1
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
2
|
de Filippis R, Kane JM, Arzenton E, Moretti U, Raschi E, Trifirò G, Barbui C, De Fazio P, Gastaldon C, Schoretsanitis G. Antipsychotic-Related DRESS Syndrome: Analysis of Individual Case Safety Reports of the WHO Pharmacovigilance Database. Drug Saf 2024; 47:745-757. [PMID: 38722481 PMCID: PMC11286650 DOI: 10.1007/s40264-024-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is gaining attention in pharmacovigilance, but its association with antipsychotics, other than clozapine, is still unclear. METHODS We conducted a case/non-case study with disproportionality analysis based on the World Health Organization (WHO) global spontaneous reporting database, VigiBase®. We analyzed individual case safety reports of DRESS syndrome related to antipsychotics compared to (1) all other medications in VigiBase®, (2) carbamazepine (a known positive control), and (3) within classes (typical/atypical) of antipsychotics. We calculated reporting odds ratio (ROR) and Bayesian information component (IC), with 95% confidence intervals (CIs). Disproportionate reporting was prioritized based on clinical importance, according to predefined criteria. Additionally, we compared characteristics of patients reporting with serious/non-serious reactions. RESULTS A total of 1534 reports describing DRESS syndrome for 19 antipsychotics were identified. The ROR for antipsychotics as a class as compared to all other medications was 1.0 (95% CI 0.9-1.1). We found disproportionate reporting for clozapine (ROR 2.3, 95% CI 2.1-2.5; IC 1.2, 95% CI 1.1-1.3), cyamemazine (ROR 2.3, 95% CI 1.5-3.5; IC 1.2, 95% CI 0.5-1.7), and chlorpromazine (ROR 1.5, 95% CI 1.1-2.1; IC 0.6, 95% CI 0.1-1.0). We found 35.7% of cases with co-reported anticonvulsants, and 25% with multiple concurrent antipsychotics in serious compared to 8.6% in non-serious cases (p = 0.03). Fatal cases were 164 (10.7%). CONCLUSIONS Apart from the expected association with clozapine, chlorpromazine and cyamemazine (sharing an aromatic heteropolycyclic molecular structure) emerged with a higher-than-expected reporting of DRESS. Better knowledge of the antipsychotic-related DRESS syndrome should increase clinicians' awareness leading to safer prescribing of antipsychotics.
Collapse
Affiliation(s)
- Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy.
| | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Elena Arzenton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ugo Moretti
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gianluca Trifirò
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Corrado Barbui
- WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Pasquale De Fazio
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Chiara Gastaldon
- WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, Department of Neuroscience, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Sfera A, Imran H, Sfera DO, Anton JJ, Kozlakidis Z, Hazan S. Novel Insights into Psychosis and Antipsychotic Interventions: From Managing Symptoms to Improving Outcomes. Int J Mol Sci 2024; 25:5904. [PMID: 38892092 PMCID: PMC11173215 DOI: 10.3390/ijms25115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
For the past 70 years, the dopamine hypothesis has been the key working model in schizophrenia. This has contributed to the development of numerous inhibitors of dopaminergic signaling and antipsychotic drugs, which led to rapid symptom resolution but only marginal outcome improvement. Over the past decades, there has been limited research on the quantifiable pathological changes in schizophrenia, including premature cellular/neuronal senescence, brain volume loss, the attenuation of gamma oscillations in electroencephalograms, and the oxidation of lipids in the plasma and mitochondrial membranes. We surmise that the aberrant activation of the aryl hydrocarbon receptor by toxins derived from gut microbes or the environment drives premature cellular and neuronal senescence, a hallmark of schizophrenia. Early brain aging promotes secondary changes, including the impairment and loss of mitochondria, gray matter depletion, decreased gamma oscillations, and a compensatory metabolic shift to lactate and lactylation. The aim of this narrative review is twofold: (1) to summarize what is known about premature cellular/neuronal senescence in schizophrenia or schizophrenia-like disorders, and (2) to discuss novel strategies for improving long-term outcomes in severe mental illness with natural senotherapeutics, membrane lipid replacement, mitochondrial transplantation, microbial phenazines, novel antioxidant phenothiazines, inhibitors of glycogen synthase kinase-3 beta, and aryl hydrocarbon receptor antagonists.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Hassan Imran
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Dan O. Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | |
Collapse
|
4
|
