1
|
Briânis RC, Iglesias LP, Bedeschi LG, Moreira FA. Effects of cannabidiol on reward contextual memories induced by cocaine in male and female mice. Acta Neuropsychiatr 2024; 36:299-306. [PMID: 37968964 DOI: 10.1017/neu.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Preclinical studies suggest that cannabidiol (CBD), a non-intoxicating phytocannabinoid, may reduce addiction-related behaviours for various drug classes in rodents, including ethanol, opiates, and psychostimulants. CBD modulates contextual memories and responses to reward stimuli. Nonetheless, research on the impact of CBD on cocaine addiction-like behaviors is limited and requires further clarification. This study tested the hypothesis that CBD administration inhibits the acquisition and retrieval of cocaine-induced conditioned place preference (CPP) in adult male and female C57BL6/J mice. We also ought to characterise a 5-day CPP protocol in these animals. METHODS Male and female C57BL/6J mice were administered CBD (3, 10, and 30 mg/kg) 30 minutes before cocaine (15 mg/kg) acquisition of expression of CPP. RESULTS Cocaine induces a CPP in both female and male mice in the 5-day CPP protocol. CBD failed to prevent the acquisition or retrieval of place preference induced by cocaine. CBD did not decrease the time spent on the side paired with cocaine at any of the doses tested in male and female mice, in either acquisition or expression of contextual memory. CONCLUSION This study found no support for the hypothesis that CBD decreases reward memory involved in the formation of cocaine addiction. Further research is necessary to investigate the involvement of CBD in other behavioural responses to cocaine and other psychostimulant drugs. This study, however, characterised a 5-day CPP protocol for both female and male C57BL/6J mice.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas G Bedeschi
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Farrokhi AM, Moshrefi F, Eskandari K, Azizbeigi R, Haghparast A. Hippocampal D1-like dopamine receptor as a novel target for the effect of cannabidiol on extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111025. [PMID: 38729234 DOI: 10.1016/j.pnpbp.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl, Saline) as a D1R antagonist before ICV injection of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD injection (50 μg/5 μl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 μg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 μg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.
Collapse
Affiliation(s)
- Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chesworth R, Yim HCH, Watt G, El-Omar E, Karl T. Cannabidiol (CBD) facilitates cocaine extinction and ameliorates cocaine-induced changes to the gut microbiome in male C57BL/6JArc mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111014. [PMID: 38649130 DOI: 10.1016/j.pnpbp.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Cocaine use disorder (CUD) is a global health problem with no approved medications. One potential treatment target is the gut microbiome, but it is unknown if cocaine induces long-lasting effects on gut microbes. A novel therapeutic candidate for CUD, cannabidiol (CBD), can improve gut function in rodent models. It is possible that protective effects of CBD against cocaine use are mediated by improving gut health. We examined this question in this experiment. Cocaine conditioned place preference (CPP) was conducted in adult male C57BL/6JArc mice. Mice were treated with vehicle or 20 mg/kg CBD prior to all cocaine CPP sessions (N = 11-13/group). Mice were tested drug free 1, 14 and 28 days after cessation of cocaine and CBD treatment. Fecal samples were collected prior to drug treatment and after each test session. Gut microbiome analyses were conducted using 16 s rRNA sequencing and correlated with behavioural parameters. We found a persistent preference for a cocaine-environment in mice, and long-lasting changes to gut microbe alpha diversity. Cocaine caused persistent changes to beta diversity which lasted for 4 weeks. CBD treatment reduced cocaine-environment preference during abstinence from cocaine and returned gut beta diversity measures to control levels. CBD treatment increased the relative abundance of Firmicutes phyla and Oscillospira genus, but decreased Bacteroidetes phyla and Bacteroides acidifaciens species. Preference score in cocaine-treated mice was positively correlated with abundance of Actinobacteria, whereas in mice treated with CBD and cocaine, the preference score was negatively correlated with Tenericutes abundance. Here we show that CBD facilitates cocaine extinction memory and reverses persistent cocaine-induced changes to gut microbe diversity. Furthermore, CBD increases the abundance of gut microbes which have anti-inflammatory properties. This suggests that CBD may act via the gut to reduce the memory of cocaine reward. Our data suggest that improving gut health and using CBD could limit cocaine abuse.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Howard Chi-Ho Yim
- St George and Sutherland Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia; UNSW Microbiome Research Centre, St George and Sutherland Clinical School, UNSW, Sydney, Australia; Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
| | - Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Emad El-Omar
- St George and Sutherland Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, Australia; UNSW Microbiome Research Centre, St George and Sutherland Clinical School, UNSW, Sydney, Australia; Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
4
|
Briânis RC, Moreira FA, Iglesias LP. Cannabidiol and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:319-333. [PMID: 39029990 DOI: 10.1016/bs.irn.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) has been investigated for several therapeutic applications, having reached the clinics for the treatment of certain types of epilepsies. This chapter reviews the potential of CBD for the treatment of substance use disorders (SUD). We will present a brief introduction on SUD and current treatments. In the second part, preclinical and clinical studies with CBD are discussed, focusing on its potential therapeutic application for SUD. Next, we will consider the potential molecular mechanism of action of CBD in SUD. Finally, we will summarize the main findings and perspectives in this field. There is a lack of studies on CBD and SUD in comparison to the extensive literature investigating the use of this phytocannabinoid for other neurological and psychiatric disorders, such as epilepsy. However, the few studies available do suggest a promising role of CBD in the pharmacotherapy of SUD, particularly related to cocaine and other psychostimulant drugs.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
6
|
Spelta LEW, Real CC, Bruno V, Buchpiguel CA, Garcia RCT, Torres LH, de Paula Faria D, Marcourakis T. Impact of cannabidiol on brain glucose metabolism of C57Bl/6 male mice previously exposed to cocaine. J Neurosci Res 2024; 102:e25327. [PMID: 38588037 DOI: 10.1002/jnr.25327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.
