdem A. Alterations in levels of 8-Oxo-2'-deoxyguanosine and 8-Oxoguanine DNA glycosylase 1 during a current episode and after remission in unipolar and bipolar depression. Psychoneuroendocrinology 2020; 114:104600. [PMID: 32062372 DOI: 10.1016/j.psyneuen.2020.104600] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Previous studies showed significant increases in DNA base damage markers and significant alterations in base excision repair enzymes in patients with unipolar and bipolar depression. We aimed to investigate changes in urine 8-Oxo-2'-deoxyguanosine (8-oxo-dG) and gene expression levels of 8-Oxoguanine DNA glycosylase 1 (OGG1) during a current depressive episode and after remission in bipolar and unipolar disorders. METHODS Twenty-four acutely depressed bipolar (BD), 33 unipolar depression (UD) patients and 61 healthy controls were included in the study. Clinical evaluations, blood and urine sampling were completed at baseline and at remission after eight weeks. The urine 8-oxo-dG levels were assessed by liquid chromatography tandem mass spectrometry and adjusted for urine creatinine levels. The gene expression levels of OGG1 were determined from cDNA extracted from blood samples, using real time-polymerase chain reaction. RESULTS At baseline, patients presented significantly higher levels of 8-oxo-dG (p = 0.008), and lower gene expression of OGG1 (p = 0.024) compared to controls. Levels of either 8-oxo-dG or OGG1 expression did not differ between BD and UD. In patients who remitted by the 8th week (n = 30), 8-oxo-dG decreased significantly (p = 0.001), and gene expression levels of OGG1 increased by 2.95 times compared to baseline levels (p = 0.001). All comparisons were adjusted for age, sex, smoking status and body mass index. CONCLUSION Our results suggest that patients with bipolar and unipolar mood disorders present increased 8-oxo-dG and decreased gene expression levels of OGG1 in current depressive episodes, and that these changes might be reversed by the resolution of depressive symptoms. The causal relationship between DNA damage and repair requires further exploration.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, Izmir University of Economics, Faculty of Medicine, Department of Psychiatry, Balçova, 35340, Izmir, Turkey.
| | - Selda Yılmaz
- Department of Neurosciences, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Gamze Tuna
- Department of Molecular Medicine, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Melis Kant
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ayşe Er
- Department of Neurosciences, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Ayşegül Ildız
- Department of Neurosciences, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Merve Akış
- Department of Biochemistry, Balıkesir University, Faculty of Medicine, Balıkesir, Turkey
| | - Pınar Akan
- Department of Biochemistry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Hüray İşlekel
- Department of Biochemistry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ayşegül Özerdem
- Department of Neurosciences, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|