Murillo-González FE, García-Aguilar R, Limón-Pacheco J, Cabañas-Cortés MA, Elizondo G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and kynurenine induce Parkin expression in neuroblastoma cells through different signaling pathways mediated by the aryl hydrocarbon receptor. Toxicol Lett 2024; 394:114-127. [PMID: 38437907 DOI: 10.1016/j.toxlet.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Parkin regulates protein degradation and mitophagy in dopaminergic neurons. Deficiencies in Parkin expression or function lead to cellular stress, cell degeneration, and the death of dopaminergic neurons, which promotes Parkinson's disease. In contrast, Parkin overexpression promotes neuronal survival. Therefore, the mechanisms of Parkin upregulation are crucial to understand. We describe here the molecular mechanism of AHR-mediated Parkin regulation in human SH-SY5Y neuroblastoma cells. Specifically, we report that the human Parkin gene (PRKN) is transcriptionally upregulated by the aryl hydrocarbon receptor (AHR) through two different selective ligand-dependent pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a stress-inducing AHR ligand, indirectly promotes PRKN transcription by inducing ATF4 expression via TCDD-mediated endoplasmic reticulum (ER) stress. In contrast, kynurenine, a nontoxic AHR agonist, induces PRKN transcription by promoting AHR binding to the PRKN promoter without activating ER stress. Our results demonstrate that AHR activation may be a potential pharmacological pathway to induce human Parkin, but such a strategy must carefully consider the choice of AHR ligand to avoid neurotoxic side effects.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | - Jorge Limón-Pacheco
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | | | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
5
|
Sfera A, Andronescu L, Britt WG, Himsl K, Klein C, Rahman L, Kozlakidis Z. Receptor-Independent Therapies for Forensic Detainees with Schizophrenia-Dementia Comorbidity. Int J Mol Sci 2023; 24:15797. [PMID: 37958780 PMCID: PMC10647468 DOI: 10.3390/ijms242115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Forensic institutions throughout the world house patients with severe psychiatric illness and history of criminal violations. Improved medical care, hygiene, psychiatric treatment, and nutrition led to an unmatched longevity in this population, which previously lived, on average, 15 to 20 years shorter than the public at large. On the other hand, longevity has contributed to increased prevalence of age-related diseases, including neurodegenerative disorders, which complicate clinical management, increasing healthcare expenditures. Forensic institutions, originally intended for the treatment of younger individuals, are ill-equipped for the growing number of older offenders. Moreover, as antipsychotic drugs became available in 1950s and 1960s, we are observing the first generation of forensic detainees who have aged on dopamine-blocking agents. Although the consequences of long-term treatment with these agents are unclear, schizophrenia-associated gray matter loss may contribute to the development of early dementia. Taken together, increased lifespan and the subsequent cognitive deficit observed in long-term forensic institutions raise questions and dilemmas unencountered by the previous generations of clinicians. These include: does the presence of neurocognitive dysfunction justify antipsychotic dose reduction or discontinuation despite a lifelong history of schizophrenia and violent behavior? Should neurolipidomic interventions become the standard of care in elderly individuals with lifelong schizophrenia and dementia? Can patients with schizophrenia and dementia meet the Dusky standard to stand trial? Should neurocognitive disorders in the elderly with lifelong schizophrenia be treated differently than age-related neurodegeneration? In this article, we hypothesize that gray matter loss is the core symptom of schizophrenia which leads to dementia. We hypothesize further that strategies to delay or stop gray matter depletion would not only improve the schizophrenia sustained recovery, but also avert the development of major neurocognitive disorders in people living with schizophrenia. Based on this hypothesis, we suggest utilization of both receptor-dependent and independent therapeutics for chronic psychosis.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Luminita Andronescu
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - William G. Britt
- Department of Psychiatry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Kiera Himsl
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - Carolina Klein
- California Department of State Hospitals, Sacramento, CA 95814, USA;
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA;
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69366 Lyon Cedex, France;
| |
Collapse
|
6
|
Cheng YC, Ma WC, Li YH, Wu J, Liang KW, Lee WJ, Liu HC, Sheu WHH, Lee IT. Plasma aryl hydrocarbon receptor associated with epicardial adipose tissue in men: a cross-sectional study. Diabetol Metab Syndr 2023; 15:188. [PMID: 37749614 PMCID: PMC10519097 DOI: 10.1186/s13098-023-01166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) is a type of ectopic fat with endocrine and paracrine functions. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that responds to environmental stimuli. AhR expression is associated with obesity. In this cross-sectional study, we aimed to determine the relationship between circulating AhR concentrations and EAT. METHODS A total of 30 men with obesity and 23 age-matched men as healthy controls were enrolled. Plasma AhR concentrations were determined at fasting. The EAT thickness was measured on the free wall of the right ventricle from the basal short-axis plane by magnetic resonance imaging. RESULTS The participants with obesity had a higher plasma AhR level than the controls (81.0 ± 24.5 vs. 65.1 ± 16.4 pg/mL, P = 0.010). The plasma AhR level was positively correlated with EAT thickness (correlation coefficient = 0.380, P = 0.005). After adjusting for fasting glucose levels, plasma AhR levels were still significantly associated with EAT thickness (95% CI 0.458‒5.357, P = 0.021) but not with body mass index (P = 0.168). CONCLUSION Plasma AhR concentrations were positively correlated with EAT thickness on the free wall of the right ventricle in men. Further investigations are needed to evaluate the causal effects and underlying mechanisms between AhR and EAT.