Collapse
Affiliation(s)
- Lidia Emmanuela Wiazowski Spelta
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Clinical Medicine, Nuclear Medicine and PET Centre, Aarhus University, Aarhus, Denmark
| | - Vitor Bruno
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Laboratory of Neurotoxicology, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Mirmohammadi M, Eskandari K, Koruji M, Shabani R, Ahadi R, Haghparast A. Intra-Accumbal D1- But not D2-Like Dopamine Receptor Antagonism Reverses the Inhibitory Effects of Cannabidiol on Extinction and Reinstatement of Methamphetamine Seeking Behavior in Rats. Cannabis Cannabinoid Res 2024; 9:89-110. [PMID: 36048545 DOI: 10.1089/can.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Methamphetamine (METH) is an addictive psychostimulant that facilitates dopamine transmission to the nucleus accumbens (NAc), resulting in alterations in the mesocorticolimbic brain regions. Cannabidiol (CBD) is considered the second most abundant component of cannabis and is believed to decrease the METH effects. Reversing psychostimulant-induced abnormalities in the mesolimbic dopamine system is the main mechanism for this effect. Various other mechanisms have been proposed: increasing endocannabinoid system activity and modulating gamma-aminobutyric acid (GABA) and glutamate neurons in NAc. However, the exact CBD action mechanisms in reducing drug addiction and relapse vulnerability remain unclear. Methods and Results: The present study aimed to investigate the effects of intracerebroventricular (ICV) administrating 5, 10, and 50 μg/5 μL CBD solutions on the extinction period and reinstatement phase of a METH-induced conditioned place preference. This research also aimed to examine the NAc D1-like dopamine receptor (D1R) and D2-like dopamine receptor (D2R) roles in the effects of CBD on these phases, as mentioned earlier, using SCH23390 and sulpiride microinjections as an antagonist of D1R and D2R. The obtained results showed that microinjection of CBD (10 and 50 μg/5 μL, ICV) suppressed the METH-induced reinstatement and significantly decreased mean extinction latency in treated groups compared to both vehicles and/or untreated control groups. In addition, the results demonstrated that administrating intra-accumbal SCH23390 (1 and 4 μg/0.5 μL saline) reversed the inhibitory effects of CBD on extinction and reinstatement phases while different doses of sulpiride (0.25, 1, and 4 μg/0.5 μL; dimethyl sulfoxide 12%) could not alter the CBD effects. Conclusions: In summary, this study showed that CBD made shorter extinction latencies and suppressed the METH reinstatement, in part, by interacting with D1R but not D2R in the NAc.
Collapse
Affiliation(s)
- Mahboobeh Mirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Intermittent voluntary wheel running promotes resilience to the negative consequences of repeated social defeat in mice. Physiol Behav 2022; 254:113916. [PMID: 35850205 DOI: 10.1016/j.physbeh.2022.113916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
A novel approach to reduce the incidence of substance use disorders is to promote resilience to stress using environmental resources such as physical exercise. In the present study we test the hypothesis that Voluntary Wheel Running (VWR) during adolescence blocks the negative consequences of stress induced by intermittent repeated social defeat (IRSD). Four groups of adolescent male C57BL/6 mice were employed in the experiment; two groups were exposed to VWR (1 h, 3 days/week) from postnatal day (PND) 21 until the first social defeat (PND 47), while the remaining two groups did not have access to activity wheels (controls). On PND 47, 50, 53 and 56 mice, who had performed VWR, were exposed to an episode of social defeat by a resident aggressive mouse (VWR+IRSD group) or allowed to explore an empty cage (VWR+EXPL group). The same procedure was performed with control mice that had not undergone VWR (CONTROL+IRSD and CONTROL+EXPL groups). On PND 57, all the mice performed the Elevated Plus Maze (EPM), Hole-Board, Social Interaction, Tail Suspension and Splash tests. After an interval of 3 weeks, all mice underwent a conditioned place preference (CPP) procedure with 1 mg/kg of cocaine. Exposure to VWR prevented the negative consequences of social stress in the EPM, splash test and CPP, since the VWR+IRSD group did not display anxiety- or depression-like effects or the potentiation of cocaine reward observed in the Control+IRSD group. Our results support the idea that physical exercise promotes resilience to stress and represents an excellent target in drug abuse prevention.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Paulus V, Billieux J, Benyamina A, Karila L. Cannabidiol in the context of substance use disorder treatment: A systematic review. Addict Behav 2022; 132:107360. [PMID: 35580370 DOI: 10.1016/j.addbeh.2022.107360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cannabidiol (CBD) is a phytocannabinoid found in the Cannabis plant. CBD has received significant medical attention in relation to its anticonvulsant, anxiolytic, and antipsychotic characteristics. An increasing number of studies focusing on the anti-addictive properties of CBD have recently been published. In this systematic review, we aim to offer a comprehensive overview of animal and human studies regarding the impact of CBD on substance use disorders (SUDs). METHODS A systematic search was performed on the PubMed database in February 2021. We included all articles assessing the effects of CBD on substance use disorders. RESULTS The current systematic review suggests that CBD might offer promising therapeutic potential for the treatment of SUD, based on available animal and human studies. Animal studies showed a positive impact of CBD in the context of alcohol, opioids, and methamphetamine use (e.g., diminishing of drug-seeking behaviors). The results for cocaine use were mixed among reviewed studies, and CBD was not found to have an effect in animal studies on cannabis use. No animal study was identified that focused on the impact of CBD on nicotine use. Human studies showed a positive impact of CBD in the context of nicotine, cannabis, and opioid use (e.g., frequency and quantity of consumption). In contrast, CBD was not found to have an effect in human studies on cocaine or alcohol use. No human study was identified that investigated the impact of CBD on methamphetamine use. CONCLUSIONS CBD might offer promising therapeutic potential for the treatment of SUD, especially for nicotine, cannabis, and opioid use disorders, based on available human studies. The available research evidence is, however, sparse and more research on humans is needed.
Collapse
Affiliation(s)
- Victoria Paulus
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France; Faculty of Medicine, AP-HP, Sorbonne Université, Paris, France
| | - Joël Billieux
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Amine Benyamina
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France
| | - Laurent Karila
- Hôpital Universitaire Paul Brousse (AP-HP), UR PSYCOMADD, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
10
|
Sharifi A, Karimi-Haghighi S, Shabani R, Asgari HR, Ahadi R, Haghparast A. Cannabidiol impairs the rewarding effects of methamphetamine: Involvement of dopaminergic receptors in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110458. [PMID: 34662693 DOI: 10.1016/j.pnpbp.2021.110458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
Cannabidiol, as component of cannabis, can potentially hinder the rewarding impact of drug abuse; however, its mechanism is ambiguous. Moreover, the nucleus accumbens (NAc), as a key area in the reward circuit, extensively receives dopaminergic projections from the ventral tegmentum area. To elucidate the role of accumbal D1 and D2 dopamine receptor families in Cannabidiol's inhibitory impact on the acquisition and expression phases of methamphetamine (MET), the conditioned place preference (CPP) procedure as a common method to assay reward characteristics of drugs was carried out. Six groups of rats were treated by various doses of SCH23390 or Sulpiride (0.25, 1, and 4 μg/0.5 μL) in the NAc as D1 or D2 dopamine receptor family antagonists, respectively, prior to infusion of Cannabidiol (10 μg/5 μL) in the lateral ventricle (LV) over conditioning phase in the acquisition experiments. In the second step of the study, animals received SCH23390 or Sulpiride in the NAc before Cannabidiol (50 μg/5 μL) infusion into the LV in the expression phase of MET to illuminate the influence of SCH23390 or Sulpiride on the inhibitory impact of Cannabidiol on the expression of MET-induced CPP. Intra-NAc administration of either SCH23390 or Sulpiride impaired Cannabidiol's suppressive impact on the expression phase, while just Sulpiride could suppress the Cannabidiol's impact on the acquisition phase of the MET-induced CPP. Also, the inhibitory impact of Sulpiride was stranger in both phases of MET reward. It seems that Cannabidiol prevents the expression and acquisition phases of MET-induced CPP partly through the dopaminergic system in the NAc.