Collapse
Affiliation(s)
- Yu-Cheng Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Chun Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Yu-Hsuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Junyi Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan
| | - Kae-Woei Liang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung, 402204, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hsiu-Chen Liu
- Department of Nursing, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | | | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
7
|
Guerra-Ojeda S, Suarez A, Valls A, Verdú D, Pereda J, Ortiz-Zapater E, Carretero J, Mauricio MD, Serna E. The Role of Aryl Hydrocarbon Receptor in the Endothelium: A Systematic Review. Int J Mol Sci 2023; 24:13537. [PMID: 37686342 PMCID: PMC10488274 DOI: 10.3390/ijms241713537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) has been shown to be important in physiological processes other than detoxification, including vascular homeostasis. Although AhR is highly expressed in the endothelium, its function has been poorly studied. This systematic review aims to summarise current knowledge on the AhR role in the endothelium and its cardiovascular implications. We focus on endogenous AhR agonists, such as some uremic toxins and other agonists unrelated to environmental pollutants, as well as studies using AhR knockout models. We conclude that AhR activation leads to vascular oxidative stress and endothelial dysfunction and that blocking AhR signalling could provide a new target for the treatment of vascular disorders such as cardiovascular complications in patients with chronic kidney disease or pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Andrea Suarez
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Alicia Valls
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - David Verdú
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Javier Pereda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Elena Ortiz-Zapater
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Julián Carretero
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Maria D. Mauricio
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
8
|
Chai X, Wen L, Song Y, He X, Yue J, Wu J, Chen X, Cai Z, Qi Z. DEHP exposure elevated cardiovascular risk in obese mice by disturbing the arachidonic acid metabolism of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162615. [PMID: 36878288 DOI: 10.1016/j.scitotenv.2023.162615] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are one of the significant classes of emerging contaminants that are increasingly detected in environmental and human samples. Nevertheless, the current toxicity studies rarely report how PAEs affect the cardiovascular system, especially in obese individuals. In this study, diet-induced obese mice and corresponding normal mice were exposed to di(2-ethylhexyl) phthalate (DEHP) by oral gavage at environmentally relevant concentrations and key characteristics of cardiovascular risk were examined. The 16S rRNA and high-resolution mass spectrometry were used to investigate the alterations in the gut microbial profile and metabolic homeostasis. The results indicated that the cardiovascular system of fat individuals was more susceptible to DEHP exposure than mice in the lean group. 16S rRNA-based profiling and correlation analysis collectively suggested DEHP-induced gut microbial remodeling in fed a high-fat diet mice, represented by the abundance of the genus Faecalibaculum. Using metagenomic approaches, Faecalibaculum rodentium was identified as the top-ranked candidate bacterium. Additionally, metabolomics data revealed that DEHP exposure altered the gut metabolic homeostasis of arachidonic acid (AA), which is associated with adverse cardiovascular events. Finally, cultures of Faecalibaculum rodentium were treated with AA in vitro to verify the role of Faecalibaculum rodentium in altering AA metabolism. Our findings provide novel insights into DEHP exposure induced cardiovascular damage in obese individuals and suggest that AA could be used as a potential modulator of gut microbiota to prevent related diseases.
Collapse
Affiliation(s)
- Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaochong He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jingxian Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong, China
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
9
|
Anderson G. Clozapine and the aryl hydrocarbon receptor. J Psychopharmacol 2022; 36:516. [PMID: 35362348 DOI: 10.1177/02698811221085286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wolosowicz M, Prokopiuk S, Kaminski TW. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:472. [PMID: 35454311 PMCID: PMC9029454 DOI: 10.3390/medicina58040472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetes Mellitus (DM) is amongst the most notable causes of years of life lost worldwide and its prevalence increases perpetually. The disease is characterized as multisystemic dysfunctions attributed to hyperglycemia resulting directly from insulin resistance (IR), inadequate insulin secretion, or enormous glucagon secretion. Insulin is a highly anabolic peptide hormone that regulates blood glucose levels by hastening cellular glucose uptake as well as controlling carbohydrate, protein, and lipid metabolism. In the course of Type 2 Diabetes Mellitus (T2DM), which accounts for nearly 90% of all cases of diabetes, the insulin response is inadequate, and this condition is defined as Insulin Resistance. IR sequela include, but are not limited to, hyperglycemia, cardiovascular system impairment, chronic inflammation, disbalance in oxidative stress status, and metabolic syndrome occurrence. Despite the substantial progress in understanding the molecular and metabolic pathways accounting for injurious effects of IR towards multiple body organs, IR still is recognized as a ferocious enigma. The number of widely available therapeutic approaches is growing, however, the demand for precise, safe, and effective therapy is also increasing. A literature search was carried out using the MEDLINE/PubMed, Google Scholar, SCOPUS and Clinical Trials Registry databases with a combination of keywords and MeSH terms, and papers published from February 2021 to March 2022 were selected as recently published papers. This review paper aims to provide critical, concise, but comprehensive insights into the advances in the treatment of IR that were achieved in the last months.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz W. Kaminski
- Department of Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Jauhar S, Young AH. Bench, bedside, and balance. J Psychopharmacol 2022; 36:129-130. [PMID: 35166157 DOI: 10.1177/02698811221078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Allan H Young
- Academic Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| |
Collapse
|