Collapse
Affiliation(s)
- Asrin Sharifi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Hirjak D, Schmitgen MM, Werler F, Wittemann M, Kubera KM, Wolf ND, Sambataro F, Calhoun VD, Reith W, Wolf RC. Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use. Addict Biol 2022; 27:e13113. [PMID: 34808703 DOI: 10.1111/adb.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and μ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy Saarland University Saarbrücken Germany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Fabio Sambataro
- Department of Neurosciences, Padua Neuroscience Center University of Padua Padua Italy
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology Emory University Atlanta Georgia USA
| | - Wolfgang Reith
- Department of Neuroradiology Saarland University Saarbrücken Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| |
Collapse
|
12
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
13
|
Karimi-Haghighi S, Razavi Y, Iezzi D, Scheyer AF, Manzoni O, Haghparast A. Cannabidiol and substance use disorder: Dream or reality. Neuropharmacology 2022; 207:108948. [PMID: 35032495 PMCID: PMC9157244 DOI: 10.1016/j.neuropharm.2022.108948] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the major constituents of Cannabis sativa L. that lacks psychotomimetic and rewarding properties and inhibits the rewarding and reinforcing effects of addictive drugs such as cocaine, methamphetamine (METH), and morphine. Additionally, CBD's safety profile and therapeutic potential are currently evaluated in several medical conditions, including pain, depression, movement disorders, epilepsy, multiple sclerosis, Alzheimer's disease, ischemia, and substance use disorder. There is no effective treatment for substance use disorders such as addiction, and this review aims to describe preclinical and clinical investigations into the effects of CBD in various models of opioid, psychostimulant, cannabis, alcohol, and nicotine abuse. Furthermore, the possible mechanisms underlying the therapeutic potential of CBD on drug abuse disorders are reviewed. METHODS The current review considers and summarizes the preclinical and clinical investigations into CBD's effects in various models of drug abuse include opioids, psychostimulants, cannabis, alcohol, and nicotine. RESULTS Several preclinical and clinical studies have proposed that CBD may be a reliable agent to inhibit the reinforcing and rewarding impact of drugs. CONCLUSIONS While the currently available evidence converges to suggest that CBD could effectively reduce the rewarding and reinforcing effects of addictive drugs, more preclinical and clinical studies are needed before CBD can be added to the therapeutic arsenal for treating addiction.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Iezzi
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Daldegan-Bueno D, Maia LO, Glass M, Jutras-Aswad D, Fischer B. Co-exposure of cocaine and cannabinoids and its association with select biological, behavioural and health outcomes: A systematic scoping review of multi-disciplinary studies. Eur Neuropsychopharmacol 2021; 51:106-131. [PMID: 34273801 DOI: 10.1016/j.euroneuro.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
Cocaine use entails severe health- and social-related harms globally. Treatment options for cocaine dependence are highly limited. Benefits of cannabinoids for addiction have been documented, making it opportune to examine existing data on the possible outcomes associated with cannabinoids and cocaine co-use. We conducted a systematic scoping review following the PRISMA guidelines of peer-reviewed, English-language studies published from 2000 to 2021 in four databases (Medline, Web-of-Science, CINAHL Plus, and PsycInfo), assessing the co-exposure of cannabis/cannabinoids with cocaine on behavioural, biological or health outcomes. Both quantitative and qualitative, as well as humans and pre-clinical animals' studies (n=46) were included. Pre-clinical studies (n=19) showed mostly protective effects of cannabidiol (CBD) administration on animal models of addiction (e.g., cocaine-craving, -relapse, and -withdrawal) and cocaine-toxicity. Tetrahydrocannabinol (THC) had more inconsistent results, with both protective and counter-protective effects. Human studies (n=27) were more heterogeneous and assessed natural ongoing cannabis and cocaine use or dependence. Quantitative-based studies showed mostly enhanced harms in several outcomes (e.g., cocaine use, mental health); two available clinical trials found no effect upon CBD administration on cocaine-related treatment outcomes. Qualitative data-based studies reported cannabis use as a substitute for or to alleviate harms of crack-cocaine use. While pre-clinical studies suggest a potential of cannabinoids, especially CBD, to treat cocaine addiction, the few trials conducted in humans found no benefits. Cannabis co-use by cocaine users commonly presents a risk factor, entailing enhanced harms for users. More rigorous, controlled trials are still necessary to investigate cannabinoids' potential considering pre-clinical findings and reported benefits from specific drug users.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lucas O Maia
- Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - Didier Jutras-Aswad
- Centre de Recherche, Centre Hospitalier Universitaire de Universite de Montreal (CHUM), Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Benedikt Fischer
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
15
|
Bis-Humbert C, García-Cabrerizo R, García-Fuster MJ. Antidepressant-like effects of cannabidiol in a rat model of early-life stress with or without adolescent cocaine exposure. Pharmacol Rep 2021; 73:1195-1202. [PMID: 34076862 DOI: 10.1007/s43440-021-00285-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Further studies are needed to better understand the effects of potential novel antidepressants, such as cannabidiol, for the treatment of psychiatric disorders during adolescence. In this context, we evaluated in a rodent model of early-life stress (a single 24-h episode of maternal deprivation, PND 9), the antidepressant-like effects of adolescent cannabidiol alone and/or in combination with adolescent cocaine exposure (given the described beneficial effects of cannabidiol on reducing cocaine effects). METHODS Maternally deprived Sprague-Dawley male rats were treated in adolescence with cannabidiol (with or without concomitant cocaine) and exposed to a battery of behavioral tests (forced-swim, novelty-suppressed feeding, open field, sucrose preference) across time. Putative enduring molecular correlates (CB receptors, BDNF) were evaluated in the hippocampus by western blot. RESULTS Cannabidiol exerted antidepressant- and anxiolytic-like effects in rats exposed to early-life stress. Cocaine did not alter affective-like behavior during adolescence in rats exposed to early-life stress; however, a depressive- and anxiogenic-like phenotype emerged during adulthood, and cannabidiol exerted some behavioral improvements, along with the growing literature supporting its beneficial role for reducing cocaine intake and/or reinstatement in rodents. Finally, cannabidiol did not modulate hippocampal CB receptors or BDNF proteins, and although the data raised interesting questions about the possible role of CB1 receptors on modulating the long-term effects of cocaine, future research is needed to expand these findings. CONCLUSION Cannabidiol showed a promising therapeutic response in terms of ameliorating affect in a rat model of early-life stress during adolescence and up to adulthood.
Collapse
Affiliation(s)
- Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
16
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
17
|
Affiliation(s)
- Allan H Young
- Academic Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
19
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Front Pharmacol 2021; 12:626010. [PMID: 34093179 PMCID: PMC8173061 DOI: 10.3389/fphar.2021.626010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Drug treatments available for the management of substance use disorders (SUD) present multiple limitations in efficacy, lack of approved treatments or alarming relapse rates. These facts hamper the clinical outcome and the quality of life of the patients supporting the importance to develop new pharmacological agents. Lately, several reports suggest that cannabidiol (CBD) presents beneficial effects relevant for the management of neurological disorders such as epilepsy, multiple sclerosis, Parkinson's, or Alzheimer's diseases. Furthermore, there is a large body of evidence pointing out that CBD improves cognition, neurogenesis and presents anxiolytic, antidepressant, antipsychotic, and neuroprotective effects suggesting potential usefulness for the treatment of neuropsychiatric diseases and SUD. Here we review preclinical and clinical reports regarding the effects of CBD on the regulation of the reinforcing, motivational and withdrawal-related effects of different drugs of abuse such as alcohol, opioids (morphine, heroin), cannabinoids, nicotine, and psychostimulants (cocaine, amphetamine). Furthermore, a special section of the review is focused on the neurobiological mechanisms that might be underlying the 'anti-addictive' action of CBD through the regulation of dopaminergic, opioidergic, serotonergic, and endocannabinoid systems as well as hippocampal neurogenesis. The multimodal pharmacological profile described for CBD and the specific regulation of addictive behavior-related targets explains, at least in part, its therapeutic effects on the regulation of the reinforcing and motivational properties of different drugs of abuse. Moreover, the remarkable safety profile of CBD, its lack of reinforcing properties and the existence of approved medications containing this compound (Sativex®, Epidiolex®) increased the number of studies suggesting the potential of CBD as a therapeutic intervention for SUD. The rising number of publications with substantial results on the valuable therapeutic innovation of CBD for treating SUD, the undeniable need of new therapeutic agents to improve the clinical outcome of patients with SUD, and the upcoming clinical trials involving CBD endorse the relevance of this review.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|